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Detailed measurements and transport analysis of divertor conditions in

Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are presented for a range of

line-averaged densities, 0.7 < fie < 2.2 x 1020 M- 3 . Three parallel heat

transport regimes are evident in the scrape-off layer: sheath-limited

conduction, high-recycling divertor and detached divertor, which can

coexist in the same discharge. Local cross-field pressure gradients are found

to scale simply with local electron temperature. This scaling is consistent

with classical electron parallel conduction being balanced by anomalous

cross-field transport (XI - 0.1 m2 s-1) proportional to the local pressure

gradient. 60 to 80% of divertor power is radiated in attached discharges,

approaching 100% in detached discharges. Detachment occurs when the heat

flux to the plate is low and the plasma pressure is high (Te - 5 eV). High

neutral pressures in the divertor are nearly always present (1 - 20 mTorr),

sufficient to remove parallel momentum via ion-neutral collisions.
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1. Introduction

The design of a successful divertor for a fusion reactor such as ITER

requires the ability to accurately predict and control the plasma conditions

there. Yet, owing to the turbulent particle and heat transport in the boundary

layer, it is not possible to compute from first principles the profile of heat

and particle fluxes, for example, to the divertor surfaces. Experiments in

existing tokamaks are therefore critically needed to shed light on the

transport processes active in the divertor, the scaling of divertor conditions

with core plasma conditions and the dependence of divertor conditions on

other controllable parameters such as divertor geometry, impurity

concentrations, and neutral gas pressures. It is further hoped that the

compilation of such an empirical database will elucidate the dominant

transport processes active in the divertor/edge plasma and enable more

robust physics-based scaling models to be developed.

Alcator C-Mod' is in a unique position to explore divertor and edge

physics phenomena with an unprecedented combination of control

parameters: high magnetic field (B > 5 tesla), high SOL power density,

(q//sol > 200 MW m-2 , currently with ohmic heating alone), high divertor

plasma density (n div > 5 x 1020 m -3), shaped divertor geometry, and a metal

(Mo) divertor and first-wall. An extensive array of diagnostics has been

assembled for divertor studies. 2 This paper reports the first results of a

series of experiments aimed at characterizing the parallel and perpendicular

heat transport mechanisms and their scalings in the divertor and scrape-off

layer (SOL). The focus of the present study is on single-null, ohmically

heated, diverted discharges, with core plasma density (fie) as the principal

control parameter.

Section II describes the divertor geometry and arrangement of

diagnostics. Measurements of SOL and divertor plasma profiles are

presented in Sec. III. In section IV, heat transport in the divertor and scrape-
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off layer is discussed with the help of a simplified transport model. Section

V briefly describes SOL and divertor conditions leading to plasma

detachment.

I. Experimental Arrangement

The geometry of the divertor and the arrangement of key divertor

diagnostics for these studies is shown in Fig. 1. Detailed information on

Alcator C-Mod's design, diagnostics, and operational characteristics can be

found elsewhere.I Molybdenum probes are mounted on both the inner and

outer divertor plates at 16 poloidal locations. The probes extend 0.5 mm

beyond the surface of the divertor, presenting a domed surface to the plasma

flux. This geometry avoids problems associated with the interpretation of

probe characteristics at small oblique field line angles. 3 Data from the outer

divertor probe array was used for the present studies.

A fast-scanning Langmuir probe is used to record SOL plasma

profiles up to the last closed flux surface (LCFS) at a position 'upstream'

from the entrance to the divertor. The probe head consists of a 15 mm

diameter molybdenum body with four Langmuir probe elements. The probe

elements have directional sensitivity (along and across B) and maintain a

field line grazing angle of about 20 degrees. Densities and temperatures

along the probe's trajectory are obtained by fitting positive and negative-

going I-V characteristics generated by a 500 Hz voltage sweep.

Data from both the divertor probe array and the fast-scanning probe

are mapped onto magnetic flux surfaces reconstructed from magnetic

measurements 4 and the EFIT plasma equilibrium code.5 Flux surfaces in the

scrape-off layer are labeled by the coordinate, p, which is defined as the

distance in major radius from the last-closed flux surface at the outboard

mid-plane. A good match is obtained between the pressure profiles from the

two diagnostics by adjusting the scanning probe +1 mm in p (relative to

3
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EFIT mapping) and the divertor array -1 mm. This level of error is within

the expected accuracy of the EFIT reconstruction and the positioning

accuracy of the scanning probe.

