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Abstract

We investigated plasma flow through the gas cloud in a tokamak divertor

for "gas box" divertor geometry and Knudsen regime of neutral transport.

We have shown that similar to the neutral models considered previously,

the plasma parameters near the target is sensitive to the energy flux into

the hydrogen recycling region and can change rapidly resulting in

bifurcation like behavior, which might be interpreted as a transition to

detached regime. Notice, that the critical values the energy flux below

which the rapid change of plasma parameters occurs are very similar for

all neutral transport models. However, for low plasma temperature near

the target, the scalings of plasma parameters for "gas box" neutral model

are different from those obtained for diffusive Knudsen neutral model

considered previously. In particular, "gas box" neutral model is less

efficient in the energy spreading onto the side walls than diffusive

Knudsen neutral model.

PACS numbers: 52.30.-q, 52.25.Fi
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I. Introduction

Experiments on most diverted tokamaks have demonstrated

detached divertor regimes (see Refs. 1-4) which are characterized by: high

energy radiation losses from the scrape off layer (SOL) region; low plasma

temperature near the divertor plates; strong decrease of the plasma

particle and energy fluxes onto the plates; and strong plasma pressure

drop along magnetic field lines in the divertor volume. Due to a very low

heat loads on the divertor plates observed in these regimes, they look

attractive from the International Thermonuclear Experimental Reactor

(ITER) 5 divertor design point of view.

In Ref. 6 one dimensional physical model of the tokamak.SOL was

developed to investigate the main features of plasma - neutral interactions

in the recycling region of a tokamak slot-like divertor for the two opposite

extremes of fluid and diffusive Knudsen neutrals. Fluid approximation for

neutral transport can be applied for relatively high plasma density in the
hydrogen recycling region, when the neutral mean free path, XN, is
smaller than SOL plasma width, Ap. Diffusive Knudsen approximation

describes the opposite extreme for which Ap << XN << L, where L is the

length of the slot.

It was shown 6 that in both cases of fluid and diffusive Knudsen

neutrals the reduction of the heat flux into the hydrogen recycling region

from upstream, qre, due to impurity radiation, below some critical value

leads to either thermal bifurcation or rapid change of the SOL plasma

parameters. The resulting changes of plasma parameters in the recycling

region are consistent with the detached divertor observations mentioned

earlier. The physical mechanisms responsible for the decrease of the

plasma flux onto the target and plasma pressure drop along magnetic field
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lines in the divertor volume (depending on the SOL plasma parameters and

divertor geometry) are the influence of the neutral gas pressure on plasma

flow 7, 8 for fluid neutrals, and friction between the plasma flowing toward

the target and the neutral gas scattered by the sidewalls 9 for diffusive

Knudsen neutrals.

Since the balance of the SOL plasma sink and source must be

sustained, the decrease of plasma flux onto the target (plasma sink) after

detachment has to be accompanied by the reduction of the global neutral

gas ionization (plasma source), while maximum neutral gas density

increases. This effect only possible either in a slot like divertor or for the

case of relatively dense divertor plasma, when XN is smaller than plasma

scale length, which allow a significant reduction of neutral influx into hot

plasma region in comparison with neutral free streaming flux. Note, that

this very important feature of detached plasmas is usually missed in the

simple models of plasma detachment 9 ,10. For both neutral transport

models considered in Ref. 6 the reduction of the global neutral gas

ionization is related to the shift of high plasma temperature region, where

ionization might occur, away from the target which result to the decrease

of a local neutral gas density in the ionization region.

The main goal of this paper is to investigate with a simple model the

influence of a tokamak divertor geometry on the physical picture of

plasma-neutral interaction in the hydrogen recycling region drawn above.
We consider Knudsen neutral gas flow in the divertor (XN>Ap) and

assume that at a poloidal distance LN from the plate there is the widening

of the slot divertor (which we will call a "gas box") with the width, Agb, is

much bigger than the slot width far from the target, A (see Fig. 1). For the
case when the ratio Agb /LN is not so small and A/LN <<1 we can assume
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uniform distribution of neutral gas within the "gas box" and neglect

plasma-neutral interaction beyond the "gas box".

