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ABSTRACT

The dynamics of continuous space-charge-dominated beams propagating

through a periodic solenoidal focusing channel is studied using a test-particle

model. It is shown that nonlinearities in the self fields induce chaotic particle

motion and beam halo formation for beams that are root-means-squared (rms)

matched into the focusing channel but have nonuniform density profiles

transverse to the direction of beam propagation. In particular, two parabolic

density profiles are considered. For beams with hollow density profiles, it is

found that excessive space charge at the edge of the beam induces two pairs of

stable and unstable period-one orbits in the vicinity of the beam core envelope,

and that the chaotic layer associated the unstable period-one orbits allows

particles to escape from the core to form a halo. On the other hand, for beams

with hump density profiles (i.e., with high densities on the beam axis and low

densities at the beam edge), it is found that excessive space-charge on the beam

axis induces an unstable fixed point on the axis and two stable period-one orbits

off the axis inside the beam, and that the chaotic layer associated with the

unstable fixed point is responsible for halo formation. In both cases, the halo is

found to be bounded by a Kolmogorov-Arnold-Moser (KAM) surface. The ratio

of halo to beam core envelope is determined numerically.

PACS Numbers: 29.27,41.75,41.85
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I. INTRODUCTION

Beam halo formation is an important issue in the design and development of

next generation high-power particle accelerators and high-power microwave

and millimeter wave tubes for a wide range of applications such as high energy

and nuclear physics research, accelerator production of tritium, heavy ion

fusion, and high-power, high-resolution radar [1]. Depending upon the

application, beam halos, if not controlled, can lead to intolerable beam losses,

radio-frequency (rf) breakdown, radioactivity buildup in the accelerator, and

emittance growth, to mention a few examples. It has been recognized recently [2-

9] that for space-charge-dominated beams, halo formation is due to chaotic beam

dynamics induced by nonlinear space-charge effects. Chaotic particle orbits not

only are sensitive to initial conditions, but also occupy a larger region in phase

space than regular particle orbits, resulting in beam halo formation and growth

in the total (edge) emittance.

In this paper, we explore the mechanisms of chaotic behavior and halo

formation in continuous, space-charge-dominated beams propagating through a

periodic solenoidal focusing channel with well matched root-mean-squared

(rms) beam envelopes. For a periodic solenoidal focusing channel with the

periodicity length S and the vacuum phase advance Go, a space-charge-dominated

beam satisfies the condition [9]

SK
->1,4a~e

whereas an emittance-dominated beam satisfies the condition

SK
-<<1.

Here, K = 2v / Yb3bis the normalized beam perveance, e is the unnormalized

rms emittance of the beam [10], v is the Budker parameter, and Obc and 7b are

the (average) velocity and relativistic mass factor of the particles, respectively.

For an electron beam,
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where I. is the electron beam current in amperes, e. = ypbe is the normalized

rms emittance in meter-rad, and S in meters. For an ion beam,

SK 1 (q,( S
-= L6 x10~- . )

4croe OOA e , t'@

where A and q / e are the atomic mass and magnitude of the charge state of the

ion, respectively, 14 is the ion beam current in amperes, e, = y,@,e is the

normalized rms emittance in meter-rad, and S in meters.

In particular, use is made of a test-particle model to show that nonlinearities

in the self fields induce chaotic particle motion and beam halo formation.

This analysis pertains to beams that are root-means-squared (rms) matched into

the focusing channel but have nonuniform density profiles transverse to the

direction of beam propagation. Two parabolic density profiles are considered.

For beams with hollow density profiles (i.e., with low densities on the beam axis

and high densities at the beam edge), it is found that excessive space charge at

the edge of the beam induces two pairs of stable and unstable period-one orbits

in the vicinity of the beam core, and that the chaotic layer associated the unstable

period-one orbits allows particles to escape from the core to form a halo. On the

other hand, for beams with hump density profiles (i.e., with high densities on

the beam axis and low densities at the beam edge), it is found that excessive

space-charge at the beam axis induces an unstable fixed point on the axis and

two stable period-one orbits off the axis inside the beam, and that the chaotic

layer associated with the unstable fixed is responsible for halo formation. In both

cases, the halo is found to be bounded by a Kolmogorov-Arnold-Moser (KAM)

surface [11]. The ratio of halo to beam core envelope is determined numerically.

