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Abstract

Tertiary protons with birth energies from 27 to 30.8 MeV result from the implosion

of ignition-scale inertial confinement fusion targets, such as those planned for the National

Ignition Facility (NIF). Measurement of the tertiaries' slowing can provide a determination

of the imploded areal density of the fuel capsule, as well as information about implosion

asymmetry that results from anisotropy of the areal density and plasma temperature. To

determine the utility of tertiaries for all phases of ignition experiments, we analyze three

representative cases: a gas capsule (0.7 kJ yield); a cryogenic fuel capsule that fails to ignite

(15 kJ); and a cryogenic fuel capsule that ignites and burns (13,000 kJ). In each case,

tertiaries escape from the capsule and convey critical information about implosion

dynamics. Tertiaries might also prove useful for current laser facilities such as the newly

completed OMEGA.
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In both the US" and France5 widespread attention has focused on new initiatives in

inertial fusion, the National Ignition Facility in the US and the MegaJoule Laser Facility in

France. The goal is to generate at least 10 times more energy from fusion than the laser

energy (51.8 MegaJoule) used to drive the capsule implosions. In such experiments,

densities and areal densities will be immense (~ 10 g/cm3 and - 1 g/cm2). Precisely

because of such extremes (see Fig. 1-3), new diagnostic methods will be required to

measure critical parameters such as capsule implosion symmetry'," and areal density9-2.

Here we identify a solution to these particular issues based on detection of teritary protons

that have birth energies between -27 and 30.8 MeV. We concentrate on these high-energy

tertiaries both because of their ability to escape the capsules envisioned for all phases of the

NIF and because they convey pivotal information.

Diagnosis of tertiary protons will be useful during three phases of the approach to

ignition. In the first phase, conditions for symmetric drive will be established using non-

igniting DT gas-filled capsules, with small fusion yields (0.7 kJ). In the second phase, the

drive pulse-shape for igniting cryogenic (solid fuel) capsules will be determined, as well as

further fine-tuning of drive symmetry. Ignition itself will not yet be achieved, but the

yields will typically be much larger (15 kJ) than for gas capsules. In the final stage, fully

ignited cryogenic capsules with large yields (13,000 kJ) will be diagnosed. Below we

analyze the tertiary production and spectra from each of these cases. In addition to these

considerations of the NIF implosions, we briefly examine the potential utility of tertiary

protons for current laser experiments such as the recently-completed OMEGA.

High-energy tertiary protons are generated in a 3-step process starting with the

primary fusion between deuterium (D) and tritium (T) ions

(1) D + T ---------- > a (3.5 MeV) + n(14.1 MeV),
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where the short range of the a particles propagates the fusion burn from the igniting core

outwards into the dense fuel region". The second step involves the 14.1-MeV neutron

elastically scattering off a plasma deuteron:

(2) n(14.1MeV) + D ------------ > n' + D( 11 ---- 12.5 MeV).

11 (12.5) MeV corresponds to a collision in which the deuteron scatters at 20 (0) degrees

with respect to the incident neutron direction. The total cross-section for this reaction is

GD= 6 2 0 mb. Because the differential cross section is strongly peaked in the forward

direction 5 , about 13% of the reactions result in deuteron energies at or above 11 MeV.

(This corresponds to the factor Fe in Table 1 and Eq. 4.) The third and final step involves

these very energetic deuterons fusing with plasma 3He ions, with tertiaries being emitted

within 30[20] degrees of the forward direction:

(3) D(1l--12.5MeV) + 3He ------- > a + P(27.6[28.5] -- 30.8 MeV).

The total cross-section for this reaction is aHe - 40 mb. Because this differential cross

section16 is also strongly forward peaked, about 17[12]% of all tertiary protons are emitted

with energies at or above 27.6[28.5] MeV (the factor F, in Eq. 4). This reaction requires

the presence of 3He, with which the capsule is seeded during fabrication (related to the

factor YH )17*18.

