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ABSTRACT

The equilibrium and stability of scrape-off layer plasmas are considered using a 1-

dimensional treatment of coupled heat conduction and pressure balance equations. It is

found that, for sufficiently low temperature and high neutral density, a region of greatly

reduced power flux to the end plate can be achieved. The plasma in the vicinity of the end

wall is characterized by a sharp plasma pressure gradient and a relatively low temperature,

1 < To < 10 eV.
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I. Introduction

Diverted tokamak experiments have observed a phenomenon known as detachment.

For a sufficiently strong gas feed at the plasma edge the plasma pressure at the end wall

has been observed in experiments to drop more than an order of magnitude and the

temperature will fall into the range of 1 to 5 eV 1. Additionally they observe a greatly

reduced heat flux to the divertor end plate. For a fusing plasma the ability to absorb the

high levels of heat flux that are expected to appear at the divertor plate is problematical

and this phenomenon may be important in tokamak reactor applications.

A sharp reduction of the temperature and pressure 6 has been predicted to occur at

the end wall of a diverted tokamak. Stangeby6 has shown that the dominance of charge

exchange over ionization at low temperatures can result in the formation of a sharp pressure

gradient at the end plate. It has also been shown 7 that the continuity and pressure balance

equations predict a bifurcation in the location of the ionization front.

In this study we show that detached solutions result from the simultaneous solution

of the heat conduction and the pressure balance equations. We permit the pressure to

fall in the vicinity of the end plate and define detachment as the point where the plasma

pressure at the wall drops to below an order of magnitude of its upstream value. This

transition occurs for a sufficient level of neutral density. The simultaneous solution of the

heat conduction and pressure balance equations locates the ionization front near to the end

plate. More specifically we observe that before detachment the ionization front will move

away from the end plate as the neutral density increases while after detachment increasing

neutral density will cause the ionization front to move back towards the end plate. The

radiation zone encompasses the region in which impurities are present and is expected to

extend out from the ionization front to the vicinity of the x-point.
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IL Scrape-off-layer Model

We will use fluid equations8 for temperature (T), pressure (p) and fluid flow (P=nu),

with n = (n, + ni)/2 and T=(nTe + n iT)/2n and assume subsonic flow. MKS units with

temperatures in eV are used throughout. The parallel thermal conductivity is taken to be

K11 = (7/2)cliT1/2 with c1l = 800 WmeV- 7/2 and we define a temperature-like variable

T 7 /2 . We will examine the equilibria of the following equations:

,92
Cil gs2 Prad( ) - h(s) (1a)

=p m7?iNr(V)CX (1 b)
Os

=r min 7N OrV)CX (1c)

-- = ny(o) 2 . (c)Os

Eq. (la) is the heat conduction equation and Eq. (1b) the parallel pressure balance, s is

the along-the-field line distance and p = 2nT. Prad( ) includes heat loss due to radiation,

ionization and charge-exchange, and li(s) the heat per unit volume entering the scrape-

off layer flux tube. Eq. (1b) is a simplified parallel force balance equation and assumes

subsonic flow velocity 7 and sufficiently long charge-exchange, elastic scatter and ionization

mean free paths so that charge exchanged neutrals can escape from the plasma and deposit

their momentum on the divertor chamber walls' (This assumption is discussed further in

Sec III). (ov)cx is the sum of the rate coefficients for charge exchange and elastic scatter

and (av)i is the ionization rate coefficient.

We consider a simple geometry for the scrape-off layer with a recycle region that

includes a region in which ion-neutral interactions are dominated by charge exchange and

elastic collisions (the CX/EC region) followed by an ionization region. The recycle region

is followed by a heating region. The CX/EC region extends from the divertor plate at

s=0 out to s = A, the ionization region extends from s = A to the vicinity of the x-point

at s = L, and the heating region extends from L, to the symmetry point at s = L. In
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the CX/EC region (0 < s < A) the neutral density is taken to be a constant, nN. In the

ionization region (A < s < L.) charge exchange is unimportant. In the heating region

(L. < s < L) we impose a uniform heat source which represents the power flow across the

separatrix and into the scrape-off layer.