Results presented in this paper are qualitatively the same as those obtained

previously for rms-matched beam propagation through an alternating-gradient
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quadrupole magnetic focusing channel [3]. An important conclusion from the

present analysis is that the reported chaotic behavior and beam halo formation

occur, regardless of whether the beam has an elliptical or circular cross section.

The organization of this paper is as follows. In Sec. II, we present a test-

particle model for studies of the dynamics of rms-matched beams with a

parabolic density profile. The beam envelope equation is derived following the

work by Sacherer [10], and is used to determine the core radius of the rms-

matched beam. The equations of motion are derived for test particles. A

distribution function, which is consistent with the assumed parabolic density

profile and which also approaches the Kapchinskij-Vladimirskij (KV)

distribution [12] continuously as the density becomes uniform, is employed in

order to specify the initial conditions of the test particles. In Sec. III, the effects

of space-charge on the dynamics of a KV beam are illustrated in the context of

the present test-particle analysis. The Poincare surface-of-section technique [111

is used to study the test-particle motion under the influence of the nonlinear self

fields associated with the charge density nonuniformity, including chaotic

particle motion and associated processes of halo formation. Finally, conclusions

are drawn in Sec. IV.
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II. MODEL AND ASSUMPTIONS

We consider an intense, continuous charged-particle beam propagating at

axial velocity bceb, through a periodic solenoidal focusing channel, as shown

schematically in Fig. 1. In the thin-beam approximation, the applied magnetic

field for the focusing channel is given by

ko(x,y,s)= B,(s)e, - B,(s)(x + ye) (1)

and

f3(xys)= fx(xys+ S), (2)

where s = z is the axial coordintate, S is the fundamental periodicity length of

the focusing field, and the prime denotes derivative with respect to s.

A. Beam Self Fields

To derive the transverse equations of motion for individual test particles, we

make the paraxial approximation which implies (a) the Budker parameter is

small compared with unity, i.e., q2 N / mc2 <<1, (b) the beam is thin compared

with the lattice period S, and (c) the transverse kinetic energy is small compared

with the axial kinetic energy, i.e., v.,+v,2 << v2 Pc 2 . Here, N is the number of

particles per unit axial length, m and q are the particle rest mass and charge,

respectively, c is the speed of light in vacuo, and i is the particle velocity.

Furthermore, we assume that the beam is root-mean-squared (rms) matched into

the focusing channel and has the following density profile:

n ={2(s)+r2(s) - for r < r (s),
nb(r,s) = I b(3)

0, for r > r,(s),

where r = (x2 + y2)' 2 is the radial coordinate, rb(s) = rh(s+ S) is the radius (core

envelope) for the rms-matched beam, R, (s) = N / nr(s), and 8 ib(s) = SN / Rr2(s)

is a measure of nonuniformity in the beam density profile. The beam density
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profile is shown in Fig. 2. It is readily shown that the beam radius r(s) is

related to the rms beam radius (r2(s))" 2 by

ri2(s)(4
(r 2(S)) = N~9Jdxdyn(r,s)r 2(S) - 2g ' (4)

2g

where the geometric factor g is defined by

g =(1-&V /3hb)-'. (5)

For a beam with a uniform density profile, M,(s) =0, which corresponds to the

Kapchinskij-Vladimirskij (KV) equilibrium [121.

The self-electric and self-magnetic fields associated with the beam space-

charge and current are expressed as

(xy, )= .- +-, (x, y,s), (6)

()(xys) = (e- , A (xy,s), (7)

where a / as= 0 in the paraxial approximation, the scalar potential for the self-

electric field is obtained by integrating Poisson's equation

a 2 + =2  -47cqn,(rs), (8)

and the vector potential for the self-magnetic field is defined by

xys)= fb()(x,y,s).. (9)

The solution to Poisson's equation (8) is

-q(N + 8N)r 2 / rb2(s) + qSNr4 / 2r 4(s), for r r(s),

cI~')(r,s) = (10)

-q(N + SN / 2)-2qN Inr /rb(s), for r > r(s).

