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Abstract

Large radiation losses in the electron energy balance equation due to electron impact

excitation can cause the parallel scale length to become small enough that a short mean

free path expansion becomes questionable for the high speed tail electrons. It then

becomes necessary to limit the parallel electron heat flux so that it remains below its

free streaming value nT3/ 2/m, where n, T, and m are the electron density,

temperature, and mass. We adopt a Boltzmann inelastic scattering collision operator to

investigate whether electron impact excitation can lead to a self-consistent flux limit by

depleting the electron tail.

PACS numbers: 52.40.Hf, 52.55.Fa



I. Introduction

Local steepening of the parallel electron temperature profile can occur in diverted

tokamaks because of the energy loss due to line radiationl-2 . If the parallel scale length

becomes comparable to the Coulomb mean free path of the tail electrons the usual short

mean free path treatment3 must be modified. In the absence of radiation losses,

nonlocal modification of the parallel electron heat flux gives a strong flux limit4 -, as

was shown originally in the context of inertial fusion. These nonlocal flux limiting

models assume the effective charge state Z of the ions plus impurities is so large that

the electron-electron mean free path ke can be taken comparable to or larger than the

parallel scale length f, while the electron-ion mean free path XWZ remains small

compa red to f. We consider an alternate limit in which radiation is retained, but

nonlocal effects neglected, to determine if flux limiting due to tail depletion is large

enough to significantly reduce the parallel electron heat flux q,.

When a tail electron impacts an impurity and causes it to go to an excited state,

the energy of the electron is lowered by the excitation energy. If we assume that the

line radiation due to electron excitation is instantaneously radiated away without re-

absorption, electron impact excitation can be modeled by including a Boltzmann

inelastic scattering collision operator in the electron kinetic equation. The line radiation

modifications to the parallel heat flux and parallel electron current can be evaluated by

solving the electron drift kinetic equation with inelastic scattering as well as Coulomb

collisions. To carry out this calculation we assume the the effective charge state of the

ions is high (Z >> 1) so that we need not assume the electron-electron mean free path

is short, but can assume the electron-ion mean free path is small compared to the

parallel scale length f. The Z >> 1 assumption causes pitch angle scattering to

dominate so that the lowest order electron distribution function is isotropic.

In Sec. II we introduce the tail electron model we employ. Section III discusses

orderings and uses them to obtain an explicit solution for the electron distribution
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function to the required order. To find the solution the Boltzmann form of the impact

excitation collision operator is expanded to obtain a Fokker-Planck form by assuming

the characteristic excitation energy loss is small compared to the electron thermal

speed. We also employ a high speed expansion of the electron-electron collision

operator in a form which attempts to drive the tail electrons towards a Maxwellian to

counteract the non-Maxwellian influence of the inelastic scattering. When excitation

loss is strong enough the tail can be depleted by inelastic scattering and the tail

contribution to the parallel heat flux and current reduced. The flux limiting factors are

evaluated in Sec.IV for a realistic and analytically convenient form of the inelastic

scattering excitation cross section. Section V estimates the size of the dimensionless

parameter characterizing tail depletion due to impact excitation. These estimates

indicate that order unity decreases in the electron heat flux are difficult to obtain for

realistic divertor parameters. As a result, flux limiting due to impact excitation

depletion of the tail is expected to be weak is expected to be weak in tokamak scrape-

off layers. However, for the partially ionized plasmas used in plasma processing

metastable states must be considered and significant flux limiting is possible.

I. Model

To generate a steepening of the profile consistent with energy loss by line

radiation kinetically we include an inelastic impact excitation operator, as well as

Fokker-Planck collisions, in the gyro-averaged electron kinetic equation. Line radiation

is modeled as being due to electrons exciting partially stripped impurities which then

instantaneously radiate the energy away without re-absorption since the plasma is

assumed to be transparent. If the higher energy, longer mean free path electrons can be

strongly depleted by this inelastic scattering process then the influence of these

electrons on the heat flux and current can be strongly reduced.
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In addition to inelastic and Coulomb collisions we retain parallel electron

streaming, which results in the parallel heat conduction, and the parallel electric field