Charge exchange can add to Prad in Eq. (la). Normally the charge-exchange pow-

er loss, PcX = 1.5nnN(oV)CX(T - TFc) with T the ion temperature and TFC the

Franck-Condon neutral temperature. This term is clearly small at low nN and it is also

small for high nN since in this limit Ti -+ TFC. (The ion temperature T approach-

es TFC when charge-exchange cooling dominates electron-ion equilibration, i.e. when

nN > 1/((aV)cX7 eq with Te, = 3.1 x 10"pT3/ 2 /nln(A) and p mi/mH, the ion mass

normalized to the hydrogenic mass. In the range of interest 7eq ~ 1 X 10-5 sec and

(ov)cx = 4 x 10-14 m 3 /s and therefore for nN > 2.5 x 1018 m-3 the charge exchange

cooling term becomes unimportant).

We apply the sheath boundary condition at s=0 and thus the boundary conditions

are

'(0) = coy.po1"7 (0), '(L) = 0, p(L) = pi, I(L,) = 0 (2)

with -,, is the sheath heat transfer coefficient and the constant, co = (e3/2/cii)V/1/2M

with e the electron charge.

We will further simplify equations (1a)-(1c) in the following ways:

1. We assume a constant volumetric heating beyond the x-point, i.e. h(s) = hoH(s - L.)

with H(x) the heavyside function, i.e. H(x)=0 for x < 0 and H(x)=1 for x > 0. In

calculations the heavyside function is approximated by 0.5[1 + tanh(a(s - so))] with

a = 2 to 5.

2. Utilizing the observation that for T < Tcx with Tcx ~ 10 eV many charge exchange

events occur per ionization6 we approximate (uv)cx = ScxH(Tcx - T) and (ov)i =

SjH(T - Tcx) with Scx = Si = 4 X 10-1 m 3/s. This approximation maintains the

important physics associated with the qualitative change in the neutral-ion interaction
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that occurs at low temperatures and it decouples the continuity equation, Eq. (1c),

from equations (1a) and (1b). We define the boundary, A, of the CX/EC region by

T(A) = Tcx.

3. We have considered two forms for the radiation function:

- A local thermodynamic equilibrium (LTE) form

Prad(T) = nencLo T +3a)

nc is the impurity density (i.e. Carbon) which is assumed to be constant and Trad

represents the temperature at the peak of the radiation curve, i.e. for Carbon in

local thermodynamic equilibrium Trad = 8 eV and Lo = 1.2 x 10-31 Wm- 3 . In the

appendix we will approximate Eq. (3a) by a 6-function.

- A non-local thermodynamic equilibrium form

T -Trad

Prad(T) = 0.5nenCLo[1 + Tanh 2 - H(LX - s). (3b)
2

For Trad = 5 eV this radiation function rises to a plateau at T ~10 eV. In this

approximation we also assume that the impurity radiation is localized below the x-

point which is equivalent to assuming that impurities are localized to the divertor

region.

With these approximations equations (1) become

cl gS-2 = Prad - hoH(s - L,). (4a)

O = minNroScxH(Tcx - T). (4b)
Os

with boundary conditions from (2). The subscript 0 will denote quantities at the divertor

plate (s=0) and 1 denotes the respective quantities at the symmetry point (s=L).
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IL. Solutions to Equilibrium Equations.

II A. Constant Pressure Along-the-Field-Line

For sufficiently low neutral density Eq. (4b) reduces to p = constant = pi and the heat

conduction equation may be solved with a prescribed value for p. The boundary conditions

on the heat conduction equations given by Eq. (2) will determine the temperature at the

end plate and at the symmetry point.