Radiated power in the plasma core and divertor regions is monitored

by a system of 4 bolometer arrays. 6 Figure 1 shows the views of the outer

'ledge' bolometer array which is found to provide a good measurement of the

total radiation in the divertor and near the x-point.

Neutral gas pressures are monitored in the private flux region of the

divertor using a combination of fast-response in-situ ionization gauges

(shown behind the divertor in Fig.1) and a slower response shielded

ionization gauge at the bottom of a vertical port.7

The present experiments were conducted in ohmically heated, single -

null diverted deuterium plasmas with central conditions of BT = 5.3 tesla,

plasma current 0.7 < Ip < 0.8 MA, line-averaged density 0.7 < iie < 2.2 x

1020 m-3 , and vertical elongation of 1.6. The goal was to study the edge

plasma behavior in discharges with nearly identical plasma current, ohmic

input power, and magnetic equilibrium while varying the core density over a

factor of 3.

Figure 2 shows representative time traces of plasma current, line-

average density and divertor/edge probe signals during the steady-state

portion of a discharge. The scanning probe position (in flux surface

coordinate, p) and current collection traces show two insertion times: one

before a detached divertor plasma event occurring at 0.82 seconds and one

during detached divertor operation. The modulation in the current signal

from probe 6 (typical of all probes in the array) is in response to a 50 Hz

voltage bias waveform (positive signal indicates ion collection). Complete

plasma density and temperatures across the divertor surface are deduced at

roughly 10 msec intervals by fitting current-voltage characteristics using

4
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standard magnetized probe theory. The time evolution of density and

temperature on probe 6 is shown in the figure as an example.

III. SOL and Divertor Conditions

A. Cross-Field Temperature and Density Profiles

Typical cross-field profiles of density and electron temperature

deduced from a single insertion of the scanning probe are shown in Fig. 3.

Data from the four separate sensors on the probe head overlay reasonably

well for both insertion and retraction. One may note a systematic variation

between the densities deduced from the 'east' and 'west' probes, indicating a

plasma flow along the magnetic field and/or a toroidal rotation that varies

with the cross-field coordinate. However, discussions of these observations

are beyond the scope of the present paper.

In order to facilitate a comparison of density and temperature profiles

between different discharges, a smooth spline curve was fitted to data from

each probe scan, as is shown in Fig.3. This averaging process takes

advantage of the good statistics generated from four independent probe

sensors scanning in and out. The averaging process also minimizes the

impact of plasma flows on the local density estimate since the 'upstream' and

'downstream' unidirectional probes are effectively summed together to form

a single bi-directional probe.

Figure 4 displays fitted SOL profiles of density, temperature, and

electron pressure as the core plasma density is systematically varied. A

number of important observations are summarized by this figure: (1) All

profiles display a non-exponential dependence on flux surface coordinate, p,

i.e., the slope on a logarithmic plot varies substantially with p. For the case

of electron pressure, the local gradient scale length (e-folding length) can

vary by as much as a factor of - 4 going from 2-3 mm near the separatrix to

12 mm at a location of p ~ 15 mm. (2) All local gradient scale lengths appear
5
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to depend on the plasma density, having the smallest values at low density

and largest values at high density. (3) The density profile exhibits shorter

gradient scale lengths than the temperature profile near the separatrix and the

gradient there appears to be most strongly dependent on the central density.

B. Parallel Temperature and Density Gradients

Plasma conditions at the divertor plate surface can be directly

compared to those measured 'upstream' on the same flux surfaces by the

scanning probe. Figure 5 shows electron pressure and temperature profiles

from the two probe diagnostics for three values of central line-averaged

density. The electron pressure at the divertor plate is multiplied by a factor

of 2 to account for the sound-speed flow there.

Three regimes of parallel plasma transport to the divertor surface can-

clearly be identified that depend not only on the central density in these

discharges but also on the flux surface location:

1 -- Profiles at low density, t e < 1020 m-3 , exhibit an electron

temperature that is nearly constant along the magnetic field lines for p > 5

mm. Electron pressure is also constant along B and the divertor sheath

appears to support all of the temperature drop on these flux tubes. Electron

temperatures everywhere are the hottest in the low density regime.