To determine the energy loss of the tertiary protons on the NIF we construct,

through the use of hydrodynamic-radiative codes such as HYADES'", representative

profiles of temperature and density near peak burn for a gas-capsule implosion (0.7 kJ,

Fig. 1); for a cryogenic capsule that fails to ignite (15 U, Fig.2); and for a fully ignited

cryogenic capsule (13,000 U, Fig. 3)". For the non-igniting cryogenic capsule (Fig. 2), it

fails because it is over-driven. A typical starting capsule for these indirect-drive

implosions' is shown in Figure 2 (inset), with details of the laser irradiance parameters
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given in Ref. 1. For the gas capsule, the solid cryogenic layer is removed and the

brominated CH ablator thickened to maintain constant areal density. The gas density is still

left at about 0.3 mg/cm3. Combining these profiles with stopping power calculations20 ,

the energy loss during capsule transit is calculated for tertiaries that originate near capsule

center (Table 1). From the point of view of energy loss, this is a worst case analysis. In

the capsule interior (exterior), tertiary slowing is dominated by plasma electrons from DT

(CH). Ion stopping is totally negligible, as are scattering effects21. Fig. 4 summarizes the

tertiary range for relevant temperatures and densities.

Focusing first on the gas-capsule implosion (Case A, Table 1), 10.1 MeV to 11.7

MeV is lost during capsule transit for tertiaries with birth energies of 30.8 MeV and 27

MeV, respectively. Most of this loss results from electron stopping in the CH

pusher/ablator plasma that encloses the fuel (Fig. 1).

For igniting cryogenic capsules (Case C, Table 1), only about 5 MeV is lost in

capsule transit by tertiaries with birth energies of 27 - 30.8 MeV. Despite the immense

capsule densities, the high temperatures keep the plasma relatively "transparent" (Fig.3).

Energy loss is more important for non-igniting cryogenic capsules (Case B, Tablel). This

is a consequence of the fact that areal densities are still substantial while temperatures are

relatively low (Fig.2 and 4). The energy loss is 9.9 to 11.4 MeV for 30.8 and 27 MeV

protons, respectively. (Because - 0.5 MeV loss in deuteron energy occurs before fusing

with 3He, an additional 0.5 MeV is removed from the low-energy end of the proton

spectrum.)

To estimate the magnitude of the tertiary yields, we utilize the cross sections

associated with Eqs. 2 and 3 as well as the characteristic temperature/density profiles (Fig.

1-3). The yield is

(4) Y - {( aD )(FO ) (YD)}{( aHe)(F ) (y H,)} (m, 2 )( p A R)2 (F. Y.),
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where Table 1 lists the interpretation and value of the parameters 2. Note that the tertiary

yield is proportional to the neutron yield (Yn) and the square of the areal density (p A R).

An additional source for tertiary protons, with maximum energy of 28.9 MeV, are

those from fusion reactions of knockon 3He ions with plasma deuterons. (In Eq. 2, 3He

replaces D, and then the roles of D and 3He are reversed in Eq.3. ) On the basis of the

knockon and fusion cross sections, this contribution is important for the gas capsule

targets when the 3He fraction is large . [It amounts to multiplying Eq. (4) by a factor of

about 3 for the conditions of Table 1.]

For the NIF gas-capsule implosion (Case A, Tab. 1), the tertiary yield is

approximately 1.5xlO and, for a detector with fractional solid angle of - 10, the signal

would be of order 1500 counts. Since this signal is connected with the entire fuel p R

(Fig. 1), this diagnostic is similar in spirit to proposed tertiary neutron measurements'2 (in

Eq. 3, the 3He is replaced with T, resulting in tertiary neutrons with maximum energy of

30.1 MeV).

At the other extreme, the ignited cryogenic implosion results in approximately

2.0x 1011 tertiaries and, in contrast to the gas capsule, they would be largely slowed in the

main fuel p R (Fig.3). For a detector with fractional solid angle of - 10, the resulting

signal would be of order 2x105 counts. Another important feature is the substantial energy

of the escaping tertiaries, well in excess of the 14.1-MeV neutrons. In such instances,

tertiary diagnostics might expeditiously be based on time-of-flight separation from the

14.1-MeV neutrons2.

For more complicated implosion scenarios, the situation should be even more

interesting than these illustrative cases. For example, 2-dimensional hydrodynamic

calculations for ignited capsules indicate that pole-to-waist' angular variations in the

cryogenic fuel p R can vary by as much 40% from the 1-dimensional density profiles
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depicted above. Such asymmetries might be discernible from measurements of the

escaping proton spectrum22. With several multiple proton spectrometers simultaneously

viewing the implosion from various angles, differences in their spectra should be directly

related to variations in fuel p R and electron temperature along the different lines-of-

sight27.

