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ABSTRACT

A self-consistent two-dimensional model is used to investigate intense charged-particle

beam propagation through a periodic solenoidal focusing channel, particularly in the

regime in which there is a mismatch between the beam and the focusing channel. The

present self-consistent studies confirm that mismatched beams exhibit nonlinear reso-

nances and chaotic behavior in the envelope evolution, as predicted by an earlier enve-

lope analysis [C. Chen and R.C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient

effects due to emittance growth are studied, and halo formation is investigated. The halo

size is estimated. The halo characteristics for a periodic focusing channel are found to

be qualitatively the same as those for a uniform focusing channel. A threshold condition

is obtained numerically for halo formation in mismatched beams in a uniform focusing

channel, which indicates that relative envelope mismatch must be kept well below twenty

percent to prevent space-charge-dominated beams from developing halos.

PACS numbers: 07.77.+p, 29.27.Eg, 41.75.-i, 52.25.Wz



I. INTRODUCTION

There has been considerable interest in advanced high-current ion accelerators for

a variety of applications ranging from heavy ion fusion [1, 2] to accelerator production

of tritium [3]. The most important milestone in the development of such high-average-

power ion beam systems is to accelerate and transport space-charge-dominated ion beams

with extremely low beam loss. One mechanism for beam losses is attributed to mismatch

between the beam and the focusing system, because a mismatched beam causes to develop

a halo [4-8] which may make physical contact with some components of the system.

Practical difficulties of achieving precise beam matching have motivated, in recent years,

vigorous theoretical and experimental investigations [4-6,9-15] of the effects of mismatch

on the dynamics of space-charge-dominated beams.

Several theoretical investigations of mismatched, space-charge-dominated beams have

been carried out using root-mean-squared (rms), test-particle, and self-consistent particle-

in-cell (PIC) models. In particular, it has been predicted in an envelope analysis [9-11]

that, for a periodic solenoidal focusing configuration, the beam self fields induce a rich

variety of nonlinear resonances and chaotic behavior in the beam envelope oscillations. It

has also been shown in test-particle analyses that particle orbits themselves can become

chaotic either due to beam density nonuniformities [12, 13] for an alternating-gradient

quadrupole focusing configuration or due to mismatched envelopes [14, 15] for an ax-

isymmetric uniform focusing configuration. Moreover, self-consistent PIC computer sim-

ulations [4, 5] have shown that an envelope-mismatched beam can form a dense core

and a tenuous halo, via an array of nonlinear resonances and chaotic processes in the

beam dynamics. However, few comparisons have been made between these analyses and

self-consistent simulations.

In this paper, a self-consistent two-dimensional macroparticle model is presented for

space-charged-dominated charged-particle beams and is used to investigate the evolution
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of both rms beam quantities and the particle phase-space distribution, particularly in the

regime where a mismatch between the beam and the focusing channel occurs. The present

investigation is concentrated on a periodic solenoidal focusing channel which possesses

axisymmetry. It is demonstrated in the benchmark simulations that, with as many as 10'

macroparticles in the present model, the properties of stable Kapchinskij-Vladimirskij

(KV) beam equilibria [10,16-18] are preserved over propagating distances at least on

the order of 100 focusing periods. As predicted by the previous envelope analysis [9-11],

nonlinear resonant and chaotic phenomena in the envelope evolution are confirmed in the

computer simulations, supporting the expectation that such nonlinear phenomena should

be experimentally observable. Halo formation is investigated. While the analytical model

[14, 15] for envelope-mismatched beams without emittance growth does not provide an

escape mechanism for core particles to move into the halo, the emittance growth and

transient effects in the self-consistent model provide escape mechanisms. The size of the

halo is estimated. The halo characteristics for periodic focusing configurations are found

to be qualitatively the same as those for uniform focusing configurations. A threshold

condition for halo formation is obtained numerically.