2 -- Profiles at moderate density, 1.0 < 11e < 1.8 X 1020 m-3 , show a

'high recycling' divertor condition across the profile: the electron

temperature falls at the divertor plate relative to 'upstream' while the density

rises there so as to keep pressure approximately constant along B. A

temperature gradient arises along the field line presumably because parallel

electron thermal conduction is poorer at lower temperatures (K -T 5 2 ), while

the divertor sheath temperature can remain low since it conducts heat more

readily at the higher densities. The high recycling condition is seen in

6
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portions of the other profiles also: near the separatrix in the low density case

and at large values of p in the highest density case.

3 -- Profiles at high density, ie > 1.8 x 1020 m-3 , show a 'detached

divertor' condition over some portion of the profile. Both the divertor

electron temperature and the plasma density are very low in this regime,
clearly violating constant pressure along B.

C. Scaling of Parallel Gradients with lie

Figure 6 shows the evolution with iie of electron pressure,

temperature, and density. at the divertor surface and 'upstream' at the

scanning probe location for the p = 4 flux surface. The 'sheath-limited', 'high

recycling', and 'detached divertor' regimes are clearly evident as lie is varied.

Electron pressure maps fairly well between the two probe diagnostics up to

divertor detachment. The electron temperature at the divertor plate decreases

uniformly with increasing lie. Divertor detachment occurs when the electron

temperature at the divertor plate is at or below a level of ~ 5 eV. In the high-

recycling regime, the density at the divertor plate shows a nonlinear scaling

with core density, similar to that expected from standard two-point model

analyses. In this regime, the divertor density is often observed to exceed the

central line-averaged density.

IV. Transport Analysis

A quantitative comparison can be made between the experimental

observations and a heat transport model that balances anomalous

perpendicular transport with classical electron parallel conduction, sheath-

limited heat flow, and divertor radiation.

A. Model for Parallel Heat Transport and Divertor Radiation

Conservation of energy in this model requires

7
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V/ -q// + V1 . q± + QRad =0 (1)

while q// in the bulk plasma is q/, - 2 KoV,, T7/2 and at the sheath is

sheath = eyndT 3 2e (2)

Here, Ko is 2.8 x10 3 W m-1 eV-7/ 2, e is 1.6 X10- 19 J eV- 1, y is the sheath heat

transfer coefficient, and subscripts 'd' refer to conditions at the divertor plate.

Now consider the edge plasma to be composed of a series of adjacent
flux tubes each with separate length Sd, extending from the symmetry point,

S=O, to the divertor surface, S=Sd. Integrating Eq. (1) over the length of a

given flux tube,
Sd

qsheath = -(V - q±) S'd - f:QRad S = (1 - f Rad) (Vl - qL) S'd (3)

where f Rad is defined as the fraction of total power into the flux tube that is
radiated rather than conducted to the sheath and (V-. q1 ) represents an

average value along the flux tube's length over a distance S'd - S'd is loosely

defined as the length of the flux tube outside the divertor region. This
formulation accounts for the fact that the magnitude of V1 . qI is much

smaller in the divertor since the core plasma - SOL plasma interface changes

to a private flux - common flux SOL plasma interface there.

The temperature upstream from the divertor can be obtained from

integrating Eq. (1) twice and by assuming a model profile for the distribution

of divertor radiation along the length of the flux tube. The upstream

temperature is insensitive to the spatial distribution of the radiation, as long

as the radiation is localized to the divertor. Assuming that the radiation

emissivity decreases with a parallel decay length of XR,

QRad = Q0 e (S -Sd)X (4)

the upstream temperature is

8
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T7/2=- 7/2 _ (5)

22SdS__2 S 2  fRad 2 XR 1+ S-Sd - Sd/R - e (S-Sd)/Rl
S~d &2 Sd I X R

d' (1 - e- AR/) S'd X f

This expression is valid for S < S'd. Typical values of Sd, S'd, and S at the

scanning probe location for the discharges studied here are 12, 10, and 7

meters, respectively. The bracketed term in Eq. (5) is of order unity for S

corresponding to the scanning probe location. The upstream temperature at

this location is a weak function of f Rad and XR for XR < Sd. In the remaining

analysis, R is approximated as XR = 0.2 Sd.

