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Ab stract

To gain insight into divertor operation, we employ similarity techniques to investigate

whether model systems of equations plus boundary conditions admit scaling

transformations that lead to useful divertor similarity scaling laws. These can be used to

perform similarity experiments or fully exploit large computer simulations. We adopt

fluid plasma models of the divertor region which ignore anomalous processes, and

consider neutral descriptions in both the short and long mean free path limits. As usual,

the more approximations we make, the more scaling transformations are allowed,

leading to fewer independent dimensionless parameters that need to be considered,

thereby imposing fewer divertor similarity constraints. The simplest model considered

balances electron heat conduction with impurity radiation and places the fewest

constraints on divertor similarity. To be able to model detached divertor operation in

short mean free path regimes, a fluid neutral description is employed which balances

plasma pressure by neutral pressure. In this model the constraints on divertor similarity

are most severe. A less constrained long mean free path or Knudsen neutral model is

also considered. It models detachment by balancing plasma pressure with momentum

transfered to neutrals randomized by collisions with the deep slot sidewalls. The

simpler models have relaxed divertor similarity constraints, but all models remain

severely restricted by collisionality and parallel heat flux constraints.

PACS numbers: 52.40.Hf, 52.55.Fa



I. Introduction

Two-dimensional numerical models of divertors employing fluid descriptions of

the plasma and either short (fluid) or long (Knudsen) mean free path descriptions of the

neutrals contain large numbers of dimensionless parameters that must be varied to

investigate all operating regimes expected to be of interest. Given the complexity of

the descriptions the task is a rather daunting one. The question arises, therefore, as to

whether useful information can be obtained and the number of independent parameters

reduced by considering the scaling transformation properties1 ,2 of the system of

differential equations and boundary conditions. The retention of boundary conditions is

a new and necessary feature that must be considered when determining the allowed

scaling transformations. If scale transformations can be found for a particular system,

then by the invarince principle any quantities evaluated from the same system must

satisfy the same scalings. To this end, we consider various divertor models and show

that the techniques introduced by Connor and Taylor1 and reviewed by Connor2 can be

employed on boundary conditions as well as the accompanying differential equations to

find the constraints on divertor similarity.

The sections that follow consider fluid and Knudsen neutral models with fluid

plasma equations and boundary conditions appropriate for complete recycling. Both the

short and long mean free path neutral descriptions adopted are capable of modeling the

observed drops in temperature, particle flux, and energy flux at the target. The models

assume all perpendicular transport is due to the neutrals since they ignore anomalous

transport processes. They are best viewed as models of the divertor between the x-

point and target. More sophisticated models retaining- anomalous transport are possible

only if explicit perpendicular transport models are assumed. In order to avoid such ad

hoc assumptions about the anomalous transport coefficients we investigate cases in

which they enter only through the scrape off layer width which we assume specified.
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Section II presents the fluid neutral and fluid plasma equations and boundary

conditions as obtained from Refs.3 and 4. The equations and boundary conditions are

made dimensionless in Sec.III using the ionization energy of hydrogen, the peak

upstream plasma pressure, and an appropriate neutral penetration length. In Sec. IV the

scaling transformations and similarity constraints of various fluid descriptions are

considered. The use of the technique of Connor and Taylor1 ,2 when boundary

conditions must be treated is illustrated in detail in Sec.IV.A for the simple case in

which the neutrals are neglected and electron heat conduction balances impurity

radiation. The scaling law for the power to the target plates P divided by the major

radius R is derived and several possible ways to consider similarity are noted. Section

IV.B considers a reduced two-dimensional (2-D) fluid neutral model based on the one-

dimensional (l-D) model shown in Ref.5 to exhibit the key features of divertor

detachment. In 2-D we recover Lackner's6 P/R = constant scaling, while in the l-D

limit P/R need not be held constant for similarity. Moreover, for this fluid neutral model

it is found that P/R - 4/f. >> 1, with 4 and t. the scrape off layer (SOL) width and

neutral penetration length. In Sec.IV.C it is shown that the general 2-D fluid neutral

model which does not allow any scaling transformations leads to essentially the same

conclusions as the reduced 2-D fluid model, but involves more parameters. Section V

describes the Knudsen neutral model and its limitations. It then investigates the scaling

transformations for the dimensionless equations and boundary conditions to show that

P/R -C (4/.) 3/2 << 1 for the Knudsen model and that it need not be held constant for

similar devices. In Sec.V we discuss the implications of our results.
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I. Fluid Neutral and Plasma Equations and Boundary Conditions

We adopt a simplied version of the full fluid neutral and plasma equations in the

SOL as given in Refs. 3 and 4. Most of the simplifications correspond to those normally

employed in 2-D SOL codes and are based in part on the I-D model solved in Ref. 5.

Neglecting recombination here and elsewhere, the steady-state ion and neutral

continuity equations are

V -(NY) =a <ov>zNN. (1)
and

V (N.YV.)= <av>,NN. ,(2)

where the subcripts e, i, and n denote electrons, ions, and neutrals; Nj and Y, denote

the density and mean velocity of species j; and <uv>z is the rate constant for electron

impact ionization. We assume singly charged ions and employ quasi-neutrality and local

ambipolarity to obtain

Ne=Ni and V,=I. (3)

We assume that the mean ion velocity perpendicular to the magnetic field Vi_

vanishes,

Y = 0 , (4)

and for the perpendicular mean neutral velocity Y. we use the perpendicular neutral

momentum balance equation to obtain

N- =-V 1 (N.T)+ 0.24NnV1 T
MN1<av>. +MN,<cv> '

where M and T are the mass and temperature of the ions and neutrals and <cv>x is the

charge exchange rate constant. The 0.24NnVT term is the thermal force found in Ref.

4 and the inertial terms are neglected since we assume that the perpendicular mean

flows are small. By taking Ya = 0 we are neglecting the anomalous perpendicular

particle flux normally retained in the codes. Were explicit expressions available for the

anomalous transport coefficients, the boundary conditions could be suitably modified
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and similarity techniques employed on the generalized system of equations. However,

divertor simulators and codes need not necessarily model the details of anomalous

transport in the SOL. We avoid making ad hoc assumptions about the anomalous

transport coefficients in the SOL by specifying the SOL width as an input parameter and

by considering only the divertor region between the x-point and the target.