Ell. The gyro-averaged electron kinetic equation may then be written as

v 1fi-Vf- -E -iiVf=C{f}+X{f} , (1)m

where C{f} and X{f} denote the elastic and inelastic collision operators acting on the

electron distribution function f, with i = ;/B, B = IBi, va = h, and e and m the

magnitude of the electron charge and mass. Because we are primarily interested in

effects on the tail electrons we will normally use the large speed (v > ve) expansion of

the electron collision operator which we write in the form

C{f} = V,-[f Mb V(f if , (2)

where
3 V2

15 =[(Z + 1)(v'!- Wi) + 2vi (3)
2v'

fm= 2 V-3/2e -V2 /2V2) ,(4)

and v. =T/m, n =fd3vf, and Ve = 41ne4 enA/m2v =3(i/2)1/2/te with te the Braginskii

electron-electron collision time.

The inelastic collision operator X{f) is given by7

X{f}= N v'[(v')2a.(V')f(i') -v2a"(v)f(V)] , (5)

with lmv = gn(v')2 - imv2 the energy loss of an electron caused by exciting the xth

state of the impurity which has a excitation cross section of ax and a number density of

Nx. The first term in X is the increase in the number of electrons of velocityN which

had velocity V' prior to losing energy jmv2, while the second is the decrease in the

number of electrons of velocity-V due to the inelastic scattering loss.
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If we assume a uniform magnetic field, use the full electron collision operator

and the number conserving properties of C and X, define the parallel electron heat flux

q and current J11 by

q =idv( mv2 - T)vl1f (6)
. 2 2

and

Jll= ,-efd 3 f , (7)

and note that

fd 3v mv2X{f} = -N I -NL.(T) , (8)

then the (mv2-5T)/2 moment of Eq.(1) gives the conservation of energy equation

n-Vqll - FlJ, = Zn( - N.L.(T) .(9)
W'e X

Here Z, M, and Ti are the effective charge number, mass, and temperature of the ions,

respectively. Note also that the continuity equation associated with Eq.(1) is simply

n-VJ = 0. From Eq.(9) we can see that when the radiation energy loss rate function

Lx(T) is large enough (often the case in the presence of impurities) it can alter the

electron energy balance by causing parallel scale lengths to decrease. As the electrons

lose energy by radiation it can be resupplied by equilibration with the ions.

III. Solution Technique

When the steepening of the parallel temperature profile causes the parallel scale

length f to approach the electron mean free path Xe = veTe so that the short mean free

path expansion (ke << i) becomes questionable, an adhoc flux limit is sometimes

MrV3introduced to keep the the parallel heat flux below its free streaming value mmC =

nT3/ 2/m. The question then arises as to whether the radiation losses can ever be large

enough to substantially deplete the electron tail at v > Ve so that high order moments of
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the distribution function such as q, and J,, can be substantially reduced (or flux limited)

by inelastic scattering. To investigate this question we consider a strongly radiating,

high Z plasma so that we can adopt the orderings

Xe/Zi <<1 eE f/T - Vx/Ve, (10)

where X{f} ~ vxf, with vx the characteristic frequency associated with inelastic

scattering. We will normally employ the v > ve form of C{f}, but since C{f) = 0 gives a

lowest order distribution that is Maxwellian below ve and the ordering procedure that

we employ is valid for the general C(f}, it is usually convenient to view v - Ve.

We also employ n:V = a/as and the velocity space variables v = vl and = /V

cos 8, as well as gyrophase, to write Eqs.(1)-(3) as

Of e [1l 6 2 6 l-(2 1
V _ E 2 I (v 2f)+- f =C{f} +X{f} (11)

as M I v 2aV dt v

and

_(Z + 1)V~V d F 23fv~ TfM
C{f} V3 (-_ )-OI + . (12)

We then solve Eq. (11) by expanding in powers of ke/Ze by writing

f =fO +fI+f2 +..., (13)

where fj+p/fj - Ke/Z << 1. To lowest order pitch angle scattering dominates giving

(Z+1)vv F 2) =1 or afo/at=0. (14)2v3  a~l't ) 01=0 f/~0

The next two orders of the electron kinetic equation are

(Z+1)Ofl_ 1 v+v a TfM
2 3 1 04 v2C _ m v

-X{fo}+ V - F (15)

and
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(Z+1)VeV 0 _ 2 Of 1 a TfM . f -X{f}
2v3 F ,L v2  ( m v fM,

+ V - eE F1 (v 2 f )+ ( v f). (16)

The equation for fo is found by averaging Eq.(15) over all ( by integrating from (

= 1 to -1to obtain

v., a Fr 0f af
+~ X{f 0 } =O . (17)

Our orderings are designed to make inelastic scattering significant when mv2/2T > 1 for

vx/ ve < 1 in order that only the tail is depleted in the lowest order distribution function.