The equations and boundary conditions describing a plasma flow

through the "gas box" are presented in Section II. Analytical and numerical

solutions of these equations are discussed in Section III. The main

conclusions are summarized in Section IV.

II. Equations and boundary conditions

We consider uniform distribution of neutral gas within the "gas box"

and neglect plasma-neutral interaction beyond the "gas box". Following Ref.

6 we prescribe plasma pressure, Pu, and the energy flux, qrc, at the

entrance into the "gas box". Using "poloidal" coordinate y, directed from

the target, plasma parallel momentum balance equation as well as plasma

energy balance (describing both ion-neutral elastic and electron-neutral

inelastic collisions) and continuity equations can be written in the form

b---MnV2+p - -MKiNNnV, (1)
dy

- -enNKiN - EjnNKj , (2)
dy

dj
-- nNKI , (3)
dy

where n, T, and V are plasma density, temperature (we assume electron

and ion temperature equal), and velocity respectively; P - 2nT is the
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plasma pressure; N is the neutral gas density; M is the ion mass; b - sin p

with V9 the angle between the target and magnetic field line; j - bnV is

the poloidal plasma flux; E, is the neutral ionization "cost" describing

plasma energy losses due to electron-neutral inelastic collisions

El (T) - I+ ER (KR(T)/KI (T)), (4)

where I = 13.6 eV is the hydrogen ionization potential, ER the

characteristic energy loss, and KR (T) and KI(T) are the electron impact

excitation and ionization rate constants for hydrogen; KiN (T) is ion-neutral

collision rate constant and e(T) - T(T - TO) is the characteristic energy loss

due to elastic ion-neutral collisions, i =const.;

q - (MV2 / 2+ 5T) j+ e , (5)

with q and qe - -Ie (T)b2 dT/dy the total poloidal plasma heat flux and

the parallel heat flux due to electron heat conduction along the field lines,

Ke(T) is the electron heat conduction coefficient along the magnetic field.

Following Ref. 6 we take KiN - 2.1ca(T / M)1 2 and F =1.5, where a is

charge exchange cross section and To is neutral gas temperature, which

assume to be fixed (To -1 eV).

Assuming subsonic plasma flow from Eq. (1) one has

b2  dP
MNKiN dY
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Then, plasma continuity and energy balance equations can be written as

di d I b2  dPi K1(T)PN
dyj- IMNKiNcIY 2T

dq 2 d dT 5T dP (cKiN + EIKI)-- a b - e(T)-+ PN (8)
dy dy dy MNKiN dy 2T

where we used the relation n - P/2T.

The boundary conditions for Eqs. (7), (8) are

q(y - LN) - -rc , (9)

dP (0
j(y - LN) - 0 =. (Y - LN) - 0, (10)

P(y - LN) - PU, (11)

q(y - 0) - 6 j(y - 0)Td , (12)

j(y - 0) - - abPdCd (13)2Td

where Eqs. (9)-(11) represent boundary conditions for the plasma heat and

particle fluxes and pressure at the entrance into "gas box", while Eqs. (12),

(13) are the standard boundary conditions for the plasma heat and particle

fluxes at the target; (...)d is the (...) value near the target (y=0),
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Cd - (Td/M) 1 / 2 , a-0.5, 6 is the plasma heat transmission coefficient.

Recall that Pu and crc are prescribed upstream plasma pressure and the

heat flux coming into the "gas box" region from upstream.

One can see that there are 5 boundary conditions for two secondary

order differential equations (7) and (8) for plasma pressure and

temperature. Therefore, they only can be satisfied for some specific

neutral density N, which has to be found from solution of Eqs. (7), (8) with

the boundary conditions (9)-(13).