B. Determination of the RMS-Matched Envelope

The radius for the rms-matched beam is determined from the envelope

equation
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+ r (r - - (4gEy

which is derived following the analysis by Sacherer [10]. In Eq. (11), the

geometric factor is defined in Eq. (5); the focusing parameter is defined by

x1(s)= [,(s)2 = + S) (12)

where 7b = ( b- the normalized beam perveance is defined by

2q2N
K = 2 2  (13)

and the rms emittance e is assumed to be constant and is defined by

E = el = E, and [10]

ej = ((2 _ (5g,)2)1, (14a)

C = ((y2Xyl,2_-(yy')2 . (14b)

Here, ( ) represents the ensemble average over the beam particle distribution,

and the particle transverse displacement in the Larmor frame of reference,

(iY), is related to that in the laboratory frame of reference, (x,y), by

i (s) = x(s) cos[$(s)] - y(s) sin[O(s), (15a)

Y(s)= x(s)sin[$(s)]+ y(s)cos[$(s), (15b)

with$(s)= J4z5ds .

In general, the solutions to the envelope equation (11) can exhibit both

regular and chaotic behavior [3,8]. The present model describes the dynamics of

an rms-matched beam whose radius corresponds to a periodic solution to the

envelope equation (11). When the strength of the focusing field is moderate, Eq.

(11) has a unique periodic solution with r,(s) = rb(s + S) [3].
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For the case of an even focusing lattice with ic.(s) = ,(- s), it can be shown

[3] that Eq. (11) is invariant under the time reversal transformation

(s,r)-> (-s,r,), and that the periodic solution r,(s) = r(s+S) has the property

r,'(0) =0. In this case, the rms-matched beam envelope can be determined

numerically using a shooting method.

Figure 3 shows the periodic envelope for an rms-matched beam propagating

through a periodically interrupted solenoidal focusing channel with the focusing

parameter defined by the following periodic step function:

1C.O, for -112 s/S <i1/2,
0, for Ti/2 s/S<1-1/2, (16)

where il is the filling factor. The vacuum phase advance for the particle motion

in this lattice is given approximately by

FO= [S ic,(s)ds] =(12v 2 )

which is a measure of the strength of the average focusing field. The choice of

system parameters in Fig. 3 corresponds to: r1 = 0.2, S2;0O =12.0 (ao =88.8'),

and SK/ 4e = 10. It is evident in Fig. 3 that r'(0)= 0, as expected for

1C.(s) = (- s). Note also that the results shown in Fig. 3 are independent of g in

terms of the scaled variables defined by s/ S, S2 ;, and (4gbS~ 1 rb.

C. Transverse Equations of Motion

It can be shown that in the Larmor frame of reference, the transverse

equations of motion for a test particle in the combined periodic solenoidal and

self fields are expressed as

d2 x q((18)

+ ;(s)y+ q <-(")(x,y,s) =0, (19)

where 0(s)(xy,s) is defined in Eq. (10), and the tilde over the variables x and y
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has been omitted. Heretofore, the variables x and y should be understood as

the variables x and Y ,respectively.

For a uniform-density beam with SN = 0, the equations of motion (18) and

(19) are linear for the test particle in the beam interior with r 5 r(s) but become

nonlinear for the test particle outside the beam with r > r,(s). It is important to

point out that for nonuniform-density beams, however, the equations of motion

are always nonlinear, regardless of whether the test particle is inside or outside

the beam. It will be shown in Sec. III that for beam propagation through a

periodic solenoidal focusing channel, Eqs. (18) and (19) are generally

nonintegrable and support chaotic solutions.

In the limit of a uniform solenoidal focusing channel with ic,(s) = const., the

rms-matched beam radius is constant. As a result, the equations of motion (18)

and (19) are integrable. In this case, test particles have regular orbits and are

always confined inside the beam envelope.

D. The Initial Distribution

In the present test-particle model, an initial distribution function

corresponding to the parabolic density profile defined in Eq. (3) has been

derived and is expressed as

N -&V 8(W - 1)+ SNH(W ), b
1692 E2 8X2 E0: fbfb (20)

fb(x. y,x',y',s) N-N2WR(R)(1y),Ab<b
fb( 'Y' " Y S) - V (W - 1)+ _ 8 R2H (R2 : 8(,, _ jb < &b 5 0,6 2c2  1;2(s

where R2 = (2+y2)/ r2,

r 2  
(21)W(x, y, X' ,'S = So= +r -l2 (rx' - xrb' + (ry' -yrb' (rb + 6_m

ft, O 5x 1,
H(x)= 09X51 (22)

10, otherwise,

and the maximum emittance e, is defined by
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1---, for 0 5 U 5 Ab,

2b 2 f2(23)
'"i _+- -- for -nb <8ni < 0.

