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Abstract

Impurity toroidal rotation has been observed in the center of Alcator C-Mod

ohmic plasmas from the Doppler shifts of argon and molybdenum x-ray lines. The

rotation is highest (~ 6 x 106 cm/s) in the early portion of the discharges, when the

loop voltage is highest and the electron density is lowest, and then typically settles

to values < 2 x 106 cm/s during the steady state period. The impurity rotation is

in the same direction as the electron toroidal drift, opposite to the plasma current,

and reverses direction when the plasma current direction is reversed. Molybdenum

and argon ions rotate with the same velocity. These observations are in qualitative

agreement with neo-classical theory.
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Introduction

While there have been several diagnostic systems designed to measure impu-

rity toroidal rotation in tokamak plasmas [1-15], most of the observations have been

made in plasmas with an external momentum source, usually provided by neutral

beams. These techniques mostly rely on visible and near UV observations of colli-

sionally excited intrinsic impurities [1-8,10], or of visible lines populated by charge

exchange recombination from a neutral beam [11,13,15]. There are x-ray measure-

ments from intrinsic impurities [9,12], but since the viewing angles in these cases

are close to radial, the lower limit for toroidal rotation measurements precludes

observation during ohmic discharges. Typical values of the rotation velocity with

neutral beam input are in the range of a few x 10' cm/s. Some toroidal rotation

during purely ohmic plasmas has been observed [1,5,7,14], and there have been

some ancillary measurements of toroidal rotation during the ohmic phase of neutral

beam plasmas [2,3,4,6,10]. The ohmic results are summarized in Table I. Values

of the rotation velocity for ohmic plasmas are of order 106 cm/s, more than an

order of magnitude lower than the neutral beam injection results. Here, negative

values indicate rotation in the direction opposite to the plasma current. There is a

wide range of velocities (in magnitude and direction) in this table so further study

is warranted. To date there has been little systematic analysis of these ohmic re-

sults, other than to deduce values for the radial electric field from the formalism

of Ref.[16]. Recently [17], the central toroidal neo-classical impurity rotation ve-

locity in ohmic discharges has been derived from the parallel momentum and heat

flow balance equations. The toroidal rotation velocity is given in terms of routinely

measured plasma parameters, and will be compared with observations below.

The organization of this paper is as follows: a description of the experimental

setup is given, followed by a presentation of the toroidal rotation observations and

a comparison with the predictions of neo-classical theory.
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Experiment Description

The observations presented here were obtained from the Alcator C-Mod [18]

tokamak, a compact (major radius R = 67 cm), high field device with molybdenum

plasma facing components. During most operation, the plasma current is in the

counter clockwise direction as viewed from the top of the machine. X-ray spectra

were recorded with a von Hamos type x-ray spectrometer [19], whose line of sight

is tangent to the plasma major radius, pointing in the counter clockwise direction,

as seen from above. Rotation velocities have been determined from the Doppler

shifts of the argon Lyman a doublet [20] (1s 'Si. - 2p 2Pa at 3731.1 mA, and is
22

iSi - 2p 2 P, at 3736.5 mA) and the 2p' - (2p-)a4dA transition [21] in Mo32+ at

3739.8 mA. Spectra are typically collected every 50 ms during plasma discharges.

Argon is routinely injected into Alcator C-Mod plasmas through a piezoelectric

valve, to provide x-ray transitions for Doppler width ion temperature measurements

[22]. Molybdenum is an intrinsic impurity, usually present in all Alcator C-Mod

discharges.. Absolute wavelength calibration was obtained from the potassium K,

lines generated from a KC1 fluorescence x-ray source [20].

Observations of Toroidal Rotation

Shown in Fig.1 are x-ray spectra including the argon and molybdenum lines

used for the rotation analysis. The thin vertical line indicates the rest wavelength

for Arl7+ Lya,. The spectrum on the left (dash-dot-dot-dot line) is from a plasma

with the current in the counter clockwise direction. Since the spectrometer is view-

ing counter clockwise, and the spectrum is blue-shifted, the impurities (argon and

molybdenum) are rotating clockwise, in the same direction as the electrons, oppo-

site to the plasma current. The magnitude of the shift is -. 5 mA, which yields

a toroidal rotation velocity of (.5 mA/3731.1 mA) x c = 4 x 106 cm/s, in what

will be defined in this paper to be the negative direction. The spectrum on the

right (shown by the solid curve) is from a reversed (clockwise) current plasma, the
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spectrum is red-shifted by about the same amount, and the impurities are rotating