We have solved these equations numerically with parameters that are typical of the

C-mod experiments 9 , L=12 m, L, = 2m, p, > 100 Pa. We will use the non-LTE radiation

function from Eq (3b) and note that solutions that utilized the radiation function from

Eq. (3a) did not differ substantially. The width of the scrape-off layer, A, enters the

determination of the input power density. ho = P,.i/(A.,epA) with P,0 the total heat

entering the scrape-off layer and we use for A an experimentally determined value of the

pressure scale length 9

_0.3

with T the symmetry point temperature in eV. Fig 1 shows temperature profiles for three

values of upstream pressure. For pi = 192 Pa we find that at the divertor plate T(0)=10

eV whereas for a higher upstream pressure, pi = 480 Pa, we obtain T(0)= 0.1 eV. When

the temperature at the end plate is small, i.e. T(0) << 1 eV, the plasma does not conduct

appreciable heat to the end plate and it arguably can detach. (Notice we have not reduced

the temperature to zero which would eliminate the class of solutions in which we are

interested). Fig. 1 also shows a "detached" solution, obtained for p, = 512 Pa in which

we have allowed the plasma to be located 0.5 m from the end plate leaving a region of

near zero temperature in the vicinity of the end plate. A similar result has been shown by

Hutchinson' 0 .
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We have analysed the stability of these equilibria. We perturb Eq. (4) (( -+ + 6 )

and obtain for b

&26 dL dho (76C(= C11 D2 - + d j (7a)

with -y the growth rate. The boundary conditions on bC are

- (0) = s bC (0), (L) = 0. (7b)

We can solve Eq. (7) consistently with the equilibrium equation (Eq 4a) to evaluate

stability. To solve we set -y = 0 and integrate Eq. (7a) from the end plate (s=0) to the

symmetry point (s=L) with an arbitrary amplitude for 6b(0) and an initial slope given by

Eq. (7b). Note that 96(0)/s > 0. Since the boundary condition at the symmetry point

is O6b(L)/&s = 0 we can show that the solutions are stable if no extrema occur before

the location of the symmetry point, i.e. if 6C(s)/8s > 0 for 0 < s < L. Fig 2 shows the

perturbation 6b for the equilibrium having pi = 480 Pa that is shown in Fig 1. We observe

that for -y = 0 no maxima is observed in the range 0 < s < 15 m and one can show that a

negative -y value is required to satisfy the boundary condition 96(L)/s = 0. In this way

we find that all of the equilibria shown in Fig. 1 are stable.

To understand better the calculated stability of these solutions we can formulate a

quadratic form by multiplying by 6C and integrating along the length of the field line:

- f [c 11bC2 + benC f6C2 ]ds - g6C2 (0)

' =Cd (8)fL £92ds

with 6C, = 96C/as and g=-ypo/(7C6 /7 ). Eq. (8) indicates that parallel conductivity is

stabilizing, the radiation function can be stabilizing or destabilizing depending on whether

the slope is respectively positive or negative (for the non-local-thermodynamic-equilibrium

function of Eq. (3b) it is stabilizing) and the boundary condition adds a term that is always

stabilizing. The boundary term stabilization comes about because as the temperature at

the end plate rises the outflow of heat increases (and visa versa), which tends to damp
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the temperature rise. When T(0) 1> 5 eV this term can be dominant. For T(0) < 1 eV the

stabilization of the boundary term becomes small but for the non-LTE radiation function

the the radiation term is stabilizing while the LTE form has a cancellation between regions

of positive and negative slope.

In experiments the pressure is observed to drop dramatically with detachment 9 and

the temperature remains in the 1 to 8 eV range. Therefore the constant pressure model

differs from experimental observations in the pressure and temperature dependences. In

the next section we consider the case of non-uniform pressure.

II B. Pressure Variation Along-the-Field-Line

We now consider the solution of the equilibrium equations (4a,4b) for significant neu-

tral pressure. In solving this set of equations we fix the upstream plasma pressure, p, to

be similar to the measured value (this is the boundary condition for the pressure balance

equation) and vary the pressure gradient, p'. The pressure gradient p', is a measure of

neutral density,

nN A
m;o(av)cx

and ro = cono with cO the sonic speed at the end plate, cO = /2To/m,. Table I lists

the results of four such calculations in which we have fixed L=12 m, L, = 2 m, pi = 480

Pa, Tcx = 10 eV and use the non-LTE radiation function (Eq. 3b) with nc = 1018 m-3 .