To find the equation for the parallel ion velocity Vill we add the parallel ion and

electron momentum equations to eliminate electron-ion friction and obtain the parallel

plasma momentum balance equation

V.[(MN 2 + NiT+NT,+7r,)fi=<av>,MN.N.V

- <av>,MNN(ViI - V 1) - 0.24Nji -VT , (6)

where n = B/B is the unit vector along the magnetic field and Te is the electron

temperature. Because of charge exchange coupling the parallel ion viscosity ri 1 is

(Nn+Ni)/Ni times the Braginskii 7 value3 ,4 and therefore given by

7rq =1.3(Ni + Nn)Tirifi-VVig , (7)

with 1:i the ion-ion collision time
3M 12 T2 (8)

4(7r)" 2Nie4 nA

The parallel neutral velocity Vn|| is found from the parallel neutral momentum

equation

V.[(MN.V2 + +

+ <av>xMNNj(Vj, - V.1)+ 0.24Nf -VT , (9)

where, in the presence of charge exchange coupling to the ions, the neutral viscosity

ifn is is given by 3,4

N. (N i - N.T [ VV + 1 -VV.. (10)
N ) N1 <av>x L nil 3 J

Charge exchange causes the ion and neutrals temperatures to be equal to lowest

order, as well as coupling the ion and neutral flows via Eq. (6). To close our system of
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equations we need separate equations for the ion/neutral and electron temperatures.

Ion plus neutral energy conservation with the viscosity and electric field terms

neglected gives the equation for T to be

V[ ( +-MVXNi+N.)V+4q+q j = 3 (Te 1T)
L 2 2 j MTei

where V and V11 are mean mass velocities defined by

(Ni + N.)Y = Ni;i + N.V. (12)

V V and Tei is the electron-ion collision time

Tei' 4(2)" 2 Nie4fnA (13)

Charge exchange makes the parallel ion heat flux 4i larger than its Braginskii 7 value

by 3 ,4 (N-+Ni)/Ni giving

4i = -3.9 [(Ni + N.)TTr I M]ifi-VT. (14)

The neutral heat flux 4. in the presence of charge exchange coupling to the ions is

given by 3 ,4

(N= - qi- 2.4 N VT -0.24 N.T( - ), (15)
Ni MNi<av>N

where the last term is of the form referred to as a diffusion thermo-effect according to

Chapman and Cowling8 .

The final equation for the electron temperature Te follows from the electron

energy conservation equation

5 . 3 jNT1 -(I ) +
(-TeNY + q) = - *Mr. -(T)z H<>+E H)NcNf - E<av>N N1, (16)V (2 T e e e + 4 )M T eiZ H

where I is the ionization potential for hydrogen (13.6 eV), EH is the excitation energy

of hydrogen (10.2 eV for Lyman a) with an excitation rate constant of <av>H, NI is the

impurity density, and EI is the energy of the relevant excited impurity state with an

excitation rate constant of <av>I. The parallel electron heat flux 4e is just the

Braginskii 7 result
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q,=-3.2(N.TTiIm)fifrVT . (17)

The preceding system of equations requires ten boundary conditions since it is

tenth order in the eight unknowns Ne, Na, Vi 11, V , Te, and T. For upstream boundary

conditions we employ

N41 p = 0, (18)

Ne(Te+T)6up = Pup , (19)

-3.2(NeTete/m)*- VTJup = q , (20)
and

-3.9 [(Ni+N,)T-i/M]i- VTu = qu, (21)

where the upstream pressure PUP, and upstream parallel electron (ion) heat flux q

(qUP ) are all specified functions at the upstream entrance to the divertor. The neutral
ill

density boundary condition corresponds to considering complete recycling in the

divertor region since it, ambipolarity, and the sum of the two continuity equations

require that there be no plasma entering through the upstream boundary.

The remaining six boundary conditions are applied downstream at the divertor

target plates and sidewalls, where wall values of density, temperature, etc. will be

denoted by a subscript w. The outward directed unit vector normal to the wall is

defined as i, where for definiteness we assume -i > 0 (i- < 0) when V11 < 0 (V 11

> 0). The parallel ion flow into the walls must satisfy a generalized Bohm sheath

criterion,

w= - i4 a(fw/M)1/ 2 , (22)

where a - 0.5-1. To maintain a steady state, complete recycling is imposed at the walls

by demanding that the outgoing normal neutral flux equal the incoming normal ion flux,

w -(NiV 11 + N1V)|= 0. (23)

The parallel plasma momentum flux normal to the wall is specified by

wI(MNV 2 + NiT + NeTe +1%1 ) =Y11 ; -A NiwT,, (24)
il1
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where yl1~ 2-3 is the plasma momentum transmission coefficient. Similarly, the normal

neutral momentum flux normal to the wail is taken to be

[w -i(MNZV + NT) + i -ni~l- )]lw = ymNnwTw , (25)

with ym~ 1-2 the neutral momentum transmission coefficient.

The final wall boundary conditions are on the energy fluxes. The normal ion plus

neutral energy flux onto the wall is taken as

k' -[(5T/2 +MV2 /2)(Nn+ Ni)V+qi+q)]w= - (aw -+yiNi +y Naw)Tw(Tw/M) 1/2 , (26)

where yi~2-3 and yn -0.1-0.3 are the ion and neutral heat transmission coefficients,

respectively. The ai -A in the ion contribution on the right side accounts for the ion

heat flux moving along the magnetic field and ions hitting the wall with a parallel speed

satisfying the Bohm condition. A similar expression holds for the normal electron

energy flux onto the wall,

w -[A(5Te/2)NeVei + e )]Iw =- " -AYeNewTew(Tew/M) 1/2 , (27)

with Ye - 2-3 the electron heat transmission coefficient. The various transmission

coefficients are discussed in Refs. 9.

The preceding equations and boundary conditions form the basic system of

equations that we will investigate for fluid neutrals. In the following sections we will

make further assumptions that allow us to combine the preceding equations to obtain

simpler systems. Moreover, In Sec.V we will make modifications that allow us to

consider Knudsen neutrals.
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IL Dimensionless Form of the Equations and Boundary Conditions

To determine if the system of equations and boundary conditions (and,

therefore, the heat loads on target, etc.) of Sec.II are invariant under particular sets of

scaling transformations, it is convenient to first make the entire system dimensionless.

