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Abstract

A theory is presented of a new heat propagation mechanism, thermal hydraulic quench-

back (THQB), in large scale superconducting magnets. The underlying physics of THQB

is discussed and an analytic solution for the quench propagation velocity is presented. This

solution represents the first such result for THQB, and is shown to be in excellent agree-

ment with the full numerical simulations of the governing mass, momentum, and energy

conservation equations for the compressible flow of the coolant in the conduit. The THQB

propagation velocity is observed to be as much as an order of magnitude greater than the

helium coolant velocity. This is in direct contrast to a standard quench where the two

velocities are always essentially equal.
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1. Introduction

An analytic theory is presented of a new heat propagation mechanism, thermal hy-

draulic quenchback (THQB), observed in recent superconducting magnet quench experi-

ments [1]. The phenomenon occurs after the initiation of a "standard" quench wherein

the application of a localized heat pulse causes a small zone of the superconductor to go

normal and then expand in width along the length of the cable. In certain circumstances

a nearly explosive growth (by a factor on the order of 10) of the quench expansion velocity

is suddenly observed at some point during the standard quench propagation. This highly

enhanced propagation is known as thermal hydraulic quenchback.

The analysis presented here applies to the class of superconducting magnets con-

structed with Cable-in-Conduit Conductors (CICC), where THQB has been observed. A

CICC consist of a superconducting cable surrounded by supercritical helium [2]. The he-

lium is used to cool the superconductor during steady state operation. The system of

helium and cable is surrounded by a conduit generally made of stainless steel. Figure 1

shows a schematic diagram of the cross section of a CICC; typically the conduit has an

overall diameter of the order of a few centimeters, while the conductor has a length of

several hundred meters. The superconducting cable itself consists of a large number of

strands (20-500) that enhance the heat transfer between the cable and the helium. These

strands are made of a superconducting alloy embedded in a copper matrix. The alloy re-

mains in its superconducting state when its temperature T lies below a critical value T,,.

Above Tc8, the alloy has a very high electrical resistivity. The copper matrix is used to

carry the current in the event that the temperature in a section of the cable is accidentally

raised above T,,. In such a situation the current flows preferentially through the copper

matrix which acts as a parallel resistor to the high resistivity, "quenched" section of the

superconducting alloy. This minimizes the Joule heating that would otherwise be present

in the superconducting alloy alone. Even so, because of the high current density flowing

in the cable, it often takes only a few seconds for the quenched section of the cable to rise

from its cryogenic temperature T a 5 K and pressure p - 5 atm to values of T - 250 K

and p - 25 atm. Past this point, irreversible damage to the magnet can occur. It is for
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this reason that understanding the process of quench propagation is of great importance

in the construction of superconducting magnets.

The process of quench in CICC is discussed in [2]-[6], and in [3,7] it has been shown

that the helium in the conduit is the main component that governs the propagation.

In a standard quench, the most common case, propagation is due to the convection of

helium in the conduit. Reference [7] presents analytic results for this type of quench

propagation, including an expression for the velocity of the quench front. In this paper, we

discuss a different quench propagation mechanism due to the compression of helium in the

conduit. This compression, which is driven by the standard quench, can cause the helium

temperature to go above T = T,, in regions where the helium is nearly stagnant. As is

shown, when this occurs the quench velocity is highly enhanced (i.e. the front velocity is

much greater than the helium velocity) corresponding to THQB.

THQB has been observed in both numerical simulations [8,9] and experiments [1].

Here, we present an explanation of the underlying physics of the process and derive an

analytic expression for the velocity of the THQB normal front. The theory is shown to be

in excellent agreement with new, more complete numerical simulations. It is in qualitative

agreement with the experiments but there is insufficient data available as of now to make

detailed comparisons.