II. THE MACROPARTICLE MODEL

We consider a thin, continuous, intense charged-particle beam propagating with av-

erage axial velocity /bcc, through an axisymmetric, linear focusing channel provided by

the applied, periodic solenoidal magnetic field

-, 1
Bo(Xy, s) = B2(s)e2 - B'(s)(xe, + yY) (1)

and

Bo(x, y, s + S) = Bo(x, y, s) , (2)

where s = z is the axial coordinate, S is the fundamental periodicity length of the
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focusing field, the 'prime' denotes derivative with respect to s, and c is the speed of light

in vacuo.

In the present self-consistent two-dimensional macroparticle model, the beam is rep-

resented by Np macroparticles. The beam density is approximated by

N NP
n(X,- 6[x - xi(s)]b[y - y ,(s)] (3)

where N = f n(x, y, s)dxdy = const. is the number of microparticles per unit axial length

of the beam, (xi, y;) is the transverse position of the i-th macroparticle, and 6(x) is the

Dirac delta function. Under the paraxial approximation [10, 18], the self-electric and

self-magnetic fields associated with the beam space-charge and current are expressed as

E_(S) (X, y, s) = e -(2 + e-Y FY ) yS),(4

and

g(s) = (X7 - ) A(s) (x, y, s) (5)

where the scalar potential for the self-electric field obeys the Poisson equation

+ )D(s)(x, Y, s) = -47rqn(x, y, s) , (6)

and the vector potential for the self-magnetic field is defined by

=(s) 1( )(X, y, s)2 . (7)

Here, q is the particle charge.

For such a beam of Np macroparticles moving in the combined periodic solenoidal and

self fields E(s) and + (8),the transverse equations of motion for the i-th macroparticle

can be expressed as [10, 18]

- 2V2 (s) dy - (d (s))yi + 3 2 2 (s)(xi,yi) = 0 (8)

and

+22z (s))+ x is)S; + 2 s(x, y;) = 0 (9)
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where i = 1,2, - - -, Np, m is the particle rest mass, Yb = (1 - ,32)1/2 is the relativistic

mass factor,

= qB(s) (10)2,ybIbmci

is the focusing parameter, and

Nv Np
<b(8)(ryi) 4 N ln[(x; - xj)2 + (yi - yj)2] (11)

47 jp=l(,,i)

is the scalar potential experienced by the i-th macroparticle and is obtained from Eqs. (3)

and (6).

As described by Eqs. (8)-(1 1), the self-consistent two-dimensional macroparticle model

for intense charged-particle beams involves 2Np second-order ordinary differential equa-

tions which can be integrated numerically with a computer code. The present macropar-

ticle (direct interaction) model, which is equivalent to particle-in-cell (PIC) models, is

more straightforward but requires more computations than corresponding PIC models.

It should be reminded that the total emittance [19] of a KV beam in a solenoidal

focusing channel is defined by

ej = 4((32)(.,2) _ (g/)2)1/2 , (12)

eg = 4((#2)( r2) _ (g,)2)1/2 , (13)

for the z- and g-directions, respectively; i.e., four times the rms emittance. In Eqs. (12)

and (13), ( ... ) denotes the ensemble average over the beam particle distribution. The

coordinate in the Larmor frame [20] of reference, (i, g), is related to the coordinate in

the laboratory frame of reference, (x, y), by the relations

i(s) = x(s) cos[q(s)] - y(s) sin[(s)] , (14)

g(s) = x(s) sin[q(s)] + y(s) cos[O(s)] , (15)

where 4(s) = f' da ce(s).
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It is inevitable that round-off errors and discrete particle effects generate noise in com-

puter simulations of charged-particle beams, regardless of whether the present macropar-

ticle model or a PIC model is used. Therefore, it is important to validate simulation

results, which is done in part by simulating beam propagation with the matched KV

equilibrium distribution. (The KV equilibrium [16-18] is the only known Vlasov equi-

librium for periodically focused intense charged-particle beams and has been discussed

extensively [10] for the periodic solenoidal magnetic field configuration.)