To find f1 we subtract Eq.(17) from Eq.(15) to find

(Z+1)V) = v -E F0 "O , (18)

which shows that f1 - foxe/Zl as desired. The rotational symmetry of the pitch angle

scattering operator means the fI must be of the form

f= H(s,v) +G(s,v) . (19)

Solving Eq.(18) gives H to be

H = -v 4f OA (20)
(Z + 1)v.v

with

A = ( -_ e, info .(21)
A= s Ov)

The equation for G is obtained by integrating Eq.(16) over all E. Inserting the form for

f1 as given by Eq.(19) gives

+ XG} = v [- (v2H) . (22)
2v2 O w2 Os nW2O

7



Notice that H-foxe/Zi and G-fOZ-1(X/e) 2 according to our orderings, so G gives an

order Z-'(e/f)2 correction which is assumed to be negligible. Fortunately, for our

purposes it is not necessary to solve for G since are primarily interested in the odd (in

vd) moments q, and J11.

It is not possible to give an explicit solution to Eq. (17) without making further

approximations. If the tail is fully depleted then for v just below the depletion point, we

can neglect the first term in X{f) since there are no high energy electrons to lose

energy. In this case
X{f} -- Nva.(v)f(v), (23)

x

but since it turns out to be very difficult to fully deplete the tail in magnetic fusion

applications in general and in divertor applications in particular we will use an alternate

approximation. We will assume the change in energy during the inelastic scattering are

small compared to the velocity space variations of interest,

260
v. V n(v a.f) < <1 ,(24)

so that we can Taylor expand to obtain

X{f} v2fN V a. (25)

Using this form for X(fo} in Eq.(17), integrating from v to 00, demanding that fO/fM -

constant or zero (because of tail depletion) as v - oo, and defining

v.(v) = Nxv a 1/2v., (26)

gives

TfM a( +TW V.(v) fo 0
nw Ov fmo 2TM.

Integrating again,we find the lowest order distribution function to be

f O = T1fm exp[- W(s,v)] , (27)
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with
2

p(s,v) = 2 dvv'v,(v) , (28)
2T v,

where q is the normalization factor which is chosen to make n = fd 3vfo to lowest order.

Notice that significant tail depletion occurs if vx ~ ve. Using j we may write A in fI as

[F C M 5) a OW+ eE ( m 2 Vl

A = n(iiT) + n 5 -nT - -+ 1+ 2_ (29)
[s 2T 2)s ds T 2TV, '

where the s derivatives are taken at fixed v.

VI. An Explicit Inelastic Scattering Model

To obtain a fully explicit form for fo we must choose a reasonable, analytically

tractable form for vx that we can integrate. A particularly convenient choice, which has

a step-like behavior (controlled by the parameter w ~> 1) with vx - 0 below a critical

energy jmv 2 = rT and fails off as 1/v 2 at large energy, is

V(V)= 1+tanh w - -r) 1 H-I- -r) . (30)nw2 2T j - n 2T

where the step function H(z) vanishes for z a 0 and is one for x > 0. Letting x = mv2 /2T

and integrating gives

y r 1[coshw(x-r)] 1 0 x r
Wp(s,v) = Y x+-E I ft cohwx Y10 =y(x-r)H(x-r) (31)

2 Lsw 2 cosh(wr) w- x-r x>r

with the step location r > 1 for the tail electrons of interest and y -1 for significant

depletion. For this form, condition (24) implies wvX <v , so that strictly speaking we

are not allowed to let w - oo. However, the step approximation has been checked and

found to be an extremely good approximation for evaluating moments as long as w > 1.