2. The Governing Model

Consider the flow of supercritical helium in the conduit shown in Fig. 1. The radial

length scale of the CICC has dimensions of ~ 0.1 m, while the length of the CICC is of the

order of ~ 100 m. Therefore, use of one dimensional equations along the axial direction (x)

of the CICC is well justified. For simplicity of presentation the conduit wall is assumed to

be surrounded by a perfect insulator implying that n - VT = 0 on the conduit-insulator

interface. Furthermore, the conduit wall is assumed to be negligibly thin (these assumption

have no essential bearing on any of the results presented in the paper).

Due to the large heat transfer coefficient between the cable and the helium, the tem-

peratures of these components are nearly the same. Thus, it is possible to write a hybrid
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energy equation for the combined helium plus conductor system. With this in mind, the

governing equations for the flow consist of mass and momentum conservation equations for

the helium coolant, and the hybrid energy conservation equation for the helium/conductor.

These equations are given by [6]

&p a
+ -5--(pv) = 0 (1)

ap _f pvlv|-O = -fVV (2)
ax 2dh

aT aT av fplvlv2  (
pCt -- + pCoVV5 + pC#T-x= S I(T-- T.s)+ 2h(3)at x ±PITx 2d4

p = p(p, T) (4)

where in Eq. (2) f ~ 0.08 is the friction factor, assumed to be a constant, and dh is

the hydraulic diameter. Also, helium inertia is neglected in this equation, since we are

considering a low Mach number flow.

In Eq. (3) the second and third terms on the left-hand side represent convection and

compressibility, respectively. The last term on the right-hand side represents the viscous

heating. The specific heat of helium at constant volume is denoted by Cv(p, T), and

the compressibility coefficient C,8(p, T) = (1/p)ap(p, T)/T. Also observe that thermal

conduction in the axial direction has been neglected in Eq. (3) since for the class of problems

under consideration its effect is small compared to convection. The quantity C is the

combined heat capacity of the helium and conductor, given by

Ct = C f+ Ac p'C (5)Ah p

where A, and Ah denote the cross-sectional area of the conductor and the helium, respec-

tively. Here, pc is the conductor density, and Cc(T) is the heat capacity of the conductor

which is a strong function of temperature. Note that for T ~> 20 K, the contribution of
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the specific heat of the solid components becomes substantial and dominates Ct, while for

T < 20 K the helium contribution to Ct is the dominant term.

The heat source appearing in the energy equation is due to the Joule heating in the

copper. This heating takes place in regions where the superconductor is in the "normal"

(resistive) state, and is given by

S = (AcU j2 (6)

where Acu denotes the cross-sectional area of the copper. The quantity r(T) is the re-

sistivity of the copper, a strong function of the temperature in the range T > 20 K. In

the temperature range T 6 20 K, however, 7 may be assumed to be a constant. Also,

J is the current density in the copper, assumed to be constant. In Eq. (3), H(T - T,,)

is a Heaviside-like function, and Tc, is the so called "current-sharing" temperature, above

which the superconductor begins to share its current with the copper matrix. The func-

tional dependence of R is shown in Fig. 2. In the figure Tcr is the "critical" temperature

at which point all of the current is carried in the copper matrix. The current sharing and

the critical temperatures are function of the magnetic field B. In the paper we assume

that B is uniform and constant.

In [6] it has been shown that Eqs. (1)-(4) accurately describe quench propagation in

CICC. In [7], several additional, well justified approximations are made, leading to a full

analytic solution in the regime where the convection of helium is the dominant mechanism

governing the propagation of heat (quench). In the next section we analyze a different

quench propagation mechanism (THQB) which is due to the compression of the helium

ahead of the initial quench zone. The propagation velocity in this case is shown to be

greatly enhanced.
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3. Qualitative Explanation of THQB

During a standard quench, the front propagates away from the initial normal zone

with a velocity V, - 1 - 10 m/s. Behind the front, the helium temperature rises quickly,

well above the value Tc,, because of the Joule heating. Ahead of the front, there is no

Joule heating and the helium remains essentially at its initial temperature To < T,,. Just

ahead of the quench front, however, there is a slight increase in the temperature because

of the compression of the helium against the frictional drag force. A remarkable feature

of the standard quench is that the temperature both behind and ahead of the front are

independent of the values of T,, and Tc,. This situation persists until the temperature

of the compressed helium just ahead of the front finally reaches the value T,,. The Joule

heating is then "switched on" ahead, as well as behind the front and it is this sudden

increase in heating power that causes the near explosive growth in the quench propagation

velocity known as THQB.