counter clockwise, again in the same direction as the electrons. Shown in Fig.2 are

the time histories of several parameters of interest for a discharge similar to the one

for which the blue shifted spectrum of Fig.1 was obtained. In the top frame is the

plasma current, in the counter clockwise direction, which increases to about 800 kA

at the peak (here shown as negative current). In the next frame is the loop voltage,

which peaks at -7 volts, then decays to around -2 volts. The central electron

density [23] is shown in the middle frame by the solid curve. The dash-dot-dot-dot

line in the same frame is the ion density, calculated from the electron density as

ne(1 - (Zeff -1)/8), where Zeff is measured, and the average Z of all impurities is

taken to be 8. In the next frame is the central electron temperature from ECE [24]

(solid curve) and the central ion temperature [22] (asterisks) from x-ray Doppler

widths. In the bottom frame is the central toroidal rotation velocity from the x-ray

Doppler shift of the Ar' 7 + lines. The rotation is highest at the beginning of the

discharge, and slows down during the steady state portion. The rotation of argon

and molybdenum ions is very similar, which is demonstrated in Fig.3, where the

rotation velocity deduced from Ar17+ and MoS3+ is shown as a function of time.

The line brightness time histories for these two lines are very different. The molyb-

denum signal is strongest in the early portion of the discharge [25] around 100 ms,

when the plasma is in contact with the molybdenum walls and before the plasma is

diverted, and drops substantially during the high density portion of the discharge

when the electron temperature is lowest. In contrast, argon is usually injected at

300 ms into the discharge, so the signal before that time is very low, and then in-

creases and holds steady at an ample level for the remainder of the discharge. The

rotation velocity time histories for these two ions, however, are nearly the same.

As was shown in Fig. 1, when the current is in the counter clockwise direction,

the impurities (and electrons) rotate in the clockwise (negative) direction, and when

the current is in the clockwise direction, the impurities (and electrons) rotate in the

counter clockwise (positive) direction. The complete rotation time histories for two

such cases are shown in Fig.4. In both cases, the magnitude of the rotation is largest
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at the beginning of the discharge when the loop voltage is highest and the density

is low, and then decreases as the discharge develops. In order to demonstrate the

apparent correlation between the rotation velocity and the loop voltage, these two

quantities are plotted in Fig.5 for the two discharges shown in Fig.4, where the

variable time has been eliminated. The solid curve represents the best fit to the

points. While there is considerable scatter, the data reflect the general trend. There

is also an apparent relation between the rotation velocity and the temperature, in

that these two are highest at the beginning of the discharges and drop later on, as

well as an apparent inverse relation with the density. However, in a plot similar

to Fig.5 using these parameters as the variables, there is much more scatter than

when using the loop voltage.

Comparison with Neo-Classical Theory

Neo-classical toroidal rotation has been calculated [17] from the electron, ion

and impurity parallel momentum and heat flow balance equations [26], under the

assumption of no net momentum input, appropriate for ohmic discharges. The ex-

pression for the toroidal impurity rotation velocity is given as (from Eq.56, Ref.[17])

T.3/2

V .or = 4.19 x 107 f -i *I (cm/s). (1)
V7 R ni

Zi is the charge of the background ion, p is the mass of the background ion in amu,

V1 is the loop voltage in volts, R is the major radius in cm, Ti is the ion temperature

in keV, ni is the ion density in 10 4 cm-3 and

f Z -Zi v/2+13a/4 nimi
ZI (1 + a)(x/1 + a) nimi + nimi(

Z1 is the charge of the impurity ion, nj is the impurity ion density, mJ is the

impurity ion mass, mi is the background ion mass, and a = nr Z1
2 /ni Z, 2 . f is of

order 1 for typical Alcator C-Mod conditions, and is plotted in Fig.6 as a function
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of nj/ni. Four cases are shown, Mo3 2 + and Arl+ in hydrogen and deuterium

plasmas. Alcator C-Mod is usually operated with deuterium as the majority ion,

and nominal maximum values for the impurity concentration nr/ni are 2 x 104

(a=0.2) for molybdenum [25] and 3 x 104 (a=.09) for argon. In any case the

difference in toroidal rotation between these ions is only a few percent, well within

the scatter shown in Fig.3.

In Eq.1, the impurity rotation direction is in the same direction as the electrons.

The observed rotation direction is the same as that predicted in the calculation of

Ref.17.

For the deuterium discharge shown in Fig.2, the loop voltage was 2.5 V, the

ion density was 1.0 x 1014 cM- 3 and the ion temperature was 1.36 keV at 400 ms.