It is demonstrated in our benchmark simulations that, with as many as 10' macropar-

ticles in the present model, the properties of stable KV beam equilibria are preserved

over propagating distances at least on the order of 100 focusing periods. In particular,

the computer simulations show that the particles are well confined within the periodically

varying outermost beam envelope, and that the beam emittance remains constant within

expected relative fluctuations of order of N1 2 . For a KV equilibrium in a periodic

solenoidal channel [10], note that the beam is round with uniform density and 6j = eg,

and that the constants 7rcs and 7rEp are equal to the areas occupied uniformly by the

beam particles in the phase planes (i, ') and ( , s'), respectively.

III. DYNAMICS OF MISMATCHED BEAMS

The beam self fields induce a rich variety of nonlinear resonances and chaotic behavior

in the envelope oscillations of mismatched, space-charge-dominated beams propagating

through a periodic solenoidal focusing channel. This was first predicted based on an

envelope analysis [9, 10] in which the beam emittance was assumed to be constant and

the effect of emittance growth was ignored. In this section, we verify the predicted results

and study the particle phase-space distribution, using the present macroparticle model

which allows for the self-consistent evolution of the beam emittance.

In the remainder of this article, we introduce the dimensionless variables and param-
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eters defined by

s___ y SK- -_+ s , -+ Y ,_- y , S2z __+ , , K -+ K , 16S 7' 7o VC0 fo (6

where eo = er(0) = eg(0) is the initial total KV beam emittance which is assumed to be

the same for the i- and g-directions. Unless specified otherwise, the above dimensionless

variables and parameters will be used hereafter.

To make direct comparisons with the earlier envelope analysis [9-11], we consider here

a specific periodic focusing channel described by

r2(s) = [ao + a, cos(27rs)]2  (17)

The vacuum phase advance over one period of such a focusing lattice is given approxi-

mately by [ 1 1/2 2 1/2
o = [JO K(s)ds = a + ) . (18)

Furthermore, we define the effective (total) beam radius as

r= V2(r 2) = V2(x + y2 ) ,(19)

which is v/2 times the rms beam radius (r2)1/2. For the special case of the matched KV

equilibrium distribution [10], the effective beam radius is equal to the outermost beam

radius, because the beam is round with uniform density.

A. Nonlinear Resonances and Chaotic Behavior in the RMS Evolution

Figures 1 and 2 show, respectively, the evolution of the emittance and effective radius,

[computed as rms quantities using Eqs. (12), (13) and (19)], of a mismatched, space-

charge-dominated beam propagating through the focusing channel, as obtained from

the simulation for the following choice of system parameters: K = 3, ao = a, = 0.648

(ao = 45.50), and Np = 1024. The beam is loaded initially according to a KV distribution

but the beam radius is mismatched outward initially by 75% from the equilibrium beam
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radius, i.e., Srb/fb(0) = 0.75, where Srb = rb(0)-fb(0) is the initial beam radius mismatch

and fb(0) is the initial beam radius of the corresponding matched KV beam equilibrium.

It is evident in Fig. 1 that the emittance e. varies significantly as the beam propagates

through the focusing channel. When the emittance reaches its maximum at s a 23,

it has increased by as much as a factor of three from its initial value. The emittance

for the P-direction evolves in a similar way as that for the i-direction. As a result of

emittance growth, transient effects are observed in the envelope evolution shown in Fig. 2,

particularly in the early stage of development from s = 0 to 25. Both the emittance and

the effective beam radius oscillate back and forth once approximately every five lattice

periods.

From the data shown in Fig. 2, the effective beam radius is differentiated with respect

to s, and the Poincar6 surface-of-section plot [21] is generated to better visualize the

resonant behavior in the envelope oscillations. The result is the separatrix of the fifth-

order nonlinear resonance shown in Fig. 3, where the effective beam radius rb and its

derivative r' = drblds are plotted in the plane (rb, r') at s = 26,27, - - -, 75. For a clear

view of the nonlinear resonance structure, the 50 points in Fig. 3 are connected by five

contours, each of which traces 10 points that are separated longitudinally by about five

lattice periods with random fluctuations seen typically inside a chaotic, slightly broadened

separatrix. A chain of five stable islands is found inside the five contours shown in Fig. 3.