The physical picture just described suggests the following analytic approach to under-

standing THQB. Consider a CICC undergoing a standard quench event and assume that

the temperature just ahead of the quench has reached the value T,.. This causes the initia-

tion of a second quench front (i.e. the THQB front) because of the additional Joule heating.

By fixing our position on the THQB front and analyzing the behavior of the helium ahead

of this front it is possible to calculate the THQB propagation velocity. The calculation

is made analytically tractable by utilizing two approximations. First, since THQB is fast

compared to a standard quench, we can ignore the further evolution of the standard event.

Second, since the current sharing and critical temperatures are often relatively close in

value to the initial pre-quench temperature [i.e. (T., - To)/To < (Ta,: - To)/To <5 1], the

behavior in the THQB region can be obtained by a perturbation analysis. The details of

the analysis are described below.
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4. Analysis

Consider the helium coolant in a CICC of length L located between 0 < x < L to

be initially (t = 0) stagnant, with a uniform temperature To and density po. At t = 0

a localized external heat perturbation Sext of sufficient magnitude is applied, causing the

temperature at x = L/2 to rise above T = Tc8, thereby initiating Joule heating. For t > 0

the quench is at first propagated by convection of the helium. At a certain time ter, the

compression of the helium just ahead of the front where S = 0, is sufficient to raise the

temperature above T = T,. From this time forward the THQB propagation is governed

by compression of helium ahead of the initial front.

The time tr has been derived in Reference [8] and is given by

tcr = 8.4 2dhvSo [Acu PcC] (6Co T., T To )
( f )IAh RLqS. (CO T

where v, 0 is the speed of sound in helium, Lq is the initial normal length of the standard

quench, R is the gas constant, and pc, Cc are the density and specific heat of the conductor.

Note that for a give quantity Q(p, T), Qo = Q(po, To). Observe that ter is a strong function

of (Tc, - To). A related expression has been previously derived by Dresner [10]. His result

applies to the regime where the heat capacity behind the front is dominated by the helium

whereas in our case, the conductor dominates. This apparently simple difference leads to

a significantly different scaling.

To motivate the analysis that follows consider the nonlinear, time dependent numerical

solution of a typical THQB event. In Figs. 3a-d we plot the helium temperature, density,

velocity, and pressure profiles at various times during a 2 second THQB in an ITER-

like CICC with L = 500 m. These figures represent the numerical solution of Eqs. (1)-(4)

obtained using the procedure described in [6]. The parameters of interest are d4 = 5 x 10-4

m and f = 0.08. The helium is initially stagnant (v = 0) with a temperature T = To = 5

K and a density p = po = 129 kg/M 3 . At t = 0 an external heat source of a short duration

(- 0.1 s) is deposited over a 2 m length at x = L/2, in order to initiate the quench. The

values of the transition temperatures are given by T, = 5.1 K, T, = 5.5 K, while the
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current density in the copper is J = 108 A/M 2 . Also, A, = 6.1 x 10-4 M2 , A,. = 3.9 x 10-4

m 2 , and Ah = 4.5 x 10-4 M 2 . Observe how the THQB front rapidly separates from the

initial standard quench front in the vicinity of x = L/2 as shown in Figs. 3a and 3b.

During THQB the boundary layer at the location of the standard front is nearly stagnant.