II. Analytic and numerical solutions

Before we proceed with numerical solution of Eqs. (7)-(13) it is useful to

make some analytical estimates. Notice, that if we transform Eqs. (7)-(13)

using

P/Pu - p, y / LN ' q /Pu-q', j / Pu - j', (14)

we find that the solution of Eqs. (7)-(13) is only determined by the values

of qrc / Pu , LN Pu , and the factor b; neutral density N, which has to be

found from the solution, should scale like 1/ LN. The term LN Pu appears

only in the resulting set of equations and boundary conditions as a factor

(LN Pu) 1 in front of electron heat conduction coefficient and we will see

below that it's influence on plasma parameters is rather weak. Therefore,

it is convenient to characterize the solution of Eqs. (7)-(13) by it's

temperature near divertor plate Td, which, omitting the weak impact of

the parameter LN Pu, for the fixed b factor, depends only on the qrc / Pu
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ratio and might be written as an equation

G(Td) - qrc / Pu, (15)

where function G(Td) has to be found from the solution of Eqs. (7)-(13). To

characterize other plasma parameters, such as plasma pressure drop,

plasma flux onto the target, and neutral density we introduce the functions

p(Td) - Pd / Pu, J(Td) -id VPU, H(Td) - NLN. (16)

Let investigate the behavior of the functions G(Td), p(Td), J(Td),

and H(Td) analytically for the extreme cases of high and low values of

qrc / Pu ratio.

For the high qrc / Pu ratio, which corresponds to the high

temperature Td, plasma parameters are practically uniform in -the "gas

box". Then, integrating the right hand sides of Eqs. (7), (8) and using the

boundary conditions (9)-(13) after simple algebra we find

G(Td)- abCd 6+ ETd)+IN(Td) p(Td) -1,2 Td KI(Td)

(17)

J(Td) - abCd H(Td) a bCd
2 Td TKI(Td)

For the low qrc / Pu ratio, which corresponds to the temperature

Td - To, plasma parameters are very non uniform in the "gas box" region.

In this case plasma temperature is very low (- TO) and ionization rate

8



constant is negligible everywhere in the "gas box" except a small region

near the entrance into the "gas box" where plasma temperature

T ~ T1 . T(y - LN) >> To is sufficient for neutral ionization to be

important.

Assuming that Pd<Pu and the width of this neutral ionization region

yI is much smaller than the length of the "gas box" LN from plasma

continuity equation (7) we find

d I b2 pu . KI(TI)PU N YT. (18)
MKIN (TO)NLN 2T(

where the first relation describes plasma diffusion through the neutral

cloud in the "gas box", and the second one describes the origin of plasma

flux due to neutral ionization.

Considering energy balance equation (8) in neutral ionization region

we find the estimates

qrc (TI)I qrc - (sTi + Ei(T)) Jc j. (19)

where the first relation describes energy balance at the entrance into

ionization region (where plasma flux is small and the energy is mainly

transported by heat conduction), and the second one describes the energy

balance at the exit from ionization region (where the energy is mainly

transported by convection) and accounting energy loss due to neutral

ionization (El term).

Analyzing energy balance equation (8) in the main volume of the
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"gas box" we have to request temperature rise from Td - T0 at the target

to T - T1 in the ionization region, which brings us to the following relation

Ad M ?KiN (TO)PU NLN (20)
4b2 T0

where Ad - ln(TO/(Td - To)) >>L

From Eqs. (18)-(20), after some algebra, we find the asymptotics of

the functions G(Td), p(Td), J(Td), and H(Td) for Td - TO:

G ) T, + E,(TI) T 1/2 1(T')1/2
G(Td) 2TO AdM P(Td)-ab Ad

(21)

1 CT 1/2 2b2  AdTO)1/2J(Td) T AM H(Td) - KiN (T) M )

where temperature T1 is determined by the relation

P u L rs 3 X e(TI)KI (TI) (STJ + El (Tl))2 .( 2

IPu - MKN (TO). (22)
b2 Pu)2MKIN(0

As one sees from Eq. (22), temperature T1 has rather weak dependence on

both qrc / Pu and LN Pu values as well as on the factor b, since functions

Ke(TI), KI(TI), and KR (TI) are very sharp for relatively low T1 ~ few eV.

Therefore, we can neglect weak dependence of T1 on qrc / Pu, LN Pu, and

b, assuming that Tj - 10 eV.

Thus, we find from the expressions (17) and (21) that for high
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temperature Td (high value of Qrc / Pu ratio) functions G(Td) and J(Td)

behave just like the fluid and diffusive Knudsen neutral models from Ref.