To do so, we will adopt a 2-D cartesian model with x and y denoting the radial and

poloidal coordinates, and z corresponding to the ignorable toroidal direction (a/az = 0).

Writing the unit vector along the magnetic field as

A = (BT/B)2 + b9 ,

with b = Bp/B, and Bp (BT) the poloidal (toroidal) magnetic field components, gives

A -v = ba/ay , Viy = bVill , Viz = (BT/B)Vi I and Vj11 = bViy + (BT/B)Viz , (28)

where j = i, n or e and we will assume that B =|BI is a constant.

We normalize temperatures and velocities to the hydrogen ionization potential I

by defining
,= T/I, Te = Te/I, v11 = (M/I)1 /2Vi 11

u = (M/I) 1/2 Vny , w = (M/I)1/2Vnx and v = (M/I) 1/2Vll . (29)

Densities are normalized by introducing the peak upstream plasma pressure Pu so that

the known function Pup in the upstream pressure boundary condition may be written as

P = PU SP(x/Ap) , (30)

where Sp(x/Ap) is a specified order unity SOL shape function. Using Pu and I the

normalized plasma and neutral densities are then defined as

n = INe/Pu = INe/Pu and T) = IN/Pu . (31)

We desire to normalize lengths to the neutral penetration scale length f. at the

temperature I and density Pu/I. As a result, it is convenient to introduce another set of

shape functions Sx(T) and Sz(Te) by defining

<av>x = KxS(T) and <v>z =KzSz(Te), (32)
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where Kx and Kz are true constants equal to the appropriate peak values of the charge

exchange and ionization rate constants so that the functions S,(T) and Sz(Te) are of

order unity. Using the preceding definitions, tn is defined as

I(1I M) 2

'n = P2(K'K.)u2 (33)

and the normalized poloidal (p) and radial (p) variables may be defined as

p=y/f. and p=x/f. . (34)

Using the preceding definitions and introducing the definition

a = (Kz/Kx) 1/2 , (35)

the continuity equations and the perpendicular neutral flux equations become

b-(rjv1 1 ) = an1S(T) , (36)

o 6
- (qu) + - (qw) = -anTS(T,) ,(37)

OP Op

-- d (qT) + 0. 24 t-d

T(u - bv) = (38)
n[aS,(T.) + a 'S.(T)

and
6 6-r

-- (qT) + 0.245 -9
_Op 6

n[aS, (T,) + a(39)(T)]

To make the parallel plasma momentum equation dimensionless we need to

introduce a new dimensionless parameter V which is the Coulomb mean free path X

divided by the neutral penetration length at temperature I,

0.55(MK.K )1121312 X(
p = 4 - - . (40)

e nA T=I

Using this definition in will, parallel plasma momentum balance becomes

oF 512 (n + )V 6v r
b- [nv2 + n(T+ r)+pbT -(+0.24b-

L n fe I d(

=~ ngavs,(T.) -a-, (V, - V)S" (T)) (41)
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No further new parameters are introduced by neutral momentum balance which

upon inserting the neutral viscosity may be written as

ba[ v +lT+ /b~5211(fl+ tPO) 1 ov r a F a(+.b2)-r aQ
b V2 + T+ bT 2 - - 0.24bn -d

n0 2 n o do doL 1 S.(T ) do I

Ln( Op= -nnlavSz(Te) - a~Vs - v)Sr,(T). (42)
Op nS.(T) dp]

To write electron energy balance in dimensionless form it is convenient to first

introduce two new shape functions SH(Te) and SI(Te) for the hydrogen and impurity

radiation by letting

<aV>H = KHSH(Te) and <crv>l = KISI(Te), (43)

where KH and KI are true constants equal to the appropriate peak values of the

hydrogen and impurity rate constants such that the functions SH(Te) and Si(Te) are

order unity functions. Next, we define the dimensionless impurity density nj and

dimensionless constants UH and a corresponding respectively to energy and impurity

density times energy weighted ratios of radiation to neutral penetration scale lengths,

nj = INi/Pu, aH =EHKH/I(Kx1K,1/2 and cr1 =nIEIKI/I(K 1K7)1/2 . (44)

Notice that we have implicitly assumed that the shape function for ni depends only on

Te, but we could introduce an additional shape function to remove this restriction. A

final dimensionless constant parameter k, proportional to (M/m)1/2 times the Coulomb

mean free path X divided by the neutral penetration length at temperature I, is defined

by
0.96M(K.Kz)122 (Mf X2

k= m112 ~e&A - - (45)

Notice that k is also a measure of the temperature equilibration length divided by the

neutral penetration length. In terms of the preceding parameters, the dimensionless

electron energy equation becomes

O [5 IT. 9.6nO2)(Te T)
b O[Tn, -kbr = - .6nN*r(- - anrnsl(rT) - aHnhISI(te) (46)

OPL To C
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The ion plus neutral energy balance introduces no new parameters. With the

heat fluxes inserted it becomes the rather complicated expression

a _5 n + f 25 (n+ f)2 OT
- -T + n- (bnv1 + flu) -3pb 2  

2 - 0.24 TI(u -by) Fdo 2 2( +n fl n n 2 0

a {[5 1 nvy+lv 2  1 6 2.4airT 6TI+- T+w-0. 2 4qTw-[ n
-2 2 ]T" - L 65 S.(T) -1

6 r2.4aT OT I 9.6n 2 (Tr - T)

nS,(-) O J kT312  
' 

(47)

where to simplify this result we have assumed for the first time that Bp (and, therefore,

b) is a constant.