In Fig. 4a we present the time evolution of the length of the normal zone 2 Xq. After the

onset of THQB, at t = tr, the normal front velocity quickly approaches a constant value

given by ±q = Vq ~ 100 m/s. This value of V is approximately an order of magnitude

larger than the maximum helium velocity in the conduit (see Fig. 3c), while it is a factor

of two smaller than the speed of sound in the helium. Also note that the value of tr in

this case is very short (i.e. tcr ~ 0.01 s) and consequently the sharp transition between

the standard quench and THQB is barely visible in Fig. 4a. In order to demonstrate this

transition, we plot in Fig. 4b the time evolution of 2Xq for the case T,, = 6 K and Tcr = 6.4

K. In this scenario tcr ~ 0.4 s, V ~ 45 m/s, and V, ~ 4 m/s.

We now turn to the analysis. Due to the symmetry of the problem only the region

x > L/2 needs to be treated. We define a new coordinate system moving with the THQB

front: z = (x - L/2) - Vqt, where V =const is the velocity of the THQB normal front and

is at this point unknown. Note that by construction, z = 0 is the location of the normal

front. That is, T(z = 0) = T,,. In this coordinate system Eqs. (1)-(4) can be written as

Op Op Ov-+(V-Vq)-+P-=0 (7)

ap fpvlv| (8)
tz 2dh

pCt- + P (C,V - CtV) -+ pC#T - = S fl(-z) + L-(9)
8t'9Z o 2dh

For THQB, in general V > v, and the quench front is propagating into the region where

the helium is nearly stagnant. Since (T,, -To)/To < 1, the helium temperature in this region

is nearly the same as that of the background To. Similarly the density is approximately

po. Therefore, for z ~>0 the following expansion is introduced to simplify Eqs. (7)-(9);
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T = To + T(z, t)

p = po + Pi(z,t) (10b)

v = vi(z,t) (10c)

where for a given quantity Q we have Q1/Qo ~ e. Here, e = (T,, - To)/To < 1. Also, we

simplify the functional dependence of H(T - T,,) by replacing it with an exact Heaviside

function H(T - T,,). In many practical cases (Tcr - Tc,)/(Tc, - To) < 1, justifying the

approximation. The effect of finite (TCr - T,)/Tc - To) is discussed in the next section.

Before proceeding, note that the zeroth order velocity component has been assumed

to be zero. This is valid for sufficiently "long coils" in which at the start of THQB the

helium ahead of the front is unaffected by the ends and thus is nearly stagnant. The

specific criteria for this to be valid is given by L2 > 24dhVotcr /fVq.(tcr), where V, is the

standard quench propagation velocity for t < t,, given by the analytic results of [7]. Note

that Vq,(tcr) is generally much less than the value of V once THQB has been initiated

(see Fig. 4b). To leading order Eqs. (7)-(9) can now be rewritten as

Pi- V9P + P = 0 (11)

aT, q 8 +Oy=fO 2

poCo80 a + TOC= -dh V (12)

p (C9o - poCvooVq j- + poCpoToy5 = S H(-z) (13)

where Ca = (1/T)8p(p, T)/&p, and for a given quantity Q, Qo = Q(po, To). Observe that

we have replaced Ct by the helium specific heat C, in Eq. (13). In the region ahead of the

front (z ~0), T ~~ To and since typically To < 20 K the helium contribution dominates Ct.

Despite the expansion used, Eqs.(11)-(13) are still non-linear because of the friction force;

that is, the hydraulic diameter is sufficiently small so that friction dominates inertia. For
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mathematical consistency we thus assume dhS/fpoV 3 
-'

2 , and (v./V) ~ e. Note that

the frictional heating is a second order term and therefore does not appear in the energy

equation.

To proceed we look for the steady state solution of Eqs. (11)-(13) given by

-V d p1 + po =j 0
dz dz

pCAO dT1 + T fOOCao = - Vi
dz Cdz 2-d 2

dT dv1
-VqPOCvo dz + OCoOT dvz

These equations can be cast into a more useful form

as follows:

(14)

(15)

(16)= S H(-z)

by introducing normalized variables

(17)

U = V/V q (18)

where the scale length t is defined as

(19)2dh V3 0f 2

and vi = To(Cao + C20/Co) is the square of the sound speed. A simple calculation

transforms Eqs. (14)-(16) into a single equation for u and two subsidiary relations giving

T1 and p1 in terms of u.

du + u2 = a 2 H(-g)
d

d p1 _ du

l po ) dg

d (TI) Co [du 2 CPO

CPO - C,0

(20)

(21)

(22)
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Here, Cpo = Co + C2 0/Co = To(a$0 /T 0 ), is the specific heat at constant pressure and

a2 is defined as

a 2 _CRO S (23)
~ Co (f/2dh)poV 3 (

The parameter a 2 = q2 (Vq) is a nonlinear eigenvalue, which when evaluated determines

the THQB propagation velocity V.