This result agrees qualitatively with the earlier prediction based on the envelope analysis,

as one compares present Fig. 3 with Fig. 2(b) in [9]. Both analyses show weakly chaotic

behavior in the envelope evolution. (Note that the overall structure of the nonlinear

resonance depends crucially on o and K [9] but does not change qualitatively from a

sinusoidal to step-function focusing lattice.) Although not shown in present Fig. 3,

a fourth-order nonlinear resonance is also found for larger initial envelope mismatches

[e.g., 8rb/fb(O) = 1.6], as predicted by the earlier envelope analysis. Of course, the
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main advantage in the present analysis is that the beam emittance is allowed to evolve

self-consistently. More importantly, the simulation results presented in Figs. 1-3 show

that, after emittance growth and transient effects, the nonlinear resonances and chaotic

behavior in the envelope evolution should be experimentally observable for mismatched,

space-charge-dominated beams propagating through a periodic focusing channel.

Although more pronounced chaotic behavior was predicted in the envelope oscillations

for ao > 900 [9-11], a direct confirmation of such chaotic envelope oscillations remains

challenging. This is because emittance growth is found to be so pronounced in this

regime that initially space-charge-dominated beams tend to evolve rapidly into emittance-

dominated beams.

B. Evolution of the Particle Distribution and Halo Formation

The rms properties of mismatched, space-charge-dominated beams vary smoothly

and exhibit nonlinear resonances and weakly chaotic behavior, as discussed in Sec. III.A.

Once mismatch causes a beam to form a dense core and a tenuous halo, however, the rms

description of the beam becomes inadequate. Under such circumstances, we must also

examine the self-consistent evolution of the beam particle distribution in the phase space

(x, y, x', y'). From the point of view of accelerator design, of particular interest are the

condition for halo formation and the size of a beam halo relative to the effective beam

radius.

Shown in Fig. 4 are plots of the particle phase plane (x, y) at (a) s = 38, (b) s = 39,

(c) s = 40, (d) s = 41, (e) s = 42, and (f) s = 43, for the same choice of system

parameters shown in Figs. 1-3. Approximately, five percent of macroparticles are in

the beam halo. The halo radius (i.e., maximum radius achieved by halo particles) is

approximately constant as the beam propagates through the focusing channel. The ratio

of the halo radius to the maximum effective beam radius is found to be about 1.6, as

seen from Figs. 2 and 4(d), whereas the ratio of the halo radius to the minimum effective
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beam radius is about 3.8, as seen from Figs. 2 and 4(a).

It is found that the characteristics of halos do not change qualitatively from a periodic

to uniform focusing channel. This is perhaps because the focusing parameter of a periodic

focusing channel, rc,(s), may be averaged over one focusing period to yield a uniform

focusing channel with the effective (dimensional) focusing parameter 'xZO = fos n,(s)ds =

(0o/S)2 = const.

Finally, we estimate the mismatch threshold for halo formation by means of computer

simulations. For simplicity, this is done for the case of an initially KV distribution

propagating through a uniform focusing channel with Ks(s) = const. In such a simulation,

the maximum radius achieved by the beam particles is determined after the beam has

propagated more than 50 periods of mismatched envelope oscillations. The simulations

are performed over a wide range of K and 6 rb/fb, where Srb = rb(0) - Fb > 0, rb(O) is the

initial beam radius, and ib = const. is the radius for the matched beam in the uniform

focusing channel. The results are shown in Figs. 5 and 6, where the maximum radius

achieved by the beam particles, rm, is plotted relative to the initial beam radius rb(0) as a

two-dimensional function of the relative mismatch amplitude brb/fb and the space-charge

parameter y = 1 - (o0/0o) 2 . Here, 0o and a = (1/2)[(K 2 + 4ao)1/2 - K] are the vacuum

and space-charge-depressed phase advances per unit axial length for the matched beam,

respectively. Note that A -- 1 (K/o > 1) for space-charge-dominated beams, whereas

y -+ 0 (K/co -- 0) for emittance-dominated beams.