Eq.1 predicts a toroidal rotation velocity of 1.7 x 106 cm/s, which is close to the

observed value of 3.9 x 106 cm/s. The complete time histories of the calculated

(from Eq.1) rotation velocities for the discharges of Fig.4 (and Fig.2) are shown in

Fig.7. The predicted values are in good qualitative agreement with the observed

velocities, and are everywhere within a factor of 3.

There are no dynamics in the predictions of Eq.1, so it's not surprising that

there are large discrepencies in the early part of the discharge, when parameters

are changing rapidly (t < 50 ms), and the predicted velocities are much larger than

the observed ones. The impurities must be ionized and accelerated in a low density

plasma, from their initial rest velocity at breakdown. Also early in the discharge,

the loop voltage can be larger than the calculated voltage on the magnetic axis.

During the steady state portion of these discharges, the predictions underestimate

the measured velocities, because the impurities haven't completely slowed down

from the large rotation they obtained earlier, when the voltage was high and the

density was low.

The only true externally controlled variable in Eq.1 is the electron (ion) density,

which is determined by gas puffing rates. The loop voltage is influenced by the time

history of the plasma current and the electron density, and is not independently
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set. The ion temperature is also not set in ohmic discharges, but is determined

by the electron density and temperature. It is possible to vary M, by running in

hydrogen gas, which would change Eq.1 by vF2. However, when operating at the

same electron (ion) density, the ion temperature and loop voltage are different in

hydrogen working gas (by more than a factor of vi), so the effect of changing P is

hidden.

In the derivation of the impurity toroidal rotation velocity in Ref.[17], it was

assumed that the impurity collisionality is in the Pfirsch-Schliter regime (which is

well satisfied for argon and molybdenum throughout Alcator C-Mod plasmas), that

e=0, and viscous forces are ignored. These last two assumptions probably don't

affect the rotation calculation on the magnetic axis.

Conclusions

The central impurity toroidal rotation has been measured from the Doppler

shift of x-ray lines from argon and molybdenum in ohmic Alcator C-Mod plasmas.

The magnitude of the rotation is largest (-6 x 106 cm/s) at the beginning of the

discharges, and settles to less than 2 x 106 cm/s during the steady state portion.

The direction of the rotation is in the same direction as the electrons, opposite to

the plasma current, and switches direction when the plasma current is reversed.

The rotation velocity is the same for Ar17+ and Mo3 2 +. The rotation time histories

qualitatively follow the loop voltage time evolution. These observations are in good

qualitative agreement with neoclassical theory.
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Central Toroidal Rotation during Ohmic Discharges

Device VTr, (cm/s) reference

LT-3
PLT
JFT-2
Torus II
PDX
TM-4
ISx
DIII-D

+5x 105
-1.5x 106

-1.3x 106
+1.6x 106

;3x 105
-7x 105

-2.5x 106

11

1
2
3
5
6
7
10
14

Table I.



Figure Captions

Fig. 1 X-ray spectra of the Ar17+ Lya doublet and the 2p6 - (2p 5 )a4d5 transition

in Mo3 2+ for CCW IP (dash-dot-dot-dot) and CW Ip (solid) discharges. The Ly,,1

rest wavelength of 3731.1 mA is shown by the thin vertical line.

Fig. 2 The time histories of several parameters for a 5.3 T, deuterium discharge.

In the top frame is the plasma current, where the negative sense indicates counter

clockwise current. In the second frame is the loop voltage. In the middle frame

is the central electron density (solid) and the central ion density (dash-dot-dot-

dot). In the fourth frame is the central electron temperature (solid) and the central

ion temperature (asterisks). In the bottom frame is the central toroidal rotation

velocity of Ar17+, where the negative sense indicates clockwise rotating impurities.

Fig. 3 The rotation velocity time histories for molybdenum (solid) and argon

(dash-dot-dot-dot) ions.

Fig. 4 The toroidal rotation velocity time histories for clockwise (solid) and

counter clockwise (dash-dot-dot-dot) plasma current.

Fig. 5 The toroidal rotation velocity as a function of loop voltage for the two

discharges shown in Fig.4. The solid curve is the best linear fit to the data.

Fig. 6 The quantity f (Eq.2) as a function of relative impurity concentration for

Mo3 2 + and Ar17+ ions in hydrogen and deuterium plasmas.

Fig. 7 The calculated rotation velocity (solid curves) time histories (from Eq.1)

compared to the measured (asterisks) values from Fig.4.
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