Equations (20)-(22) must be solved subject to the following boundary conditions

[v1, pI, T1]Lz=L-vt- -- + 0 (24)

[1,P1,T1]z=-vt-- -p standard quench solution. (25)

The eigenvalue condition determining a2 requires that

TI = T. - To = AT (26)

Equation (24) implies that all perturbed quantities vanish far ahead of the THQB front.

Equation (25) requires that the perturbed quantities match onto the standard quench

solution far behind the THQB front. Equation (26) forces the temperature at the THQB

front to equal the current sharing temperature, thereby defining the location of the THQB

front.

The solution is obtained as follows. Ahead of the front (i.e. > 0), H(- ) = 0. The

resulting equations can easily be solved yielding

U= (27)

P1 (28)

T, _coo 1 (29)
To Coo + 6
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Observe that the solutions satisfy the boundary conditions for -* oo. The parameter o

is an integration constant which is evaluated using the eigenvalue condition

1 C,0 AT (30)
6 C,6o TO

Behind the front (i.e. < 0) H(- ) = 1. Here too the solution can be easily obtained

u = a tanh(a + 1) (31)

-= a tanh(a6 + 61) (32)
P0

To= $ [a tanh(a6+ 1) - a2 C 0  (33)
T0  C, 0  C, Op - Cu0 J

where 1 is an integration constant. In order for u, pi, and T to remain continuous across

= 0 we require

a tanh 1= (34)

The parameter 61 is in principle determined by matching Eqs. (31)-(33) to the stan-

dard quench solution far behind the THQB front (i.e. at z - -Vt). This is a difficult

and subtle issue. The difficulties are two fold. First, at the standard quench front the

temperature quickly rises well above the background value To implying that the assump-

tion T < To is no longer valid. Second, and more important, in the frame of the THQB

front, the location of the standard quench front is rapidly receding away: z(standard

front)~ -Vt. This moving boundary raises the question of whether or not it makes any

sense to even consider a steady state solution.

The subtlety is that, while both of the above concerns are valid, they do not affect

the determination of the THQB velocity. The reasoning is as follows: although we cannot

explicitly determine 61, the value required to match to the standard quench solution can

be shown to satisfy 61'> 1. This can be seen computationally in Fig. 5, obtained from
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a full nonlinear numerical solution of the THQB model. Illustrated here are profiles of

v versus z in the THQB frame for different times. Observe that the solution ahead and

slightly behind the THQB front are invariant (i.e. reach steady state), although they vary

significantly near the standard quench front. To the extent that this assumption (1 > 1)

is correct, then Eq. (34) reduces to

&F~ - (35)

thereby determining the THQB propagation velocity. Note that under our assumption

AT/To = e < 1, Eq. (30) implies that a oc AT/To < 1.

The condition 1 > 1 can be analytically deduced from Eq. (33). We expect matching

to occur when the hyperbolic tangent term in Eq. (33) exhibits a significant change in its

value; that is, when , - ald,J where , represents the characteristic distance to the

standard quench front. As stated, the temperature at , rises significantly above To once

THQB is well established. A simple bound on , is thus obtained from Eq. (33) by

balancing the second term on the right hand side (the increasing term) with the left hand

side, setting Ti ~ To. The result is

-a2 (36)

which implies that 1 ~ 1 /a > 1.