To obtain the boundary conditions in dimensionless form it is convenient to

introduce the shape functions Se(x/Ap) and Si(x/Ap) for known upstream poloidal

electron (bqu) and ion (bq"') heat fluxes by defining

bqUP= -QePU(I I M)"2S.(x I'A,) and bq"P = -QiPu(I IM) 2 S (x i A,) . (48)

The dimensionless parameters Qe and Qi times Pu(I/M) 1/ 2 are the peak upstream values

of the poloidal electron and ion heat fluxes, respectively. Letting y = 0 and y = L denote

the target and the location at which the upstream boundary conditions are applied,

respectively, and employing the preceding definitions, the dimensionless forms of the

upstream boundary conditions for the neutral density, plasma pressure, and electron and

ion heat fluxes are as follows:
,(P=L/Q )= 0 , (49)

n (T + Te )P =LIn S,(pi, I A,)d (50)

kb2 T52 e - QSe(pf /A), (51)e 0
P=LIf1

and

3pb2 T5 /2 = QjSj(pi, I A,). (52)
001 =L ltn
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We assume that the magnetic field is parallel to the sidewalls located at x = A

and denote by a subscript d the target plate (y = 0). Then, the dimensionless forms of

the boundary conditions for the pamlel ion flow, parallel plasma momentum, and

parallel electron energy flow (which do not involve the sidewalls) follow:

VIld = -aT 2 , (53)

a 2 fnTd + nd(Td + Ted) + pb)(d dYlinlt , (54)

and

5andredT2 + kb~d21.L = ay.ndr'd 2 , (55)

The remaining boundary conditions involve the neutrals so we must distinguish

between the sidewalls (at which w-i = x-i = 0 and whose location we denote by

subscript s meaning x = ±A/2) and target (at which i -A = j-i = b). As a result, for the

remaining dimensionless boundary conditions for the ion plus neutral flows, the neutral

momentum, and the ion plus neutral energy we find the following forms:

TIdUd = abnd 2 , 1sws = 0, (56)

bh V )+ pb2 512 11dnd +1d) I (U + b2) d d Yfd~d , (57a)d d(v + Td) + pb Td n 2 nU lS(d ~nd nS(Td )

- - = ymfT, , (57b)
nSx(T,) dp

and

* . OF'd d 2 12 nd + 1d 2 1[2 dd + 3pb2Id (d ' + 0.2 4 ldTd(Ud - bvid) = (abyind + Yflld)nd (58a)
L-ndsx' d) d~-i~

2.4c11r = 1,312, (58b)
nS.(T,) 6 ,YO

Our fluid description in its most general form is now complete. In the next

section we will consider the properties and simplifications of our system of equations.
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IV. Scaling Transformations and Similarity for Fluid Descriptions

The full 2-D system of differential equations and boundary conditions as given

by Eqs.(36-39), (41), (42), (46), (47), (49-52), (53-55), and (56-58) involves the eight

unknowns n, rj, v , w, u, v, 'r, and te and the seventeen dimensionless parameters a,

b, p., k, aH, aI, a, Qe, Qi, Yt, Ym, Ye, Yi, yn, L/t., Ap/t., and A/f.. It is important to

notice that P. only appears in the definitions n, Ti, f., ai, and through the normalizations

for the upstream heat fluxes as given by Eq.(48). As a result, for similar configurations

the densities (recall aI o ni o Ni/Pu) must scale linearly with Pu, while the depth (L) and

width (Ap and A) scaling must be inversely proportional to P. Recall also that Qe o

bq"[IP. because of the normalization of the upstream heat fluxes. Notice that the usual

collisionality scaling of density times scale length is embedded in L/f., Ap/f., and

A/tf which are proportional to density through Pu.

Fortunately, most of the dimensionless parameters are reasonably well known,

but rather wide ranges of b, ai, Qe, Qj, L/i., Ap/f., and A/t. are of interest since they

depend on the upstream plasma pressure and heat fluxes, the impurities, and the

divertor configuration. Typically a- 0.1-1, aj - 1, and for a tokamak b-0.05; while for

Pu~ 1014cM-3x 100eV, X- ,-0.3cm, giving vi- 1 and k-50.

To reduce the number of dimensionless parameters we can seek scale

transformations of this system of equations. It will turn out that the full system does not

allow any scale transformations, but that by simplifying the system, scale

transformations can be found which allow us to reduce the number of dimensionless

parameters that need be considered.

A. Model Without Neutrals

We first employ the Connor and Taylor1 ,2 procedure on a simple limit to

illustrate the need to retain boundary conditions and how they are easily included by

their technique. If we adopt the simplest model possible by neglecting the neutrals

completely (--0), letting v- 0 and T=te, adding the energy equations to eliminate
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electron-ion energy exchange, and neglecting the ion heat conduction compared to that

of the electrons, we find that plasma pressure balance becomes 2 n-re = SP(Pf./Ap), so

that we need only consider

2 O kb 70 j = aerT S'(Te)Sp(Pt. I A,) (59)

In this limit the upstream boundary condition is given by Eq. (51), and the target

boundary condition is given by Eq. (55) with the convection term neglected,

2kbT512 = &e Ti/s,(P l A,) . (60)ed a e d

In this model the parameter A/t. does not enter because sidewall boundary conditions

are not needed since A, < A.

We seek scale transformations by scaling the dependent variable Te, the two

independent variables p and p, and the seven dimensionless parameters b, k, al, Qe,

aye, L/ei, and Ap (but only the arguments of shape functions since their coefficients

are accounted for by scaling the dimensionless parameters). Letting Te - WtTe, P - W20,

P - W3p, b - w4b, k - w5k, UI -6W71, Qe ' w7Qe, (TYe - o8aye, L/i. - w9L/fe, and

Ap/ t. - w 1cp/ t we find four independent scale transformations:

(0) 0 - W20, L/ i. - w2L/ t., k - w2k, aj - ci/ w2;

(ii) p - w3P, Ap/t. -+ w3Ap/i.;

(iii) b - w4b, ri - w4ai, k - k/W4 , Qe - W4 Qe; and

(iv) Qe W 07Qe, 1I -W 79I, k - w7k, aye - W7aye; (61)

where wj denotes the scaling constants and for each transformation we do not indicate

quantities not scaled (notice that Te can never be scaled because of the complicated

dependence of Si). The second transformation is needed to keep the argument of p

dependent shape functions fixed.

We started with seven dimensionless parameters and two dimensionless

independent variables and have found four transformations. Any physical quantity of
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interest derivable from this system of equations must be invariant under the four scaling

transformations. In particular, we can find the five invariant combinations of the seven

dimensionless parameters and the two dimensionless variables by considing the scaling

properties of the invariant product

ZABC.. = b k a Q .(ay)E (L I j)F(A I tn)GpH3I (62)

For both sides of Eq.(62) to be invariant (ZABC...- ZABC...) under the scale

transformations of Eq.(61) requires

1r =(,B-C+F+I( ) +H(, -B+C+D +C+D+E

or

F=C-B-I,G=-H,A=B-C-D,and E=-B-C-D,

which when used in Eq. (62) gives

ZB (CDM = .yLaY.)B (aLIf.bay.)C (Q, baye)D (p 1 )H ( I

As a result, only the three independent dimensionless parameters bkI./Laye,

a-iL/f.baye, and Qe/baye, as well as the independent variable combinations p4./A, and

p in /L satisfy the four scaling transformations, reducing the number of dimensionless

quantities by four.