3nib 34b

It is readily verified that n(x,y,s = so)= fb(x,y,x',y',s = sO)>x'dy'. Moreover, the

distribution function fb has the property that it approaches the KV equilibrium

distribution [12] conjinuously as fi, ->0. Therefore, the beams under the

present investigation are perturbed directly from the KV equilibrium which is

the only known Vlasov equilibrium for periodically focused intense charged-

particle beams.

To summarize, equations (18) and (19) together with Eqs. (10), (11) and (20)

form the basis for subsequent investigations of chaotic particle motion and halo

formation in an rms-matched, space-charge-dominated beam propagating

through a periodic solenoidal focusing channel.
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III. NUMERICAL RESULTS

In this section, we discuss results of a numerical study of the beam dynamics

for the case of the step-function lattice described by Eq. (16). In the numerical

study, the envelope equation (11) and the particle equations (18) and (19) are

solved simultaneously using a fourth-order Runga Kutta integrator. The initial

conditions for the envelope equation (11) are chosen such that they yield the

periodic beam envelope as described in Sec. II. Because y = 0= y' is invariant,

we choose the initials conditions y(0) =0 = y'(0) in all of the analyses discussed

in this section. Moreover, for all of the results presented in Figs. 4-6, 8, and 9, the

phase space variables are scaled according to:

sx y___)'r,0y
s-> - x ->-- , y -> , x b()Xand y rb()Y (24)

S r((0) Or() 48, 4.

where e. is the maximum emittance defined in Eq. (23).

A. Uniform-Density Profile

Although the equations of motion (18) and (19) have a simple form, the

transverse beam dynamics exhibits rich behavior whenever space-charge effects

become significant. This is illustrated in Fig. 4, where Poincare surface-of -

section plots [11] are shown in the phase space (xx') for both emittance- and

space-charge-dominated uniform-density beams. The choice of the system

parameters in Fig. 4 corresponds to: Tj = 0.2, SVico = 10.0 (aO = 8L0'), g = 1.0

(&ob = 0), and SK / 4e = 0.5 for the case of an emittance-dominated beam in (a)

and SK / 4e = 6.0 for the case of a space-charge-dominated beam in (b). For each

case shown in Fig. 4,41 particles are loaded initially at s = Ouniformly along the

x-axis from x = -2.0 to 2.0, and the initial conditions are indicated by the

crosses. The Poincare map [11] is generated here by plotting the positions and

momenta of the test particles as they pass through the lattice points s = 1, 2,...,

2000.

Figure 4(a) shows a rather simple and regular phase space structure for the

case of an emittance-dominated beam. By contrast, Fig. 4(b) shows a rather
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complicated phase space structure for the case of a space-charge-dominated

beam, containing a mixture of regular orbits, nonlinear resonances, and chaotic

layers. In Fig. 4(b), all of the test particles loaded initially inside the beam

envelope have regular orbits, and these particles correspond to those in the KV

distribution. However, because Eqs. (18) and (19) are nonlinear for r > r(s) and

because the strength of the nonlinearity is proportional to SK / 4e, the orbits of

some of the test particles that cross the beam envelope become chaotic, i.e.,

sensitive to initial conditions. The chaotic particle orbits lie in the chaotic layers

bounded by the invariant tori known as Kolmogorov-Arnold-Moser (KAM)

surfaces [11].

It should be emphasized that all of the test particles in the KV distribution are

will remain inside the beam envelope, despite the fact that the underlying

equations of motion (18) and (19) are nonintegrable and support chaotic

solutions for r > rb(s). As far as beam halo formation is concerned, it is important

to identify the mechanisms by which the test particles initially in the perturbed

KV distribution fb defined in Eq. (20) enter the chaotic layer .This is the subject

matter discussed in the remainder of this section.