Fig 3a displays the temperature profiles in the divertor region (0 < s < L,) for

calculations in which we assume high (solid curve) and low (dashed curve) respective

neutral densities (cases III and II in Table I). Fig 3b displays the pressure profiles for these

two cases. Notice that for case II the temperature drops to near zero while the pressure

remains high whereas for the detached case III the pressure at the end plate is near zero

while the temperature is ~ 4 eV. Fig 3c shows the corresponding density profiles. In the

detached case (III) the plasma density falls in the vicinity of the plate because of the drop

in pressure (n=p/2T).

8



The decrease in both the density and temperature at the divertor plate indicates a

reduced mass flow of plasma into the divertor plate (due to the sonic boundary condition)

and results in a reduction in the source of recycled neutrals. In steady state the reduction

of the plasma outflow to the divertor plate must be consistent with a reduction of the

ionization source along the field line. (We have assumed that mass flow from the core plas-

ma into the scrape-off layeris negligible compared with re-ionization of recycled neutrals).

This requires that detachment be accompanied by a reduced level of neutral density in

the ionizing region. The ionization source does not enter our calculation but we could,

in principle, use the continuity equation (Eq 1c) to determine an average neutral density

in the ionization region. The neutral density in the ionization region can be substantially

smaller that in the CX/EC region.

Fig 3d displays the radiated power in the vicinity of the end plate. The along-the-

field-line radiation profiles are similar for the two cases shown. The peak of radiated

power occurs near to the end wall because of the high density and low temperature in this

region. (For a higher value of Trad or a lower value of Tcx the radiation peak would occur

further upstream). For the radiation model used there is substantial impurity radiation

throughout the divertor region extending up to the x-point.

Fig 4 shows the ratio of upstream pressure to pressure at the divertor plate (pi/po) as

a function of the neutral atomic hydrogen density (m-3 ) for several calculated equilibria.

At low neutral density pi/po is near 1 and rises slowly with increasing neutral density.

Above a critical value of neutral density, however, p1/po rises quicldy to a large value

characteristic of detachment, pi/po ~ 10. From Table I we observe that the divertor plate

temperature can be higher in the detached state compared to the constant pressure, low

heat flux equilibria. In the detached state the power flux at the end plate is reduced

because of the large reduction in the plasma pressure.

The boundary between the CX/EC and ionizing regions was defined to be T(A)

10 eV. Fig. 5 displays the position of the ionization front (A) vs the neutral hydrogen

density. We observe that at low neutral density the ionization front is near the end plate,

A/L, ~ 0.2 and after detachment (p1 >> po) the ionization front will approach the end
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plate as the neutral density increases. The movement of the boundary of the CX/EC

region occurs because as the neutral density increases a larger pressure gradient can be

balanced in a smaller region. A also serves as a measure of the peak of impurity radiation

(Fig 3d) because of the combination of high density and relatively low temperatures at

this location.

To analyse the stability of the non-constant-pressure equilibria we must perturb the

pressure balance (4b) as well as the heat conduction equation (4a). Taking p -> p + bp

with the boundary condition bp(O) = 0 leads to the result

bp(s) = -pOH(s - A) [d.ds

The variation of bp will introduce an additional destabilizing term into Eq. (7a) which

now becomes

a2s{ dL6  [dho jnL() 6
-Yb = C11 02 - ne nc dL + dh y6 -c 6p. (9)

-3 L Id"]L 2/7()

We may observe from Fig 2 that the perturbation 6 is small near s = A in order to

avoid the stabilizing portion of the radiation function. Therefore the corrections shown in

Eq. (9) are usually not important and the equilibria shown in Table I were found to be

stable.