The previous calculations concerned implosions on the NIF. Here we show that

tertiaries might also be useful for present facilities. Utilizing LILAC hydrodynamic

calculations" and Eq.4, we list in Column D (Table 1) neutron yield and pAR values

expected for OMEGA direct-drive gas-capsule implosions (Fig.5). Treating nascent

tertiaries from 20 to 30.8 MeV, the calculated yield is l.Ox 106. For OMEGA implosions,

20 MeV can be used for the low-energy end of the proton spectrum since only about 4 MeV

is lost by the escaping tertiaries. In principle, these tertiaries should be detectable with a

CCD-based charged-particle spectrometer2 that we are building for OMEGA. (The

spectrometer's main function is to detect the numerous charged particles from other

implosion processes26. .) With a fractional solid angle of 3x10 , it should detect about 30

tertiaries27 . Thus even for the present, new class of facilities like OMEGA, tertiaries might

expeditiously be used to help diagnose implosion dynamics.

In summary, penetrating tertiary protons with birth energies from -27 to 30.8 MeV

are shown to be sensitive to central fuel conditions and implosion symmetry on the

National Ignition Facility, including those implosions with peak density of - 10 3 g/cm3 and

areal density of - I g/cm2 . Because the sequence of experiments on the NIF will proceed

from gas to cryogenic capsules, we treated three cases that were representative of this

anticipated sequence: First, a gas capsule implosion; second, a cryogenic implosion that

fails to ignite; and third, a cryogenic implosion that fully ignites. In each case, energetic

tertiaries will convey useful information about fuel and core areal density and implosion

symmetry. Furthermore, even for present facilities such as the newly operational
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OMEGA, it is possible that tertiary protons can effectively diagnose important aspects of

the implosion dynamics.

Acknowledgments. The authors thank Dr. John Lindl for detailed comments and Prof.

Arthur Kerman for helpful suggestions, Profs. Robert McCrory and Miklos Porkolab and

Dr. E. Michael Campbell for support and encouragement, and Mr. Damien Hicks and Dr.

Fredrick Seguin for extensive discussion of charged-particle spectroscopy with CCDs.

This work was supported in part by LLNL Subcontract B313975 and Un. of Rochester

Subcontract 410025-G.

'7



References

1. S. W. Haan, S. M. Pollaine, et al. Phys. Plasmas 2(6), 2480 (1995).

2. J. D. Lindl, Phys. Plasmas 2(11), 3933 (1995).

3. Lawrence Livermore National Laboratory, Energy & Technology Review, December 1994.
(This issue was devoted entirely to discussion of the National Ignition Facility.)

4. M. D. Rosen, Bull. Am. Phys. Soc. 40(11), 1683 (1995); review talk; to be published
in Phys. Plasmas.

5. M. Andre, M. Novaro, and D. Schirmann, Cocs, N#251#13, pp73-84, April 1995; D.
Butler, Nature 375, 6 (1995); J. Maddox, Nature 372, 127 (1994); Nature 371, 729
(1994).

6. L. J. Suter, et al. Phys. Rev. Lett. 73, 2328 (1994).

7. A. A. Hauer, et al. Phys. Plasmas 2(6), 2488 (1995).

8. R. L. Kauffman, et al. Phys. Rev. Lett. 73, 2320 (1994).

9. M. D. Cable, et al. Phys. Rev. Lett. 73, 2316 (1994).

10. M. D. Cable and S. P. Hatchett, J. Appl. Phys. 72, 2233 (1987).

11. Y. Kitagawa, et al. Phys. Rev. Lett. 75, 3130 (1995).

12. Tertiary processes with energetic neutrons as the final product, have also been reviewed
[H. Azechi, M. D. Cable, and R. 0. Stapf, Laser and Particle Beams 9, 119 (1991)]. The
signal of these neutrons should be proportional to the square of the fuel areal density.
This diagnostic will probably not be directly sensitive to implosion asymmetries.