The onset of a plateau in Fig. 5 defines the threshold for halo formation, which occurs

at brb f 0.2 for 1p > 0.4 but becomes increasing large as IL -> 0, as indicated by the

dense contours in Fig. 6. The plateau shown in Fig. 5 is approximately flat and has

a vertical height of rm/rb(0) a 1.6, which is in agreement with the results shown in

Figs. 2 and 4(d). The contour plot shown in Fig. 6 reveals fine structures associated

with various nonlinear resonant and chaotic processes in the beam dynamics. Similar
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and more detailed results have also been reported in [4, 5] for an initially Hamiltonian

distribution [22] in a uniform focusing channel.

IV. CONCLUSIONS

A self-consistent two-dimensional macroparticle model was presented for studies of the

dynamics of intense charged-particle beams propagating through an axisymmetric, linear

focusing channel provided by a periodic solenoidal magnetic field. It was demonstrated in

the benchmark simulations that, with as many as 103 macroparticles in the present model,

the properties of stable KV beam equilibria are preserved over propagating distances at

least on the order of 100 focusing periods.

The self-consistent evolution of the rms quantities such as the rms envelope and emit-

tance was investigated in the space-charge-dominated regime. It was confirmed in the

computer simulations that, for beams mismatched into the periodic focusing channel, the

beam envelope exhibits nonlinear resonances and chaotic behavior, as predicted by the

previous analysis of the beam envelope equation [9-11]. As a result of emittance growth,

transient effects were observed in the rms beam evolution. These results further sup-

port the expectation that the nonlinear resonances and chaotic behavior in the envelope

evolution should be experimentally observable after the emittance growth and transient

effects for mismatched, space-charge-dominated beams propagating through a periodic

focusing channel.

Also investigated were the self-consistent evolution of the particle distribution in

the phase space and halo formation. Unlike the analytical model [14, 15] for envelope-

mismatched beams without emittance growth which does not provide an escape mecha-

nism for core particles to move into the halo, the emittance growth and transient effects

in the self-consistent model provided escape mechanisms. The halo size was estimated.

The halo characteristics for a periodic focusing channel were found to be qualitatively
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the same as those for a uniform focusing channel. A threshold condition was obtained

numerically for halo formation for mismatched beams in the uniform focusing channel,

which indicates that relative envelope mismatch must be kept well below twenty percent

in order to prevent space-charge-dominated beams from developing halos.
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FIGURE CAPTIONS

Fig. 1 Evolution of the relative rms emittance of a mismatched, space-charge-

dominated beam in the focusing channel, as obtained from the simulation for

the following choice of parameters: K = 3, ao = a1 = 0.648 (co = 45.50),

Srb/fb(O) = 0.75, and Np = 1024.

Fig. 2 Evolution of the effective beam radius for a mismatched, space-charge-

dominated beam in the focusing channel, as obtained from the simulation for

the same choice of system parameters shown in Fig. 1.

Fig. 3 Poincare surface-of-section plot generated from the data in Fig. 2 showing the

separatrix of the fifth-order nonlinear resonance for the envelope evolution

from s = 26 to 75.

Fig. 4 Plots of 1024 macroparticles in the phase plane (x, y) at (a) s = 38, (b) s = 39,

(c) s = 40, (d) s = 41, (e) s = 42, and (f) s = 43, for the same choice of system

parameters shown in Figs. 1-3.

Fig. 5 Relative maximum radius rm/rb(0) achieved by the beam particles as a two-

dimensional function of the relative mismatch amplitude brb/fb and the space-

charge parameter y = 1 - (u/o 0 )2 , obtained from simulations for the case of a

uniform focusing channel.

Fig. 6 Shown in a contour plot the same data in Fig. 5 for a clear view of fine

structures. Here, two adjacent contours are separated by Arm/rb(O) = 0.02.

The onset of the plateau (i.e., threshold for halo formation) is indicated by the

dense contours located approximately at 6rb/fb = 0.2 for y > 0.4.
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