B. Model for Cross-Field Heat Transport

Local cross-field fluxes are often modeled to be diffusive.

proportional to the local density and temperature gradients. Adopting this

strategy and assuming that x 1 X the cross field heat flux can be written

as the sum of conduction and convection terms,

qi= qi+ qL X L nV(Ti+ Te) + (Ti+ Te) DiViLn . (6)

It is mathematically convenient to assume that particle and heat diffusivitv

satisfy D 1 3 x± and that Ti : Te. In this case,

V1 -q1  -4 V X t Vfln Te . (7)

Equivalently, one could just postulate from the outset that the cross-field

heat flux in the SOL is to be modeled as a flux proportional to the local

pressure gradient. The deduced values of XI in this case would be a factor of

2 larger.

The advantage of modeling the cross-field transport by Eq. (7) is

readily apparent. Assuming that plasma pressure is constant on a flux

9
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surface, measurements of the pressure gradients at the scanning probe

location can be suitably averaged over magnetic flux surfaces to determine
the (V - q±) term in Eq. (5) for a given flux tube.

C. Comparison with Experiment

Equations (5) and (7) imply that in the high-recycling regime the
local pressure gradient scale length at the scanning probe location, Xp,
should scale with the upstream electron temperature, the electron pressure on
the flux surface, and the average value of XI on the flux surface. The effect

of Xj varying across flux surfaces can be crudely considered by postulating

X_ = X0 1 (n Te)a. Approximating Vjn Te _ n Te / , the transport model

implies

'7e(a+ 1) 0 1  +)/2 ( 2 a - 5)/4 (8)Xp S'd KO f(cXl e -(8

with the restriction that a > -1. The values n and Te refer to conditions

'upstream' near the scanning probe location. For values of a less than about

~1, we expect to see a fairly strong inverse relationship between the local

pressure e-folding length and the local electron temperature. The data does

indeed show this behavior.

Figure 7 plots local electron pressure e-folding length versus the local

electron temperature recorded by the scanning probe. Data points on this plot

were obtained from 23 probe scans in discharges with densities ranging from

0.8 < l e < 2.2 x 1020 m-3 under both attached and detached divertor

conditions. The different symbols correspond to measurements made on

different flux surfaces. The values for Xp were determined by fitting an

exponential to the pressure profile locally (±l mm) about that flux surface. A

curve proportional to T-5/4 (case of a = 0) is shown for reference.

10
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Note that the local electron pressure e-folding lengths at all values of

p appear to lie on the same curve which is proportional to -T-5/4. For

example, values for Xp on the p = 2 mm flux surface trace out a scaling as

the electron temperature there varies from 20 to 50 eV (by changing fie).

Similarly, Xp on the other flux surfaces trace out the same curve as the local

electron temperatures change, except they are offset according to their Te

values. This observation reinforces the notion that transport depends on the

local values of n and Te and not explicitly on flux surface location.

A two-parameter regression analysis on this data set yields a slightly

better fit than is shown on the figure with the proportionality Xp oc T-1.56

nO.2 3 . From Eq. (8), these exponents suggest a value of a - -0.5. However,

more data are needed in order to render the scaling with local density to be

statistically significant. At the present time, one should treat inferences about-

the scaling of XI from these data with caution. A regression on Te alone

yields Xp oc T-1.4.

Plots of local Xn and XT versus local Te also show an inverse trend

with Te. However, the scatter in the data is slightly larger for the case of Xn

and very large for XT.

These observations lend support to the assumptions in the simplified

heat transport model: cross-field heat transport proportional to the local

pressure gradient balanced by classical parallel electron heat conduction.

D. Estimates of XI

Measurements of the upstream temperature and pressure profiles, the

divertor plate electron temperature, and the parallel heat flux to the divertor

plate from Eq. (2) can be combined to yield estimates of both the local cross-

field heat diffusivity, X1, and the fraction of the heat radiated in a given flux

tube, f Rad. For a specified XR, Eqs. (3) and (5) yield an estimate of fRad. A

best-fit X_ profile can then be determined by matching the (V - q±) profile

I I
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from Eq. (7) to that determined from Eq. (5). Note that the analysis does not

require that the divertor remain attached. The analysis is approximately valid

so long as pressure is constant on flux surfaces outside the divertor region
where (V - q±) is evaluated.

At the present time, a high level of scatter in the input parameters such
as T7/2 and V2n Te does not allow the spatial variation in XI to be reliably

inferred. This is unfortunate because one might expect from the analysis
above that X is an increasing function of p (decreasing function of local

plasma pressure). Fitting spatially independent XL Makou~ to the data, one

finds that the error bars are quite large (>50%) for any given discharge,

demonstrating the sensitivity to noise in the inputted experimental data set.
Nevertheless, no obvious trend in the scaling of X_ with lie was observed,

even in the detached plasma cases. Typical values of X are -0.1 m 2 s-1

over discharges with central density variation 0.8 < rie < 2.2 X 1020 m-3.