III. Discussion

We have seen that the heat conduction equation coupled to a charge-exchange dom-

inated parallel pressure balance equation can predict a sharp reduction in the heat flow

to the divertor target plate. Recalling that the (conductive) heat flow to the target,

qwall C PoVT, it is clear that this reduction can be accomplished in two ways: by reduc-

tion of either the plasma temperature or the plasma pressure near the end plate. These

two operating modes are obtained as follows:
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i. For sufficiently low neutral density there is an approximate pressure balance along-the-

field-line and in the presence of sufficient radiation the heat flux can be reduced when

the plasma temperature at the end plate becomes sufficiently low. Typically To < 1

eV is required for a substantial reduction of heat flow to the end plate for the constant

pressure case. Because of the high particle flux to the end plate in this operating mode

the energy of recombination (at the divertor plate) can add substantially to the total

power absorbed by the end plate.

ii. For sufficiently high neutral density the pressure will fall in the vicinity of the end plate

if the temperature is below the critical temperature for charge exchange and elastic

collisions to dominate in the neutral-ion interaction. When pressure po becomes small

qwal will likewise fall. Additionally the particle flux is lower (due to decreased recycle)

which reduces the recombination energy deposited at the divertor plate.

The large pressure drop and the prediction of non-negligible target plate temperatures,

1 < To < 10 eV in mode (ii) is consistent with experimental observations.

The temperature at which charge-exchange dominates over ionization is set by atomic

processes and even in a reactor size tokamak the temperature of the plasma stream flowing

past the x-point must be relatively low for detachment to occur. If we only consider the

scrape-off layer upstream of the x-point (L. < s < L) and assume that radiation and

neutral effects are unimportant in this region we can obtain from Eq. (4a)

P(L - L.)2
(L + (10)47rKa 2 Ac jA

with P the power entering the scrape-off layer and A the aspect ratio. Taking L = 7ranq

with q the cylindrical safety factor and K the scrape-off layer ellipticity and assuming

L >> L, and L >> , we can estimate the maximum temperature in the scrape-off layer

,r Pq 2/7
TL = [4 .rPAA] (10a)

Taking (C-mod parameters) P = 0.4 MW, A=3, Kc 1.6, \ 0.007 m, and q=3, Eq.
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(10a) gives TL ~36 eV. For a reactor with P = 400 MW, we guess that A ~ 0.1 m (the

scaling of A is not known) and taking similar q and aspect ratio we would obtain TL ~ 120

eV. Thus we see that detachment requires that the temperature in the scrape-off layer be

relatively cool. The density does not enter into Eq. (10a) and therefore elevating the edge

density provides a means to obtain a cool edge temperature.

An important caveat is that in the pressure balance equation we have assumed that for

efficient momentum transfer the charge-exchange products will leave the flux tube within a

single mean-free-path 6 . Typically the mean-free-path for charge-exchange neutrals is ~ 1

cm. If the charge-exchanged neutral is re-ionized within the plasma the momentum will

be transferred into the plasma at that location. Detachment is observed to first occur near

the strike point at the separatrix 9 and if the charge exchange neutrals are re-ionized in

warmer regions this can lead to partial detachment. In reactor-size devices it is desirable

that the detached region be a substantial fraction of the scrape-off layer width. An accurate

determination of the distance that a neutral will travel before being ionized would require

a 3-dimensional calculation and is beyond the scope of this study.

It has been observed that consistent with continuity and pressure balance, (Eqs. (1b)

and (1c)) two solutions for A are possible7 , one with the ionization front located near to the

end plate and one near to the x-point. We have found, however, that the heat conduction

equation will locate the ionization front relatively close to the end wall. Furthermore

as neutral pressure increases the ionization front will move towards the end plate. This

solution leaves a relatively large ionization region (of length L. - A) and can lead to high

flow speeds. The analysis is further complicated if the flow becomes supersonic and we

have assumed that this does not happen. The flow speed obtained depends on the level

of neutral density in the ionization region (A < s < L.), which is typically lower than

the neutral density nearer to the end plate. Solutions with A , L, have been obtained

but typically these solutions require To << 1 and substantially lower upstream plasma

pressure than is observed in experiments. Therefore we conclude that these solutions are

probably not useful for tokamak design.
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IV. Conclusions

A 1-dimensional detachment model based on charge exchange transfer of momentum

agrees qualitatively with experimental results on several points:

" Above a critical neutral density the plasma pressure will drop a factor of >10 in the

vicinity of the end plate provided the plasma temperature is sufficiently low.