13. J. D. Lindl, R. L. McCrory, E. M. Campbell, Physics Today, 32, September (1992).

14. S. Skupsky, Phys. Rev. A 16, 727 (1977).

15. National Neutron Cross Section Center, BNL 400, Third Edition, (1970).

16. H. Liskien and A. Paulsen, Nucl. Data Tables 11, 569 (1973).

17. For an imploded core 3He fraction of 5%, the initial vapor-space fraction would have to be
0.5, or about 0.15 mg/cc. This increases the natural time constant for forming the solid
layer by "beta layering" from about 25 minutes to about 200 minutes (five to ten time
constants are required to produce a smooth, symmetric layer). The presence of the 3 He
will not otherwise directly affect the solid layer, but if the time constant becomes too long,3He bubbles can form in the solid, leading to deleterious effects. For further information
on beta layering, see T. P. Bernat, E. R. Mapoles, and J. J. Sanchez, "Temperature- and
age-dependence of redistribution rates of frozen deuterium-tritium", Lawrence Livermore
National Laboratory 1991 ICF Annual Report, UCRL-LR-105820-91, p55, June, 1992,
and references therein.

8



18. Only for fully ignited cryogenic implosions (Case C) will an important fraction of tertiary
protons originate from 3He generated from D-D fusion. Specifically, for the conditions
of Table 1 and Fig. 3 (i.e. 5% 3He fraction at peak burn), monte-carlo/hydrodynanic
calculations indicate that the in situ D-D component will be smaller by a factor of
3. (This and other time-dependent calculations of tertiary protons and neutrons, of
secondary charged products, and of knockons, will be treated in the future by S. Cremer
and coworkers.) Experimentally these two tertiary components can also be distinguished
by imploding capsules with and without 3He seeding. Furthermore hydro calculations
indicate that ignition still occurs for 12% 3 He seeding at peak burn, so in principle even
more distinct contrast could be achieved between these two components.

19. J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transfer 51(1/2), 179 (1994).

20. C. K. Li and R. D. Petrasso, Phys. Rev. Lett. 70, 3059 (1993).

21. C. K. Li and R. D. Petrasso, Phys. Plasmas 2(6), 2460 (1995).

22. There is a trade-off between the signal size and the degree to which asymmetries can
be determined. Specifically the larger Fe and FO (of Eq. 4 and Table 1), the larger the
signal, but the smaller the information content that can be obtained about the implosion
asymmetry. In a similar vein, if the tertiary source is too extended, it can wash out
short spatial scale pR variations, of which P 2 , P 4 and P6 are of particular interest. Such
issues will have to be treated in the actual NIF experiments and through further detailed
simulations.

23. Additionally, for all tertiaries it is desirable that their escape energy exceed 14 MeV in
order to avoid potential confusion with 14-MeV (and lower energy) protons that might
originate from neutron knockons with the (CH) ablator hydrogen.

24. J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimegi and B. L. Henke, Phys.
Rev. A 36, 3926 (1987); and E. B. Goldman, et al.; Univ. of Rochester theory group;
unpublished.

25. C. K. Li, et al. accepted for publication in Rev. Sci. Instrum., May 1996; D. G. Hicks,
et al. accepted for publication in Rev. Sci. Instrum., May 1996.

26. S. Skupsky and S. Kacenjar, J. Appl. Phys. 52, 2608 (1981).

27. The important issue of detector noise - from neutrons, gammas, etc. - will be carefully
assessed when the spectrometer is actually interfaced to OMEGA. This will ultimately
determine whether the tertiaries will be observable. Similar considerations will also need
to be addressed for the NIF.

q



------ NATIONAL IGNITION FACILITY-----

Case A

Fusion yield (kJ)

Tertiary birth energies (MeV)
[from near capsule center]

Tertiay energy loss (MeV)
(after capsule transit)

Tertiary escape energy (MeV)

Y,: Primary neutron yield

F.: Fraction of Y. passing
thru 'He-doped fuel

D: T: 'He ratio in
the fuel and/or core
(Fraction of D [yD ] and

'He [ yHC I in the fuel)

0.7

30.8, 27.0

10.1, 11.7

20.7, 15.3

2.5x 10"