Values of 7 7 and XR = 0.2 Sd were assumed for this analysis, although the

estimated X is a very weak function of these parameters.

Adopting a fixed value of X I 0.1, one can perform the inverse

comparison, namely, compute (VI . q ) directly from Eq. (7) and use Eq.

(5) to estimate the upstream temperature at the scanning probe. fRad can also

be computed directly from Eq. (3). This procedure results in a very good

match between the measured upstream temperature profiles (0 s p s 8 mm)

and the profiles computed from the transport model over the full range of f e.

These findings are contrary to an analysis performed on a different set of

probe data collected earlier on Alcator C-Mod 8 and confirm the suspicion

that the electron temperatures in these previous data were abnormally low.

The problem has since been correlated with an electrical short-circuit to the

body of the probe head and is currently under investigation.

Consistent with measurements from the divertor bolometers, the

transport analysis indicates that divertor radiation is high over the entire

12
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density range: 60 to 80% of the power in the flux tubes near the separatrix is

typically radiated, approaching 100% in the detached divertor cases. Flux

tubes further out in the SOL, which typically remain attached, are found to

radiate a significant yet smaller fraction of their power (40-60%).

V. Divertor Detachment

Detached divertor phenomena have become the subject of recent focus

in connection with developing techniques to handle the high divertor heat

fluxes in ITER. 9 As seen in the C-Mod data, detached plasmas are capable

of radiating nearly 100% of the divertor heat flux. It is of interest to know

the conditions under which divertor detachment occurs, the physics of

detachment, and whether or not detachment can be controlled in a divertor

such as in ITER. The set of experiments conducted here provides some

information on the first two parts of this question. Much more work remains

to be done, however.

Figure 8 displays the evolution of edge plasma parameters as the

detached divertor condition is approached by varying he. The parallel heat

flux profile, representing the heat flux into the divertor region, is computed

from the heat transport model outlined in Sec. IV. A comparison of the

electron pressure upstream and at the divertor plate on the p = 2 mm flux

surface indicates divertor detachment occurs at ie > 1.7 x 1020 m-3 in these

discharges. Also shown are electron temperature profiles across the divertor

plate surface at three densities, molecular deuterium pressures behind the

divertor, and the fraction of total input power radiated in the toroidal volume

seen by the divertor bolometer (see Fig. (1) for geometry).

Divertor detachment typically shows up as an abrupt reduction in the

ion flux to divertor probes over a portion of the divertor surface, typically at

and below probe 7 on the outer divertor, and a shift in the divertor radiation

to the x-point. 1,2 Yet, the scrape-off layer conditions outside the divertor

13
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region are seen to evolve smoothly and continuously up to and beyond the

detachment threshold. A key element in achieving detachment is the increase

in divertor/x-point radiation and the related decrease in parallel heat flux into

the divertor as a function of increasing lie. Apparently, the plasma pressure

rises on the divertor with fie until the parallel heat flux, which is

monotonically falling with fie, can no longer support a divertor temperature

greater than - 5 eV. During the detached state, the parallel heat flux into the

divertor is at its lowest, the electron temperatures (on detached flux surfaces)

are around 1-2 eV and the divertor neutral pressure is around 20 mTorr for

these discharges.

The lack of any dramatic changes in the upstream conditions during

the transition suggests that it is conditions localized to the divertor that

precipitate the detached state. The combination of low electron temperatures

and high neutral densities point to ion-neutral collisions as being responsible

for the observed momentum loss along field lines. This picture of

momentum loss and detachment is entirely consistent with the one originally

proposed by StangebylO and considered in more detail by others. i1, 12, 13. 14

The neutral density needed to support the momentum loss can be

estimated directly from the probe measurements. In the detached state, it Is

presumed that momentum-exchanging ion-neutral collisions dominate over

ionization over a length of the field line, L, where Te is less the 10-eV. I'-

In this "collision zone" the parallel flux, r#1, is approximately constant and

should be equal to the measured parallel flux at the plate. The plasma

pressure drop along the field line must balance the frictional drag on neutrals

(charge exchange and elastic scattering):

AP = L mi 17// no <v>sc (9)

14
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For the detached discharges in Fig. 8, measured values of AP = 4x10 21 eV

m- 3, -// = 6x10 23 M-2 s-1, along with estimates of L _ 2 m , and <av>sc =
10-14 m 3 s-1, yield neutral densities, no, on the order of 3x10 19 m- 3.