6, being directly and inversely proportional to Td1/2 while p(Td) stays

close to unity, and H(Td) increases for Td - oo. For temperatures

Td -- To all functions G(Td), p(Td), J(Td), and H(Td) exhibit a very

sharp dependence on Td similar to diffusive Knudsen neutral model from

Ref. 6. However, scaling dependencies of plasma parameters and neutral

density are very much different. Indeed, from Eqs. (21) we find that

ld I qrc , NLN Pu / qrc, and the efficiency of energy spreading onto the

sidewalls due to plasma-neutral interaction, Qt, (defined as a ratio of the

target heat loading, qt - (Jjdi + qd I), to Qrc) approaches some constant for

qrc -0. For diffusive Knudsen neutral model one has6 lid Ia qrc3/pu,

N s Nmax Pu, Qt c qrc2 /Pu, and the length of recycling region, LR,

scales like LR x Pu3/2 qrc3, which gives NLR c Pu2 qrc3 . The reason for

these differences is that diffusive Knudsen neutral model allow to keep

very low neutral density in the ionization region for low Qrc / Pu ratio,

while for "gas box" model the neutral density is homogeneously distributed

over whole "gas box" length.

The numerical solutions of Eqs. (7)-(13) are obtained by a shooting

method for Pu=10 14 cm-3 x100 eV, LN=100 cm, a=0.5, 8 = 5, b=0.05,

T0 =1 eV, and the exact rate constants from Ref. 11. Functions G(Td),

p(Td), and J(Td) as well as H(Td), TI(Td), and Qt(Td) are shown in Fig.

1 and Fig. 2. Plasma density, temperature, particle and energy fluxes

profiles in the "gas box" region for high and low Td values are shown in

Figs. 3, 4.

One can see that numerical results confirm analytical analysis, in
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particular, step like behavior of the functions G(Td), p(Td), J(Td), and

H(Td) at Td - To, and shrinking of neutral ionization region (where

plasma flux varies) for low Qrc / Pu. Notice, that like for diffusive Knudsen

neutral model the temperature at the target is sensitive to qrc and can

change rapidly, but smoothly, resulting in behavior which may appear

similar to bifurcation.

IV. Conclusions

We investigated plasma flow through the gas cloud in a tokamak

divertor for "gas box" divertor geometry and Knudsen regime of neutral

transport. We have shown that similar to the neutral models considered in

Ref. 6, the plasma parameters near the target is sensitive to the energy

flux into the hydrogen recycling region qrc and change rapidly resulting in

bifurcation like behavior, which and might be interpreted as a transition to

detached regime. Notice, that the critical values the energy flux qrc below

which the rapid change of plasma parameters occurs are very similar for

all neutral transport models.

However, for low target plasma temperature, the scalings of plasma

parameters for "gas box" neutral model are different from those obtained

for diffusive Knudsen neutral model6 . In particular, "gas box" neutral

model is less efficient in the energy spreading onto the side walls than

diffusive Knudsen neutral model. The reason for this difference is that

diffusive Knudsen neutral model allow to keep very low neutral density in

the ionization region resulting in a very low plasma flux onto the target,

while for "gas box" model the neutral density is homogeneously distributed

over whole "gas box" length enhancing neutral ionization and, as a
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consequence, plasma flux onto the target.

13



Acknowledgments

This work was performed in part under Department of Energy grant DE-

FGO2-91-ER-54109. T.K.S. is supported by Instituto de Ciencias Nucleares,

Universidad Nacional Autonoma de Mexico, Mexico D.F., Mexico. S.I.K. is

pleased to acknowledge the hospitality and support of the Instituto de

Ciencias Nucleares, UNAM at Mexico City, where this work was initiated.

14



References

a) Permanent address: Kurchatov Institute of Atomic Energy, Moscow,

Russia.

1 1. H. Hutchinson, R. Boivin, F. Bombarda, P. Bonoli, S. Fairfax, C. Fiore, J.

Goetz, S. Golovato, R. Granetz, M. Greenwald, S. Home, A. Hubbard, J. Irby,

B. LaBombard, B. Lipschultz, E. Marmar, G. McCracken, M. Porkolab, J. Rice,

J. Snipes, Y. Takase, J. Terry, S. Wolfe, C. Christensen, D. Gamier, M. Graf, T.

Hsu, T. Luke, M. May, A. Nemczewski, G. Tinios, J. Schachter, and J. Urban,

Physics of Plasmas 1, 1511 (1994).