B. Hollow Density Profile

Figure 5 shows Poincare surface-of-section plots in the phase space (x,x') for

a beam with a hollow density profile. The system parameters in Fig. 5 are:

i = 0.2, S2
1CZO = 7.46 (ao = 70), SK /4e = 14, and hb/06 = -0.1 (g = 0.96) for

case (a) and Sb' /,b = -0.2 (g = 0.93) for case (b). For every case shown in Fig. 5,

41 test particles are loaded initially on a circle defined by W(x,x',0,0) = 1 in the

phase space, and the initial conditions are indicated by the crosses. Note that

W = 1 is the maximum value achieved by any particle in the perturbed KV

distribution fb. The Poincare surface-of-section plots are generated here in the

same way as in Fig. 4.
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In Fig. 5, there is a pair of stable and unstable fixed points at the edge of the

beam, i.e., at (x,x') -(1,0) in the phase space. The unstable fixed point is located

inside the beam, whereas the stable fixed point and associated island are located

outside of the beam. Because of the symmetry in the underlying equations of

motion (18) and (19), there is another pair of stable and unstable fixed points at

(x,x')~ (- 1,0). These fixed points, which correspond to periodic solutions of the

equations of motion (18) and (19), are induced by excessive space-charge at the

edge of the hollow beam. Associated with the two unstable fixed points is a thin

chaotic layer (separatrix) which occupies both the region with W <1 and the

region with W > 1 in the phase space. Particles in this thin chaotic layer can cross

the beam envelope, forming a halo around a dense core of beam determined by

W 5 1 in the phase space. Although the chaotic layer has a sizable excursion

along the x'-axis, it extends to x. = +L1 along the x -axis. Therefore, the halo size

in both examples shown in Fig. 5 is about 10% larger than the beam core radius.

Moreover, Because the chaotic layer is thin, the particle density in the halo

region is expected to be very tenuous compared with that in the core region.

As the density perturbations become larger, the width and size of the

separatrix increase, leading to a more extended halo. This is illustrated in Fig. 6

with the choice of the system parameters corresponding to: 11 = 0.2, S'xco = 12.0

(YO = 88.8*), SK /4e = 10, and 8fi / b = -0.95 (g = 0.76). The halo size in this

case is xh = 18, i.e., 1.8 times the beam core radius.

Shown in Fig. 7 as the dashed and bolded solid curves are, respectively,

examples of regular and chaotic trajectories for the same choice of system

parameters shown in Fig. 6. In Fig. 7, s is scaled by the multiplication factor S 1,

and both x and r are scaled by the multiplication factor (4gES) . The regular

trajectory is initialized well inside the beam envelope with x'= 0, whereas the

chaotic trajectory is initialized near the unstable fixed point with x'= 0. Also

shown in Fig. 7 as the two solid curves is the periodic boundary of the rms-
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matched beam. The chaotic trajectory intersects the beam envelope

approximately at the thirteenth period of the focusing channel.

C. Hump Density Profile

Figure 8 shows Poincare surface-of-section plots in the phase space (x,x') for

a beam with a hump density profile. The system parameters in Fig. 8 are:

Ti = 0.2, Sic = 7.46 (aO = 70), SK/ 4e = 14, and Sib/iib = 0.1 (g = 1.03) for

case (a) and &ib /; = 0.2 (g = L07) for case (b) . As in Figs. 5 and 6,41 particles

are loaded initially on a circle defined by W(x,x',0,0) = I in the phase space, and

the initially conditions are indicated by the crosses in Fig. 8.

Figures 8(a) and 8(b) exhibits qualitatively the same phase space structure;

this is, both show two stable fixed points at (x,x') =( 0.85,0) and an unstable

fixed point at the origin (x,x') = (0,0). Particles initialized near the unstable fixed

point assume chaotic motion which results in the formation of a halo. By

comparing the two case shown in Fig. 8, it is evident that an increase in density

nonuniformity leads to an increase in the total (edge) beam emittance but does

not leads to appreciable increase in the halo size. In both cases, the halo extends

to about 1.15 times the beam radius.

Unlike beams with hollow density profiles, the size of the halo around a

beam with a hump density profile does not change appreciably as the density

nonuniformity is increased. This is evident by comparing the case with a

hollow-density profile shown in Fig. 6 with the case with a hump-density profile

beam shown in Fig. 9.
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IV. CONCLUSIONS

The dynamics of continuous space-charge-dominated beams propagating

through a periodic solenoidal focusing channel has been studied using a test-

particle model. The studies were carried out in the regime where the beam is

assumed to be root-means-squared (rms) matched into the focusing channel but

have a nonuniform density profile transverse to the direction of beam

propagation. It was shown that nonlinearities in the self fields induce chaotic

particle motion and beam halo formation.