1.0

0.5: 0.25: 0.25

Case B

15

30.8, 27.0

9.9, 11.4

20.9, 15.6

5.3xi0'"

0.2

Case C

13,000

30.8, 27.0

4.5, 4.6

26.3, 22.4

4.6x10a

0.2

OMEGA

Case D

0.028

30.8, 20

3.2, 4.6

27.6, 15.4

L.8x10"

1.0

0.475:0.475: 0.05
0.475:0.475:0.05 0.5: 0.25: 0.25

p AR: "Active" part of
fuel areal density [g/cm 2 I

Fe : Factor for knockon
deuteron to be scattered
within 20* of forward direction

F, (a]: Factor for tertiary
proton to be emitted within

a(deg) of forward direction

m., : Effective ion mass of
fuel (m,=1.67x10-24 g)

Y,: Tertiary proton yield

0.07

0.13

0.17 [30']

2.50m,

1.5x107

0.50

0.13

0.17(30']

2.52m,

2.Ox 10'

0:54

0.13

0. 17[30]

2.52m,

2.0x10"

0.038

0.13

0.58[80'1

2.50m,

1.Ox I'

Table 1. Tertiary energy loss and yield (Y, ) expected from 3 NIF capsules: A) Gas-capsule; B) Cryo-capsule
that fails to ignite; C) Cryo-capsule which ignites. D) Expected OMEGA gas-capsule tertiary yield.

* Also includes the 3He knockon component
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Fig. 1. Calculated density and temperature profiles, at peak bum, for a gas-capsule
implosion (0.7 kJ) on the National Ignition Facility (NIF). From such profiles, estimates
are made of the yield of - 27 to 30.8 MeV tertiary protons and their energy loss as they
transit the capsule (Case A, Table 1). In this instance, they lose between 10 and 12 MeV.
The dashed/dot line indicates the cross-over from DT to CH-ablator plasma. For the first
few years, gas-capsule implosions will be the focus of the NIF.
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Fig. 2. Calculated density and temperature profiles, at peak burn, for a NIF cryogenic-
capsule implosion (15 IJ) that fails to ignite (Case B, Tab. 1 ). This simulated failure was
achieved by over-driving the implosion. The dashed/dot line indicates the cross-over from
DT to CH-ablator plasma.

Inset: Typical starting capsule' for indirectly-driven implosions of Figures 2 and
3. Laser irradiance parameters are given in Ref. 1. In our simulations, the initial gas
mixture is typically 0.15 mg/cc of DT and 0.15 mg/cc of He3. (Simulations ignite even
when the gas density is comprised entirely of He3 .)" For the gas-capsule implosion of
Fig. 1, the solid cryogenic layer is removed and the CH ablator thickened to maintain
constant areal density; the initial gas mixture (D:T:He3) is then 0.5: 0.25: 0.25.
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Fig. 3. Calculated density and temperature profiles, at peak burn, for a NIF cryogenic-
capsule implosion (13,000 kJ) that ignites (Case C, Tab. 1). In this instance, the fusion
energy is about 10 times greater than the laser energy used to drive the implosion. The
dashed/dot line indicates the cross-over from DT to CH-ablator plasma.
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Fig. 4. Range calculations for 30.8-MeV tertiary protons in DT plasmas relevant to

simulated implosions on the NIF and OMEGA. In contrast to 3.5-MeV a's, the high
energy of tertiary protons results in negligible slowing with plasma ions, even for the
ignited cryogenic capsule (Fig. 3) that has an ion temperature of - 40 KeV. Scattering
effects are also inconsequential". It is for closely related reasons that, by simply

multiplying each pR curve by 0.74, this same family of curves also applies to 30.8-MeV
tertiaries in the CH-ablator plasma.
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Fig. 5. Calculated density and temperature profiles, at peak burn, for a directly-driven
OMEGA implosion (0.028 kJ)2". For this particular simulation, tertiary protons may be the
only charged particle species that can unambiguously convey information about the fuel
pR"'". For example, knockon deuterons and tritons are ranged out, while knockon
protons from (H)fuel seeding could be overwhelmed by proton knockons from the CH
ablator. For this reason tertiaries could prove useful even for present-day, non-ignited
experiments. The dashed/dot line indicates the cross-over from DT to CH-ablator plasma.
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