As a result, we will normally employ the step function approximation to * in order to

avoid keeping w as an additional parameter and we can assume that the diffusive model

with the step function approximation is good as long as v v .
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In terms of * the density n and pressure p are

n = fd3vf 7= X dxx2 2 exp(-x_) (32)

and

p =. Jd3vv2fo = Wk2dxx32 exp(-x-w). (33)

Equation (32) relates rj to n, however, we are restricted by our model to situations in

which only the tail electrons are affected by radiation loss. If the radiation loss were

large enough to affect the bulk electrons then we would need an to retain an explicit

energy source term and the full electron-electron collision operator in the equation for

fo, as well as the inelastic sink term represented by 0. As a result, ) - n and p ~ nT,

while q, (and perhaps J,,) is allowed to depart significantly from there radiation loss free

counterparts because it involves higher moments of fo and so is more heavily weighted

by the tail electrons with energies of the order of 5T.

To see that q, and J,, can be more strongly affected by radiation than n and p we

evaluate them by using d3v = 2,rv2dvde. To lowest significant order only the tH portion

of f contributes. Upon carrying out the I integrals and using T - n and p - nT we are left

with

2__TT._ 6K 6 _Ke~ +_2

q = 0 * F +nT +- a np + + 6 (34)
' 37(Z +1)m L 5s 251s T 25 T

and
32e F1, 1 p 3K 6T T 6L (35

J = 2'~ FF, +1 2 + ---- f+ Lv F,+ :EdL (35)
37(Z +1)m 'en Ns 2e s e sJ

where the flux limiting factors F, K, and L, and the flux modification factors Fv and Lv,

are defined as follows:

F = T4jdxx3(x -_)2exp(-x _ V), L = dxx3 (-x -
75 2 61
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and K = dxx3(x - ) exp(-x - W), (36)

and

1 5 di 1p O
K, = dxx3(x _T -- exp(-x - w), and L, = dxx3 -- exp-x - w). (37)9 2 0X 6 dx

In the preceding equations F, L, and K (Kv, aK/as, Lv, and aL/as) go to one (zero) as 4

- 0. The large Z, * = 0 coefficients of q, and J, are explicitly displayed8 so that we

need only investigate whether tail depletion due to inelastic scattering can significantly

reduce the flux limit factors F, L, and K or introduce significant flux modification

factors Kv, aK/as, Lv, or aL/as.

The final moment of interest is the radiation loss term in Eq.(9) which can be

written as

NL(T) p dxxv. exp(-x - W) ()v.pl -fdxexp(-x - W)j , (37)

where we have used d$/dx = xvx/ve. Notice that XNxLx - pvx. Comparing radiation

losses with parallel heat conduction (XNxL -q, / f) gives (vx/ve)exp(-r) - Z-(k'e/ )2

<<1, which for Vx/Ve - 1 allows long electron-electron mean free paths [ke/f ~

Z 1/2exp(-r/2) > 1] and short electron-ion mean free paths [Xe/V Z-1/ 2exp(-r/2) < 1].

All the preceding integrals to be evaluated are of the form

A, = fdxxpexp(-x - qp) -0 1TL(p+ 1), (38)

where (p+l) is a gamma function. In terms of A, we have

F= A5 -5A 4 -L A3  L=-A 3, K=! -A 4 - - A3 )
75( 4 )1 6 9 2 3

L, =1(3A2 -A 3 ) , and K, = -- (13A 3 -15A 2 -2A 4), (39)
6 18

as well as
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-n 2 , p_2A3 2 , d NL, =( vp(l - Ad). (40)
1 7T nT A2 ax r)

Inelastic collisions result in significant flux limiting if they can make F (and

perhaps L and K) small compared to unity, while keeping n z T and p -nT. Notice that

for * = 0, the most important contributions to the integral in F come from the region

about x - 6 [where x3(x-5/2)2exp(-x) - 6], while for n/-q and p/nT it is the regions about

x - 1/2 and x - 3/2, respectively, that matter most. As a result, it is possible for tail

depletion to significantly alter q, without significantly affecting n and p.