We are particularly interested in the form of the normalized poloidal energy flux

on the target plates Qt = qt/Pu(I/M) 1/ 2 , which depends on pf./Ap but not p f. /L since

p = 0. We first note that Qt must contain a coefficient having the same scaling as Qe

(Qt - w4w7Qt) times an unknown function of these three independent parameters and

q, = QPj(I M)"2 f(bk4 ILaye, aIlbQ Ibays, p.IA,) . (64)

Here and elsewhere f is used to denote an unknown function of the arguments listed.

The arguments of f can be written in various equivalent ways since products of the

invariant dimensionless quantities are invariant. A convenient form for our purposes is
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qt = bayP. (IIM) 2 f(bk.lILay eka1Iza2 y ,QrIbay, IA,) , (65)

where Qe and baye scale the same way.

Since the hydrogen ionization potential does not enter this simple model we can

make the replacement I - EI in all quantities to replace I by the excitation energy of

interest. Notice that none of the dimensionless parameters that enter Eqs. (64) or (65)

depend on K1 Kz since the neutral penetration length, which no longer enters, is

replaced by b times an appropriate Coulomb mean free path (0. 96Eg I Pue4nA). In this

simple model, these same dimensionless parameters can be found by direct integration

and application of the boundary conditions. Then, it can be seen that for a sufficiently

localized shape function Si(te) with a Te dependence permitting no impurity radiation

losses for y>L, the function f in Eq.(65) will be insensitive to the first parameter which

describes the Coulomb collisionality. Moreover, for a sufficiently low impurity density,

f will be insensitive to the second parameter.

If we form the power to the plates P by integrating x over the SOL width Ap,

then for a single null divertor P = 41Rfdxqt gives

P I R = bayAPu(IIM)"2f(bki.,Lay.,kcrIa2y 2,Q.bay,) (66)

where R is the major radius of the tokamak and, of course, f is a different unknown

function. Notice that the only dependence on the SOL width enters as an explicit

multiplier in Eq. (66). For similar divertors we must keep the unknown function f fixed.

Since bktn/Laye - b/ayeLPu, we may use Pu a b/ayeL in Eq.(66) to obtain

P/R cx bayePup - b2Ap/L (67)

for similar devices in which bke./Laye, kai/a2y2, and Q/bave are held constant to

keep the unknown function f constant. If f is independent of its first argument

(localized SI) then the final form of Eq. (67) is not relevant.
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In Lackner's6 treatment all lengths and magnetic fields in the divertor must scale

the same way for similar tokamaks or similar divertors so that Ap/L and b, and,

therefore, P/R are constants. It should be mentioned that Lackner actually takes P to be

the power from the core that crosses the separatrix, rather than the power entering the

divertor. In our restricted model Ap, Pu, b, Qe, and ka1 - n1E1K1 , are viewed as

independent control parameters (k is a constant and aye does not vary significantly), so

for a given L we can adjust Pu, ku1ccniEiK, and Qe to keep the arguments of f fixed and

still be free to adjust Ap and b. The constraints and P/R scaling for this model are

summarized in the first column of Table I.

Similarity constraints are significantly relaxed by considering this substantially

reduced description with no neutrals. In ITERWO P-300MW, R-8m, b - 1/6,,&p - 1cm,

and Pu 1014 cM-3xSOOeV, so using Eq.(67), a similar device with P - 30MW and R - 4m

gives PrrE/RrrE ~ SP/R and is possible for a Pu about five times smaller (but L five

times laer) than the ITER value, assuming roughly the same b, Ap, and aye (if Ap in

ITER turns out to be larger than 1cm then the power of the similar device could be

lowered by the same amount). If we employ the anticipated Alcator C-MOD numbers

(P - 8MW, R - 0.7m, A 1 lcm, and P, ~ 1014 cm-3x100eV), we get a value of P/RPuAp

larger than the ITER value by almost a factor of two so that it could provide good

similarity to ITER in the fluid neutral limit if the collisionality constraint (bk f./Laye -x

b/ayeLPu =constant) did not need to be satisfied because of sufficiently localized

impurity radiation losses such as those that may be occuring when divertor detachment

is observed 11-14.

In addition to Ap and b, we are also free to adjust B (since only the ratio b enters

in our equations). These three adjustments can be used to satisfy other constraints,

such as gyroradius over scale length (for example, constant B4, or BAp) and/or plasma

beta (constant PoPu/B 2) constraints. Some possibilities are shown in Table II, and

include a P/Rccb scaling similar to that found In Ref. 15.
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B. Reduced Fluid Neutral Model

If we assume that a <<I and b <<1, and neglect inertial (v2 ,v <T ~ 1) and

ion (ap b2 << 1) and neutral viscosity (a <<1) effects, then the ionization terms in

Eqs. (38) and (39) may be neglected and Eq. (41) or (42) employed to find v v1. As a

result, the perpendicular neutral flux equations, Eqs. (38) and (39), become

n(u- b,)S,(T) = a --- (1T)+ 0. 24fl (68)

and

nq wS, (T) = aL - (flT) + 0.249 .l (69)

If we also assume that the ions and neutrals have equilibrated with the electrons, the

sum of Eqs.(41) and (42) with inertial and viscous terms neglected gives total parallel

momentum balance to be

6
-[(2n + l)T] = 0 .(70)

6B3

Equilibration between electrons and ions and neutrals follows from Eq.(47) if

convection and conduction are made small by taking ka <<1 since we have already

assumed perpendicular flows to be small compared to parallel flows and b <<1. We

obtain the equation for r under the same assumptions, by adding Eqs.(46) and (47) and

using k>> ji to form the total energy conservation equation

5/s2D 6 6b - 5Tny + 0.24Tvl - kbT - + - (2.3Tu) + - (2.3Tflw)
606) 60) 6p

(71)
6 E2.4awT OTl 6 2.4a T = -t (T) -6H-rSH I

p nS(T) 61] dp nS,(T) -anTIs r

Equations (36), (37), and (68)-(71) are the reduced fluid neutral equations which

consist of a fifth order system of six equations for the six unknowns n, TI, v 1, u, w, and