For beams with hollow density profiles (i.e., with low densities on the beam

axis and high densities at the beam edge), it was found that excessive space

charge at the edge of the beam induces two pairs of stable and unstable period-

one orbits (i.e., two pairs of stable and unstable fixed points of the Poincare map)

in the vicinity of the beam core envelope, and that the chaotic layer associated

the unstable period-one orbits allows particles to escape from the core to form a

halo. The halo was found to be bounded by a Kolmogorov-Arnold-Moser (KAM)

surface. The ratio of halo to beam core envelope, which, depending on system

parameters, can be up to a value of 1.8, was determined numerically.

On the other hand, for beams with hump density profiles (i.e., with high

densities on the beam axis and low densities at the beam edge), it was found that

excessive space-charge on the beam axis induces an unstable fixed point on the

axis and two stable period-one orbits (i.e., two stable fixed points of the Poincare

map) off the axis inside the beam. In this case, the mechanism of beam halo

formation was identified with the chaotic layer associated with the unstable

fixed point on the beam axis. The ratio of halo to beam core envelope for a beam

with a hump density profile was found to be less than that for a beam with a

hollow density profile, for, otherwise, the same choice of system parameters.

It should be emphasized that for rms-matched beams propagating through a

uniform solenoidal focusing channel, test particles do not exhibit either chaotic

behavior or beam halo formation, because the equations of motion are integrable

for an arbitrary density profile with axisymmetry.
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FIGURE CAPTIONS

Fig. 1 Schematic of charged-particle beam propagation through a periodic

solenoidal focusing channel, where the oscillatory curves illustrate the

envelope for the rms-matched beam in the focusing channel.

Fig. 2 Transverse density profiles described by Eq. (3).

Fig. 3 Beam radius as a function of propagation distance s for an rms matched

beam propagating through a step-function lattice defined by Eq. (16).

Here, the choice of system parameters corresponds to: Tl = 0.2,

S21ZO = 12.0 (aO = 88.8'), and SKI 4e = 10. The horizontal and vertical

axes s, r, and ic, are scaled by the multiplication factors S-1 , (4gES)~ 1,

and S2 , respectively.

Fig. 4 Poincare surface-of-section plots in the phase space (xx') for emittance-

and spcae-charge-doinated beams propagating through 2000 lattice

periods with uniform density profiles. The choice of the system

parameters corresponds to: 11 = 0.2, S2XiO = 10.0 (aO = 81.0), g = 1.0

(ob = 0), and SKI 4e = 0.5 for the case of an emittance-dominated beam

in (a) and SK I 4e = 6.0 for the case of a space-charge-dominated beam in

(b).

Fig. 5 Poincare surface-of-section plots in the phase space (xx') for a beam

propagating through 2000 lattice periods with a hollow density profile.

Here, the choice of system parameters corresponds to: Ti = 0.2, S21CZO = 7.46

(aO = 70), SK /4E = 14, and BA, / h, = -0.1 (g = 0.96) for case (a) and

Sk In, = -0.2 (g = 0.93) for case (b).

Fig. 6 Poincare surface-of-section plots in the phase space (xx') for a beam

propagating through 2000 lattice periods with a hollow density profile.

Here, the choice of system parameters corresponding to: il = 0.2,

S2.K.0 = 12.0 (aO = 88.8'), SK / 4e = 10, and M$b / b = -0.95 (g = 0.76).
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Fig. 7 Shown as the dashed and bolded solid curves are, respectively, regular

and chaotic trajectories for the same choice of system parameters shown

in Fig. 6. Also shown as the two solid curves is the periodic boundary of

the rms-matched beam. The chaotic trajectory intersects the beam

envelope approximately at the thirteenth period of the focusing channel.

Here, s is scaled by the multiplication factor S-', and both x and r are

scaled by the multiplication factor (4gsS)~'.

Fig. 8 Poincare surface-of-section plots in the phase space (x,x') for a beam

propagating through 2000 lattice periods with a hump density profile.

Here, the choice of systems parameters corresponds to: 1 = 0.2,

S2 1CZO = 7.46 (a, = 70), SK / 4e = 14, and ib/ fib = 0.1 (g =1.03) for case

(a) and 8fi, /ib = 0.2 (g = 107) for case (b).

Fig. 9 Poincare surface-of-section plot in the phase space (x,x') for a beam

propagating through 2000 lattice periods with a hump density profile.

Here, the choice of systems parameters corresponds to: 11 = 0.2,

S2 1CZO = 12.0 (a, = 88.8'), SK /4e = 10, and 8h, /b = 0.4 (g = 1.24).
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