If we consider p to be an integer and employ the step function approximation to

* from Eq.(31), we obtain the alternate representation for Ap of

P u - efr ~ l ( l+ y ) k i r k
A, = F(p +1) I - exp(-r) F (1+ y)1k (41)

From Eq.(41) we can see that strong flux limiting [Ap/r(p+ 1) << 1] occurs for a fully

depleted tail (y >> 1) if p >> r > 1 since rP/p! << 1 gives the y independent result

A, -+ F(p+ 1) 1 -exp(-r) i }- -+ 0. (42)

However, for y >> 1 the diffusive approximation of Eq.(25) should be replaced by the

fully depleted tail approximation of Eq.(23) (which gives the same y independent result

since it roughly replaces fo by a truncated Maxwellian which vanishes for x > r). For a

moderately (y - 1) or significantly (yp - 1) depleted tail and p >> r > 1 the cancellation

is less complete and the full expression (41) must be employed to evaluate the y

dependent, typically order unity reductions in Ap/ F(p +1). The lower order moments

are not significantly changed in either case so that A, z f(p+ 1) provided r > 1 - p,

with the approximation being better for smaller y. When the step function

approximation to * is used, Kv and Lv can be explicitly evaluated from Eq.(37) and

shown to be of order y.
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The flux limiting factors F, K, and L as well as n/A and p/IT, have been

evaluated using Mathematica 9 , which was also used to check the insensitivity of the

results to the width parameter w. The results are shown in Figs. 1 for the step function

approximation to the excitation cross section and $ as given in Eqs.(34) and (35).

Figures 1 (a)-(e) are plots of F, K, L, n/-q, and p/qT, respectively, versus y for r = 2,

while Fig. 1 (f) shows F vs. y for r = 1. For y = 0.2 (yp - 1) the figures show more than

a 50% reduction in the flux limit factors with only about a 5% in n/il and p/nT. The

largest fluxiritin is for the parallel eat flux factor F (p - 5-6) and the cross flux

factor K (p - 4-5) and the smallest for the parallel current factor L (p = 3). Decreasing r

from 2 to 1 results in stronger flux limiting as can be seen by comparing Figs. 1 (a) and

(f) and as would be expected from the form of Ap.

V. Discussion

To estimate a typical y for tokamak edge plasma conditions we note from

Eq.(30) that y = rvx/Ve where rT = Er is the energy threshold of the excitation cross

section below which no significant radiation occurs. Defining Ex =lm v2 (which is

approximately equal to Er unless metastable states are important), using t nA = 10, and

writing Er and Ex in eV gives

Y 2L - 4 x 105( EE . (43a)
V. l0o6M2 n )

Typically ax ~<5x10-16 cm2 , Nx/ne ~<0.1, and Er Ex ~< 25 eV, so that y ~< 10-2 and for

p - 5, yp ~< 0.05. As a result, tail depletion due to excitation losses is expected to be a

weak effect, which cannot be responsible for strong flux limiting in tokamak edge

plasmas. Because the step function approximation to the excitation cross section is

extremely good for w 5 1, only the Ex/T << 1 assumption is needed to justify the

diffusive approximation to inelastic scattering. We could be mis-estimating the size of
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line radiation losses by using the diffusive approximation. For the tail electrons E, > T

(recall Ex ~ Er = rT > T) the diffusive model overestimates y by E./T as can be seen

by considering the fully depleted model of Eq. (23). The fully depleted model, which is

valid when Ex/T > 1 and overestimates losses by neglecting the re-supply term from

higher energies, gives a y that is (2ve/vx)2 =2T/Ex times smaller than the diffusive

model. As a result, a more realistic estimate for the effective y is

y - 4 x 10~N 2E,E.T . (43b)
10e cm2 nJ E.+2T)

Since yef ~C y so our conclusion remains that tail depletion due to inelastic scattering

caused by electron impact excitation energy loss is weak and cannot lead to substantial

flux limiting in tokamak plasmas.

Partially ionized plasmas, such as those of interest for plasma processing, can

have Nx/ne <z 102 (so that electron-neutral collisions can still be neglected). In addition,

metastable states can be excited which decay to vibrationally excited states1O (for

example, molecular hydrogen or nitrogen). Cross sections and thresholds of ax - 10-15

cm2 and Er - 5 eV can occur that result in a net electron energy loss of Ex - 1 eV. For

these partially ionized plasmas y - 0.2 are possible so that 50% or more reductions in

the parallel heat flux are possible.
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Figure Caption

Figures 1 (a)-(e) we plots of the flux limiting factors F, K, and L, as well as the density

and pressure ratios, n/ri and p/TIT, respectively, versus y for r=2. Figure 1 (f) is a plot

of F vs. y for r =2.
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