Assuming these are predominately Franck-Condon neutrals at a few eV, the

equivalent room-temperature molecular pressure in the private flux zone

would be around 4 mTorr. This level of pressure is routinely achieved in the

C-Mod divertor (up to 20 mTorr prior to and during detachment). Thus, it

appears that there is more than sufficient neutral density in the divertor to

provide a momentum cushion -- provided that the neutrals can penetrate,

preferentially scatter rather than ionize, and carry the momentum to the

divertor plate without a subsequent collision. In C-Mod, neutral (Frank-

Condon) mean free paths are on the order of 1 cm, allowing a significant

portion of the divertor fan to be affected. The local electron temperature is

key to controlling this physics.

VI. Summary

Density and temperature profiles are found to exhibit clear non-

exponential dependencies on the cross-field coordinate. Direct measurement

of plasma density and temperature profiles 'upstream' in the common SOL

and 'downstream' at the divertor plate identify three parallel heat transport

regimes: sheath-limited conduction, high-recycling divertor, and detached

divertor, all of which can coexist in the same discharge across the SOL

profile.

Although the plasma pressure profiles exhibit complicated, non-

exponential dependencies on the cross-field coordinate, it is found that the

local pressure gradient scales simply with the local electron temperature. It is

suggested that this scaling is a consequence of heat transport being governed

by classical parallel electron conduction with cross-field transport being

proportional to the cross-field pressure gradient. Anomalous cross-field heat

15
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diffusivities on the order of 0.1 m2 s-1 are found to reproduce the observed

upstream temperature profiles. Radiation in the divertor as deduced from

both transport analysis and divertor bolometry is found to be high in all

cases: 60 to 80% of SOL power in attached discharges, approaching 100% in

detached discharges.

Although the time-signature of divertor detachment is typically

dramatic, i.e., a prompt reduction in the pressure on the divertor plate at an
apparent threshold value of Fie, plasma conditions outside the divertor region

evolve smoothly and continuously with iie across the detachment threshold.

Prior to and during detachment there exist sufficiently high neutral pressures

in the divertor (-20 mTorr) to explain the observed parallel momentum loss

via ion-neutral collisions - provided an ion-neutral collisional zone can be

formed. The divertor is observed to detach simply when the electron.

temperature at the divertor plate is below -5 eV - consistent with the

formation of a ion-neutral collisional zone. Low divertor temperatures occur

at high values of i e because the heat flux to the plate is low (high

divertor/edge radiation) and the plasma pressure in the SOL is high.
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Figure Captions

Fig. 1 - Cross-section of Alcator C-Mod showing divertor diagnostics and

the diverted plasma equilibrium used for these studies.

Fig. 2 - Typical discharge conditions (shot#940623013) with data from

probe diagnostics. Divertor detachment is observed after 0.82

seconds. Probe 6 is in the outer array.

Fig. 3 - Raw density and temperature profiles from the scanning probe.

Profiles are characterized by smooth spline curves, shown here

fitted to the data.

Fig. 4 - Density, temperature and pressure profiles in the SOL display

clear non-exponential dependences on the cross-field coordinate

which change as core density is varied.

Fig. 5 - Comparison of electron temperature and pressure profiles

'upstream' and at the divertor plate for three values of lie.

Fig. 6 - Evolution of density, electron temperature, and pressure on the p =

4 mm flux surface as a function of ffe. Solid points refer to

conditions at the divertor plate. Open points are 'upstream' at the

scanning probe location. Electron pressure at the divertor plate is

multiplied by a factor of 2 to account for the sound speed flow

there.

Fig. 7 - Local pressure e-folding length, Xp, versus Te at the scanning

probe location. An inverse scaling of Xp with Te is expected from
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the transport model. A curve proportional to T-5 14 is shown for

comparison.

Fig. 8 - Change in key SOL and divertor plasma conditions with 11e as the

divertor approaches and enters the detached state. Parallel heat

flux into the divertor is computed from the upstream electron

temperature (T 7 /2 ) using the transport model. Total divertor

radiation seen by the bolometer diagnostic (including x-point

region - see Fig. 1) is normalized to total input power.
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