,c. Forthe orderings a/ap-1-a/ap, n-l-, v <( T -1, a<<1, b<<1, ka<<1, and -1,
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we see that by11 -u-w-kb 2-aH -a<<1. The 1-D version of this reduced system of

equations with the thermal force and impurity radiation neglected is investigated in

Ref.5. To complete the reduced fluid neutral description we need the five boundary

conditions given by the Bohm sheath criterion, Eq.(53); complete recycling, Eq.(56);

the upstream pressure and heat flux,

2n4,=LI = S,(pfe IA) , (72)

kb 0' =QS,(p'.IA (73)
00|0Lf

and the energy flux into the walls,

5 31 F 512 + 2.4allIdTdlO
ZabnT 2 + [kbd l21 +0.24-
2 _ dd0d(12)

= ccb(y +y )ndT32 + Ynld (74a)

2.4aoq,, L- .112 (74b)
nS. (T,) a p|,

Notice that Eqs.(72) and (73) follow from (50) and (51), while Eq.(74) follows from

(55) and (58). Equation (49) is no longer needed since it follows from integrating (70)

and using (72), and Eqs.(54) and (57) are not needed because of the neglect of viscous

effects.

Equations (36), (37), (68)-(71), (53), (56), and (72)-(74) permit only two

independent scale transformations:

(i) a -- wia, b -+ w1b, u - wiu, w -> wiw, k - k/wi, (H - WlCH, UI - Wla,

Qe ~ iQe, Yn W1yn ; and

(ii)v 11' 2 vb- b/ 2 , k - 2 k, a - w2a. (75)

In this case the poloidal energy flux onto the plates, qt, depends on p and the twelve

parameters b, k, a, Qe, t./L, UH, al, a, Yn, Ye+yi, Ap/t. and A/.. The parameter
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A/t. enters because of the sidewall boundary condition of Eq.(74b). Recalling that qt

scales as Qe and proceding as before, gives

q,=baP. (IIM)"2f( feL, bkx, Qlba,aIla,alba,a y ba,Ye+Y i,AIL,AIA,, pIA,)

(76)

The dimensionless parameters that enter qt are consistent (apart from notation) with

those found in the one-dimensional model of Ref.5 which neglects thermal force

effects (and modifications required by Onsager symmetry), impurity radiation in its

recycling region, and the parameters t./L, A/L, and A/Ap that depend on the depth

and width of the divertor channel and scrape off layer to find

Td = f(b2kla,Qelba, alba,a H',ynlba,y,+yi) , (77a)

which is then solved to obtain the following form of the global energy balance equation:

Q,= baf(Td,b 2kla,alba, aHia,y.Iba,y,+y ) . (77b)

Forming the power to the plates P for a single null divertor using P = 4wRfdxqt to

integrate Eq. (76) over the scrape off layer width Ap gives

P/R = baAPu(I/M)11f(en/L,bk/a,Qe/ba, aIra,a/ba,aH ayn baye+yi,A/L,Ap/A) -

(78)

For similar devices described by this reduced fluid neutral model we need to

keep f fixed by keeping each of the dimensionless parameters constant. To see to what

extent this is possible we note that the parameters k, a, aH, and f.Pu are constants and

that a, y./a, and yeyi do not vary significantly. For a specified depth L we adjust Pu,

b, Qe, and al to hold f./L x 1/LPu, bk/a, Qe/ba, and al/a fixed, then we must adjust A

and Ap to keep A/L and A/A, constant. Therefore, we must keep

P/R g baApPu c AP/ tn = constant. (79)

Consequently, similarity for this fluid neutral model recovers Lackner's6 result and

requires the same b, Qe (recall that Qe o q"lP.), t./L l 1/LPu, ai, A/L, and A/Ap, as
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well as the same a, k, a, aH, y., and Ye+yi. For the fluid neutral model, B (or Bp) is the

only adjustable quantity that can be used to satisfy either a gyroradius or beta scaling.

The second column of Table I summarizes the constraints and P/R scaling (which, of

course, can be re-expressed using the constraints) for this model.

It is important to note that the constant Ap/t. must be much larger than unity

for the fluid neutral model since the SOL thickness must be small compared to the

neutral penetration scale length. As a result, the larger P/R, the more the neutrals

behave like a fluid. Except for Alcator-C-MOD1 1 , current machines 12 -14 are in the

opposite limit of Knudsen neutrals. However, there is recent experimental evidence

from Alcator-C-MOD that the detached divertor operation observed is insensitive to

the depth16 L. If this observation is confirmed it would mean that f is insensitive to L in

detached regimes (as in the 1-D model of Ref.5), then the parameters i./L and A/L in f

could be replaced by the single L independent parameter A/t. or Ap/.. Recall that in

the model without neutrals the insensitivity to L occurred whenever the radiation

losses were sufficiently localized.

We can relax the P/R scaling of this neutral fluid model by considering the one-

dimensional limit of Eqs.(36), (37), (68)-(71), (53), (56), and (72)-(74) in which a/Op = 0

= w in Eqs.(37), (69), and (71) for the SOL region JpJ<Ap/21. (lxl<Ap/2) and the

sidewalls and the sidewall boundary condition (74b) do not enter. In this case, which

includes the model of Ref.5, A cannot enter qt and P/R. Moreover, the scaling

transformation (ii) of Eq.(61) is allowed since p enters only through shape functions,

which means that Ap does not enter the unknown function in P/R and only enters qt via

the combination p./Ap. In addition, the divertor is asssumed infinitely deep (L-+oo)

and impurity radiation is assumed to occur upstream so that L and ai do not enter. As a

result, for the one-dimensional neutral fluid case

qt=baPu(I/M)1/2f(bk/a,Qe/ba,ca/ba,CYH/OT,Yn/bCxye+Yi,ptn/Ap) , (80a)
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P/R = baApPu(I/M) 1/2 f(bk/a,Qe/baa/ba,GH/ CY n/bany e+Yi) , (80b)

and, upon choosing b and Qe to hold the unknown function f fixed (recall k, a, aH, and

f.Pu are constants, and a and the y's do not vary significantly),

P/R x ApPu - Ap/ f. . (80c)

Unlike the 2-D case, Ap/ti need not be a constant for similar devices in the l-D case.