Under the condition 1 > 1, the profiles just behind the THQB front (( < 0) simplify

to

u ~ a (37)

P ~ a (38)
P0

~ 60 a a2 CPO (39)
To CO CPo -Cvo G
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The THQB propagation velocity follows from Eqs. (35) and (30) and in un-normalized

units is given by

Coo (2dhS 1/3 (4 T0)
V - )/ (40)

C"O fpo AT

This is the desired result. As expected, V increases with smaller temperature margin AT,

or larger heating source S = (A,. /Ah)7oJ 2 . Conversely, larger friction (f/dh) results in

smaller V since the compression term is proportional to v, and larger friction results in

smaller helium velocities. Also note that V does not equal the speed of sound vo, nor is it

bounded by vO as would be expected on physical grounds. Thus, infinite front-velocities

are allowed, for example, in the case where AT -+ 0. This breakdown of the model results

from the neglect of the inertial term and is discussed in Section 6.

Equation (40) is valid in the limit AT/To < 1. In practice, this parameter can

sometimes be as large as 0.5. Thus, while Eq. (40) remains qualitatively correct for larger

AT/To, its quantitative value becomes progressively less accurate. It would be clearly

useful to have a more accurate value for comparison with experiments and numerical

simulations. In this regard the previous analysis can be re-derived for the full nonlinear

equations including convection and frictional heating. The analysis is slightly tedious, but

if one assumes that AT/To is small, the first order correction to Eq. (40) can be calculated

analytically. The result is

V E 0  2dhS) 1/3 -- - 2/3 ( A (41)
q Co k fpo AT TO

where
C ____C __ e9]n(Cro/Cfpo)l

K=2+ + -2 (42)
C,,o Cpo-Co ' 8 nTo

Note that the derivative in Eq. (42) is carried out at fixed entropy S.

A final point of interest is to compare the THQB propagation velocity V to that of

the standard quench velocity Vq,. A short calculation using the results of Reference [7]

yields
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Vq,_ LS2/ 5 T2/ 2/3V, ;Z LS2/3 0T (43)
Vq s LqSI AT,

where Lq is the length of the initial (standard) quench zone and LoS 2/3 is a parameter

given by

LOS 2/3 = 2.5 (C)5/ 2 (RT )1/2 pe c 3/2 1/3 (44)

Here, R is the gas constant, p, and C, are the density and specific heat of the conductor,

and Tm is the maximum allowable temperature of the strongly heated zone behind the

standard quench front. The quantity Tm appears because V, oc t-1 /5 , and t has been

chosen as t ~ tm ~ (Acu/Ah)PcCcTm/S, the time required for the hot zone to reach its

maximum allowable temperature.

THQB is observed experimentally and computationally when the parameters are such

that Vq/V, > 1. However, from Eq. (43) it is apparent that this inequality need not

automatically be satisfied. In fact, for sufficiently large LqS 2 /3 , Vq/Vq, ~<1 implying that

THQB cannot be initiated. The explanation is that as Lq and S increase, the propagation

velocity of the standard quench increases faster than that of THQB. Eventually Vq., exceeds

V and the THQB front cannot break away.

Interestingly, there is also a lower limit on LqS2/3 for the observance of THQB. For

sufficiently small Lq S2/3 the compressional heating is so small that the temperature be-

hind the standard quench front reaches its maximum allowable value Tm before the onset

of THQB. Consequently THQB can only be observed when t,, < t. An alternate inter-

pretation is that in a sufficiently long coil THQB will always be excited if one waits long

enough for T(z = 0+) to compressionally heat to Te8, provided that at this time T behind

the front has not yet reached T,; larger tm makes it easier to observe THQB.

The two conditions just described define the approximate range of Lq S2/3 for the

appearance of THQB and can be expressed as

AT 6/(T 0 \ 2/3
K1 AT ) < LqS 2 13 < K2 ( (45)
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/5 /3 / V2/

K 1 = 2.6 CO (\ ) (/3 ( AC. PcCc 2/3 (dpv 1/3
Ah poRf#o) RT. Ah o f

K 2 = 2 .5(Co)6(52 RT 1/2 (Acu PcCC 3 / 2 1d2p l/ 3

S 2O Ah poR Kf)

To summarize, we have calculated the velocity of propagation of THQB [Eq. (41)] and

the conditions under which it occurs [Eq. (45)]. In addition two approximations have been

used which define the region of validity of the analysis. First, we have assumed AT/To < 1

in order to carry out the perturbation analysis. Second, we have assumed that L > Vqtm

to insure that the coil is sufficiently long so as to be unaffected by end effects.