2 G. Janeschitz, S. Clement, N. Gottardi, M. Lesourd, J. Lingertat, C. Lowry, G

Radford, G. Saibene, M. Stamp, D. Summers, A. Taroni, P. R. Thomas, and G.

Vlases, Proceedings of 19th European Conference on Controlled Fusion and

Plasma Physics, Insbruck, 1992 (European Physical Society, Petit-Lancy,

Switzerland, 1992), Vol. 16C, Part II, 727.

3 T. W. Petrie, D. Buchenauer, D.N. Hill, C. Klepper, S. Allen, R. Campbell, A.

Futch, R. J. Groebner, A, Leonard, S. Lippmann, M. All Mahdavi, M. Rensink,

and P. West, Proceedings of the 10th International Conference on Plasma-

Surface Interaction on Controlled Fusion Devices, Monterey, CA, USA,

March 30-April 3, 1992, edited by W. Bauer, W. L. Hsu, G. L. Jackson, G. D.

Porter, Journal of Nucl. Materials 196-198 (North-Holland, Amsterdam,

1992), p. 848.

4 V. Mertens, K. Buchl, W. Junker, F. Mast, M. Schittenhelm, M. Bessenrodt-

Weberpals, A. Field, Ch. Fuchs, 0. Gehre, 0. Gruber, A. Herrmann, G. Haas, A.

Kallenbach, H. Kastelewicz, M. Kaufmann, W. Koppendorfer, M. Laux, G.

Lieder, J. Neuhauser, F. Ryter, H. Salzmann, W. Sandmann, K.-H. Steurer, A.

Stabler, H. Zohm, and Asdex Upgrade Team, Proceedings of 20th European

Conference on Controlled Fusion and Plasma Physics, Lisboa, 1993

15



(European Physical Society, Petit-Lancy, Switzerland, 1993), Vol. 17C, Part

I, 267.

5 International Thermonuclear Experimental Reactor (ITER) Conceptual

Design Activity Final Report, ITER Documentation Series No. 16

(International Atomic Energy Agency, Vienna, 1991),.

6 S. I. Krasheninnikov, P. J. Catto, P. Helander, D. J. Sigmar, and T. K.

Soboleva, Physics of Plasmas 2, July (1995).

7 S. I. Krasheninnikov, A. S. Kukushkin, V. I. Pistunovich, and V. A.

Pozharov, Pis'ma Zh. Techn. Fiz. 11, 1061 (1985) (in Russian); Proceedings

of 12th European Conference on Controlled Fusion and Plasma Physics,

Budapest, 1985 (European Physical Society, Petit-Lancy, Switzerland,

1985), Vol. 9F, Part II, 500.
8 S. I. Krasheninnikov, A. S. Kukushkin, V. I. Pistunovich, and V. A.

Pozharov, Nuclear Fusion 27, 1805 (1987).

9 P. C. Stangeby, Nuclear Fusion 33, 1695 (1993).

10 Ph. Ghendrih, Physics of Plasmas 1, 1929 (1994).

11 R. K. Janev, W.D. Uanger, K. Evans, and D. E. Post, Elementary Processes in

Hydrogen-Helium Plasmas (Springer-Verlag, Berlin, 1987).

16



Figure Captions

Fig.1. Geometry of the problem.

Fig. 2. Functions G(Td) X PO [kW/cm 2], J(Td) X Po [1020 cm-2 s-1], and

p(Td) (Po=1014 cm- 3 x 100 eV).

Fig. 3. Functions H(Td) [1015 cr 2], TI(Td) [20 eVI, and Qt(Td).

Fig. 4. Plasma density (n, [1014 cm-3]), temperature (T, [eV]), and pressure

(p - P/Pu) and plasma particle (Ij1, [1019 cm-2 s-1]) and energy (Ici,
[kW/cm 2]) fluxes profiles in the "gas box" region for Td=1.01 eV.

Fig. 5. Plasma density (n, [1014 cnr 3]), temperature (T, [eV]), and pressure

(p - P/Pu) and plasma particle (Ij1, [1019 cm-2 s-1]) and energy (Iql,

[kW/cm 2]) fluxes profiles in the "gas box" region for Td=20 eV.
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