Therefore, a 1 -D model of a SOL of width A allows a device similar to ITER to have a

much smaller P/R and ApPu c Ap/ i. as in the discussion following Eq. (67).

If we include the inertial terms in our reduced neutral fluid model then we lose

the second scaling transformation in Eq.(75) since vf and 'r must scale in the same

way. As a result, a must be held constant for similarity since it appears as a separate

parameter in the argument of f. Since a ~constant to satisfy the Bohm sheath criterion,

the modified f is effectively the same as Eq. (78) and, therefore, leads to the same

conclusions.

If, in addition, we keep ion heat conduction and neutral and ion viscosity, but

assume b2 << 1, we need only supplement the first scaling transformation in Eq.(75) by

i/Wa, Ym - W1Ym and Qi - wjQi. Then the only allowed scaling transformation

gives Fq.(78) with the additional dimensionless parameters a, bi, Ym/b, y, and Qi/b

appearing in the argument of the unknown function. Since p. is a constant and Ym and y1

do not vary significantly, and b had to be held constant to keep f fixed (note that bk is

one of the arguments of f and k is a constant), viscosity and ion heat conduction only

alter our conclusions from Eqs. (76) and (78) by requiring that each of the dimensionless

upstream electron and ion heat fluxes, Qe and Qi, respectively, be held fixed in similar

devices.

Finally, if we attempt to keep the ionization terms as well as the charge

exchange terms in the perpendicular neutral momentum balance equations, (38) and

(39), we will also lose the first scaling transformation in Eq. (75) because a - a. Then
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the unknown function in qt will depend on the sixteen dimensionless parameters a, b,

, k, UH, aI, a, Qe, Qi, YI, Ym, Ye+Yi, yn, A/L, A/p, and L/t', as well as p ./Ap. Since

a, p., k, UH, a, Y I, Ym, Ye+Yi, and y. are either constants or unable to vary significantly,

the additional ionization terms have no significant impact on similarity since only the

same b, aI, Qe, Qi, A/L, A/Ap, and L/t. are required.

C. General Fluid Neutral Model

The general fluid neutral model system of equations described in Sec.III cannot

allow any scaling transformations since none are permitted for the reduced system

mentioned at the end of Sec.IV.B. Neglecting ion and neutral viscosity, inertial terms,

and ionization in the perpendicular neutral flow equations does not help because of the

neutral-ion momentum exchange due to charge exchange and the ion-electron energy

equilibration terms. Consequently, for the general neutral fluid system no simplification

occurs so

P/R=ApPu(I/M) 1/2 f( a,b,g,k,aH,aI,a,Qe,Qi,yiyeYiyn,A/L,A/Ap,L/ el), (81)

with Qe and Qi and Ye and yi appearing separately rather than as sums. In this case

similarity requires the same b, q-, A/L, A/Ap, L/t. - PuL, Qe, and Qi (with a, wt, k, aH,

a, YI, Ym, Ye, Yi, and yn either constants or unable to vary significantly), and, not

surprisingly, leads to Lackner's8 P/R = constant result. Therefore, the general fluid

neutral model introduces additional parameters, but leads to essentially the same

conclusions as the reduced fluid neutral model.

V. Scaling Transformations and Similarity for Knudsen Neutrals

Reference 5 also considers a deep divertor slot geometry with a complete

recycling model of the neutrals in which the neutral mean free path is long compared to

the divertor width and the Coulomb mean free path is assumed small compared to

parallel scale lengths. This idealized limit, in which charge exchange is retained and the
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long mean free path neutrals are randomized by collisions with the walls, is referred to

as the Knudsen neutral model or Knudsen flow approximation in Ref.5. For this model

the depth of the narrow divertor slot L must be much larger than its width A so that

nearly all of the neutrals created at the target by the recombining ions can stream to the

sidewalls to be randomized within a few A's of the target and well before they reach the

upstream divertor entrance. As a result, the neutrals are assumed to be uniformly

distributed in x (as well as z) for A << y < L with no poloidal or toroidal flow. The

randomizing wall collisions are assumed to result in a diffusive poloidal neutral flow

N.V= -yD6NnWy , (82a)

where the diffusion coefficient D is given by

D = cVA (82b)

with A and V the characteristic step in y and speed between randomizing collisions at

the walls and c an order unity numerical coefficient which depends on the properties

and conditioning of the walls. The speed V is set by the neutral temperature which in

this model is small compared to the ion and electron temperatures. Equation (82) is

then inserted into Eq.(2) to obtain the neutral continuity equation. To make D

dimensionless we introduce the dimensionless diffusivity d defined by

cVA
d = . (82c)

£n(IIM)" 2

The remaining equations for the Knudsen neutral model are ion continuity,

Eq.(1) with Eq.(4) inserted; parallel plasma momentum balance as obtained from Eq.(6)

by setting V.,= 0, neglecting inertia, and dropping the thermal force term; and total

plasma energy conservation as obtained by assuming Te z T, neglecting inertia, and

adding Eqs. (11) and (16) together with the neutral flow and neutral heat flux terms

ignored. If we neglect ion heat conduction and viscosity the dimensionless form of the

Knudsen neutral model equations is as follows:
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d T= anlS, (T) , (83)
613

b (n,) = anlSJ(T), (84)

6
ab (2nT) = -nvSi(j) , (85)

b- 5TnV, - kbr 512  = -anSz(T) -H T )-InSI(T) (86)

This sixth order system of equations in the four unknowns n, TI, v 1, and T is employed

with the three upstream boundary conditions given by Eqs. (49), (72), and (73), and the

three downstream boundary conditions given by Eq. (53) and the appropriately modified

versions of (56) and (74a):

A P1

-di A=ab [dx nrI2 = abAfd(nIAP) n (87)

5abndA12 + 52 s 2 = ab(y, + y,)ndT312 (88)

The three downstream boundary conditions are applied a few As from the wall in order

for the diffusive model of Eqs. (82) to be valid. Equation (87) is obtained by demanding

complete recycling, and recalling that the neutral distribution is uniform across the

entire divertor channel of width A, while the plasma is localized to the SOL of width Ap.