5. Effect of Finite Tr - Tc

The derivation of the THQB propagation velocity assumes that (Tc. - To)/To < 1

and (Tr - To)/(Tc8 - To) -- 0. The first condition is often well satisfied experimentally.

The second condition is more problematic, but has been used anyway for mathematical

simplicity. In this section we extend the previous analysis to include finite (Tcr -To)/(T1, -

To).

The analysis ahead of the surface T = T,, and behind the surface T = Tcr are the

same as in Section 4 since the equations remain unchanged in these regimes. What we

require now is a solution in the intermediate region Tc, < T < T,,. By properly matching

at both ends we obtain a more general expression for Vq.

In the intermediate region one can easily derive a differential equation relating v to

T assuming the transition source function H(T - T,,) is linear in T, as shown in Fig. 2.

This equation is given by

dw AT* [ W/2 _ 021(-- = T (46)dO AT [W2 + (C - 1)020
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where, the new normalized quantities are defined as w = ou, 0 = (T - AT)/AT*,

0 = ao, AT* = Tc, - T,, and c = Co/(Co - Co). The normalizations have been

chosen so that 0 < 5 1 and at 0 = 0, w(O) = 1. The eigenvalue condition determining

# requires that at $ = 1, w(1) = 3.

Equation (46) has been solved numerically for given values of AT*/AT and c to obtain

/. The result, in un-normalized units is an expression for V of the form

C= 0  2dhS) 1/3 (T 2/3 (AT*,
Vq = I( ) F cJ (47)

Cvo fpo AT AT'

The function F is plotted in Fig. 6 as a set of universal curves. Observe that the basic

scaling dependences of V remain unchanged, but that there are important quantitative

changes in its magnitude as AT*/AT varies. These corrections are necessary when com-

paring with either experimental or numerical simulations in which AT* /AT is often finite.

Equation (47) can be easily modified to approximately include the additional finite

AT/To corrections as follows:

= C,o 2dhS 1  T 2/3 (1+K AT) (AT"
Co fp0 ) AT To AT C)

Equation (48) is used later to compare with the numerical results.

The combined effects of the finite AT and AT* corrections are illustrated in Fig. 7

where we have plotted V vs. AT for various AT* corresponding to the ITER-like coil.

Observe that for small AT the AT*/AT corrections are important, but the KAT/To

corrections are by definition negligible. Conversely, for larger AT, the KAT/To corrections

become important, but as seen by the convergence of the curves, the AT*/AT corrections

become unimportant. Consequently, for any given set of parameters, one or the other

correction may be dominant, but not both simultaneously.
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6. Inertial Effects

As has been previously noted, the value of V -+ oo as S -+ oo or AT -+ 0.

Realistically, we expect some change in the physics to occur when V ; vo8 , preventing V

from increasing without bound. In this section we include inertial effects and show that

for physical solutions to exist V < vo.

Within the context of the perturbation analysis, the effect of inertia modifies the

steady state momentum equation [Eq. (15)] as follows:

dv '3 dT1 +p T fPo 2 (9
poVq + poCo + ToCo - (49)

dz az dz Th

The first term is the inertial correction. The equivalent normalized equations [Eqs. (20)-

(22)] now have the form

1- +U2=a2H(- ) (50)( 30 sO, (0

d (p1' du (51)

d (T 1 )_ Co [du C2 C
- -- = --0  - - O H -- (52)

The only modification from the original equations is the (1 -V /v%) coefficient in Eq. (50).

Following the analysis in Section 4 we again calculate the eigenvalue a 2 . Remarkably,

in the simple limit AT* -> 0, the value of a 2 is unchanged from the case where inertia is

neglected: a = (Cvo/Cpo)(AT/To). However, the functional dependence of u ahead of the

THQB front is modified as follows

1 - V2 /V20
U= +Vq/a(53)

Observe that when V 2 < V.0 the solutions are well behaved. For q> v 0 , the denominator

vanishes for q= ( so/v% - 1) o > 0 indicating non-physical behavior.
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The conclusion is that the value of V given by Eq. (40) is correct and independent of

inertia as long as V12 < v, 0 (i.e. when S/AT2 is sufficiently small). If S/AT 2 is increased

above the value that gives V = v8 o, a shock-like solution develops. The velocity, temper-

ature and density develop jumps across the THQB front which is thereafter constrained

to move at v,0. This regime is generally not the normal operating regime of most CICC

magnets.

7. Discussion

Consider the conductor discussed in relation to Figs. 3 and 4. For this conductor we

compare the analytic results with the numerical solution of Eqs. (1)-(4). Recall that for

this case AT* = 0.4 K, To = 5 K, po = 129 kg/m 3 , Co = 2522 J/kg-K, Cgo = 3344

J/kg-K, dh = 5 x 104 m, f = 0.08, S = 6.8 x 106 W/m 3 , c = 2.1, and K = 2.18. In

Fig. 8 we plot V1 as a function of AT. The analytic solution, given by Eq. (48), is in good

agreement with the numerical results. Note that, approximately 10 hours of CPU time was

required on an Alpha station (DEC 3000/600) to obtain the computational data presented

in Fig. 8. This relatively large computational cost is a result of needing to resolve two

moving boundary layers at the location of the THQB and standard quench fronts (see

Fig. 3). Relative to the length of the channel, the layer-width at the THQB front is - 1 %

(see Fig. 5).

In Fig. 9 we plot V versus I for the case AT = 0.1 K and AT* = 0.4 K. Here, I is

the conductor current given by I = A,,J. Again, we observe good agreement between the

numerical and analytic results.

Due to preliminary nature of experiments, we cannot compare the THQB theory

developed here with any detailed experimental data. A challenging future step to further

investigate THQB is to perform careful experiments where V1 is measured and compared

to the results of the paper. An important factor in performing such a task is to keep in

mind that the results obtained here apply to "long coils" where compressional heating is

the dominant factor governing THQB (this is the main case of interest corresponding to

large scale superconducting magnets with L 2 > 24dhV,0tc/f4,,). In short coils (L 2 <
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24dhV,0tcr/fV,), the frictional heating governs both the initiation and the propagation

of THQB [8], and the propagation velocity is equal to the sound speed in helium. To

estimate the transition value of L2 /dh from a short to a long coil, consider typical values

of vO P 200 m/s, V, ; 1 m/s, f ; 0.08, and tr ~ 1 s, which results in L 2 /dh p 10 7 m.

In a long coil experiment, L2/dh must be greater than this transition value.

In conclusion, we have presented an analytic theory for the process of THQB in

large scale superconducting magnets made of CICC. The analytic solution for the quench

propagation velocity is in good agreement with numerical results, where various scaling

relations have been compared. Also, V is shown to be governed by the temperature margin

AT, Joule heating rjoJ 2 , and friction d/f. In general, V is observed to be much greater

than the helium velocity, while its value is substantially below the sound speed. Future

experiments are required to further verify the results presented in the paper.
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Figure 1: Schematic of the cross section of a CICC.
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Figure 3a: Conductor/helium temperature profile at various times during THQB.
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Figure 3b: Helium density profile at various times during THQB.
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Figure 3c: Helium velocity profile at various times during THQB.
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Figure 3d: Helium pressure profile at various times during THQB.
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Figure 4a: Time evolution of normal length during a THQB with AT = 0.1 K.
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Figure 4b: Time evolution of normal length during a THQB with A T = 1 K.
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Figure 6: Functional dependence of F appearing in Eq. (47).
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Figure 7: Propagation velocity V versus AT for different values of AT*.
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Figure 8: Comparison of analytic and numerical results for V versus AT. Here, AT* = 0.4
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