Notice that A enters through d, as well as Eq.(87), but not through any sidewall

boundary conditions, and recall that p=L/e. at the upstream entrance.

The Knudsen neutral model, consisting of Eqs.(49), (53), (72), (73), and (83)-

(88), contains the twelve dimensionless parameters d, a, b, k, aH, aI, L/f., Qe, a,

Ye+Yi, AP/ t U, and Ap/A, and permits the following three scale transformations:

(i) y -- Wia, v11-+ wivII, k - w1k, aH - WITH, aI -- w1aj, d -* w1d

Qe~WIQe, a- w1a;

(ii) b 2b, 0 - W 20, d - W d, Qe - o2Qe, L/. - w2L/t.; and

(Wi) P -+ 3P, AP/ tn - W3Ap/ f.. (89)
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These transformations reduce the number of independent dimensionless parameters by

three and the procedure of Sec. IV.A gives

q,=bczPu(I/M)"2 f(b./IL,k/a,Qe/ba,CoIor,Ca/a,aHIO,d/ab2, y'+yiAP/A, Pn/Ap) (90)
and

P/R =baAPu(I/M) 2 f(btn/L,k/a,Qe /bx,a/a, a/a, aH/, d/ab 2,y +yi,A,/A) .(91)

The new parameter in the unknown function is the effective diffusivity d/ab2 (or

f.d/abLxcVA/abL) which replaces the yn/ba (or ynA/baL) parameter of the fluid

neutral model (cV replaces yn). Moreover, for the deep slot Knudsen model A/L no

longer enters and the b dependence is altered (p scales the same way as b) from the

fluid neutral model since the neutrals are no longer strongly coupled to the ions by

charge exchange. The other parameters a/a, UH/U, k/a, and ye~yi in the argument of f

for P/R must also be held constant. Therefore, if we adjust Pu, A, Ap, Qe, and o7 to

keep b tn/L, d/ab2 cc (cVAP,/ab2 ), Ap/A, Qe/ba, and al/a fixed for a specified L, we

obtain the scaling

P/R & baApPu cc b2Ap/L - (cV) 2(Ap/L) 3 cc (cV)1/ 2 (AP/ t')3/2, (92)

where we have used P. oc 1/fccb/L and bW(cVAp/ae.)1/ 2 , and a must be kept constant

since a and k are constants. As a result, P/R is not a constant for the Knudsen fluid

model, which requires Ap/f. << 1, and we are still free to adjust cV and b, as well as B

to satisfy other constraints. The constraints and P/R scaling for the Knudsen model are

summarized in the third column of Table I. Keeping the inertial corrections in the

Knudsen neutral model results in the loss of scaling transformation (ii) and makes it

necessary to keep a fixed for similarity, so results in no significant change.

V. Discussion

Based on the model without neutrals and the fluid neutral models considered

here, the collisionality, upstream parallel heat flux, and P/R constraints on ITER

divertor similarity are all difficult to satisfy in present tokamaks. The model without
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neutrals has the least restrictive P/R scaling and the fluid neutral model the most

constraints. The less restrictive and more favorable scaling of the Knudsen model

means that the constant P/R constraint found for fluid neutrals is relaxed as the neutrals

make the transition from Ap/f. >> 1 to Ap/ t. << 1, where Ap and f, are the scrape off

layer width and the characteristic neutral penetration depth [recall Eq. (33)],

respectively. Consequently, lower density machines may have a less constrained P/R

scaling than higher density ones. In either limit, however, severe similarity constraints

arise from the upstream parallel heat flux and collisionality. For a given b=B,/B, similar

collisionality requires PuL=constant and therefore deep divertor chambers at the lower

upstream pressures of present tokamaks. However, in light of recent experimental

results from Alcator-C-MOD 16 indicating that divertor operation during detachment is

insensitive to the divertor depth L, it is tempting to speculate that it may be possible to

ignore the L dependence of f in Eq.(91) and replace the t. /L and A/L dependences of

the unknown function f in Eq.(78) by A/t.. Even if this is not the case, the data base

from present machines coupled with the key parameters found here and in divertor

modeling codes, might be used to construct a power law form for the unknown function

in the P/R scaling law. The techniques employed herein can be used to determine the

key parameters for the equations and boundary conditions solved in the modeling codes

of interest.

The upstream heat flux entering the divertor also places a severe constraint on

the similarity of present tokamak divertors to ITER. However, for the various models

considered only the parallel heat flux must be matched. Since a divertor simulator need

not be a conventional tokamak the parallel heat flux might be matched by adjusting the

field line angle in a toroidal device to make b=Bp/B smaller for a fixed poloidal heat

flux. For a non-conventional tokamak simulator there is much more flexibility in making

the collisionality and other divertor and geometrical parameters similar (for a simulator

of SOL length £ the replacement R-/4r is made in P/R).
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Table 1. Divertor Similarity: Constraints (key arguments of f) and P/R Scaling
(coefficient of f)

Similarity No Neutrals Fluid Neutrals Knudsen Neutrals
Constraint (3 arguments) (6 key arguments) (5 key arguments)

parallel heat flux Qe/baYe Qe/b Qe/b(determines Qe) (aYe Constant)
impurity radiation aI/(aye)2

(determines crj) (aye ~constant) CYT
collisionality b t,/ayeL bef/L bf./L

(determines L) (aYe -constant)
chamber width none A/L d/b2

(determines A) (do cVA/ t)
B field ratio

(determines b) none b none
SOL width nn PAA/

(determines p) none A)

other constants k k,CY,a,H,Yn,ye+Yi k,a,a,UH,ye+yi

P/R scaling b2Ap/L constant b2Ap/L
(free to adjust) (A,, b, B) (B) (cV, b, B)

Table 2. Some Additional Constraints and Resulting Scalings for No Neutral Model

Case Additional Constraints Resulting P/R Scaling
b = constant

(a) Ap/L=constant constant

(b) p/L=constant b
BAp =constant

(c) ocPu/B 2=constant ayeBp
BAp =constant

(d) b = constant 1/BLBAp =constant

(e) b = constant ay2ApcPu/B 2 =constant
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