* For a detached plasma the plasma temperature at the end plate can be in the range

1 < To < Tcx with Tcx < 10 eV. The temperature in the vicinity of the x-point

must be reduced to ,< 30 eV for detachment to occur.

Since the location of the radiation front within the divertor region is a function of the

neutral pressure a sweeping of the power flux within the divertor region might be obtainable

if the neutral pressure could be varied in a systematic way.

The radiation and charge exchange profiles are not uniform and may peak near to the

ionization front. Additionally an x-point Marfe may accompany (or precede) detachment"

and this would cause copious radiation from the vicinity of the x-point.

The requirement that a cool plasma enter the divertor region in order to obtain de-

tachment imposes a severe restriction for reactor design. Furthermore for detachment to

be useful the width of the detached zone must be comparable to the width of the SOL

pressure profile. Nevertheless detachment may play an important role in the operation of

a divertor in a tokamak based fusion reactor.
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Appendix - Approximate Analytic Solution

Equations (4a) and (4b) can be solved analytically with a simplified radiation function.

We will substitute for the radiation function a 6-function centered at Trad, i.e.

Prad(T) = Ro6(T - Trad).

In the region adjoining the end plate (0 < s < A) the heat conduction equation is

c11  =0 (11)

with the boundary condition (o = coy,po8 .o a_ -(0) and co = (e 3 /2 /cf)/1/2mi. The

solution of Eq. (11) yields

= coypo' 7 s + o for 0 < S < AT. (12)

Imposition of the requirement that T(AT) = Tad will determine AT as a function of 4o

and po:

7/2
AT = ~rad (13)

coypo~'

Defining Tc, as the temperature at which charge-exchange and elastic collisions become

the dominant neutral-ion interaction and A, by T(A,) = Tcx we can determine p, from

pi = po + pOA,. Thus:

p, = po + minNro('v)CX " 1-/7 (14)
co^/SPO O

In the region AT < s < L, we obtain from Eq. (11)

a(s) = o + (Coypo + -)s-- AT for AT < s <Lx. (15)
Cil Ci
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In the region L. < s < L we must solve

82(
11 a,2 = -ho (16)

with the boundary condition '(L) = 0. This yields

+ (sL - -LL,+0 )+ -(L. -- AT)+ CO-y'pg L, for L. < s < L (17)
C11 2 2 Ci0

and continuity of the derivative at s = L, yields the following relationship for (o:

Ro = ho(L - Lx) - cjjco-ySpo /7. (18)

If we know the temperature parameter , at a point s, we can combine Eq 17 and 18 to

obtain ho:

5- (o - co-YSP~O' AT

ho = cl p CY.Po'A (19)
sL - - .- - AT(L - L.)(

Normally po, o, p,, and , are measured with p, and , the respective pressure and

temperature parameter at a probe located in the scrape-off layer. Given po and o Eq

(13) will determine AT. Eq (14) will determine the implied neutral density from the

measurement of p2 (For s > AP the pressure is constant so p2 = pi). Given the geometric

quantities, L, and L, equations (18) and (19) determine the heating and power radiated

from the scrape-off layer. Finally equations (12), (15) and (17) determine the temperature

profile along the field line.
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Table I - Solutions as

symmetry point p(s =

I

p'(0) (Pa/m)

nN (M- 3 )

Po (Pa)

Pi/Po

T(0) (eV)

T(L) (eV)

A (m)

Iq (MW/M2 )

p'(0) varies. L=12 m, L. = 2 m, nimp = 1 x 1018 m- 3 and at the

12m) = 480 Pa. Radiation from Eq. (3b) with nimp = 1 X 1018 m- 3 .

II

0

0

480

1

0.1

40.6

0.19

640

3.1 X 1017

288

1.7

0.33

38.8

0.30

11 11

III IV

1600

1.2 x 1019

61

7.8

3.8

38.8

0.26

8.2

3200

4.9 x 1019

46

10.3

8.3

38.9

0.14

9.1

t parallel heat flux: qjj = e-y,noTos/ 2 /2e/mj with -y, 7.
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Figure Captions:

FIG. 1. Temperature vs field line length (m) for three values of upstream pressure in the

constant pressure approximation: a) p, = 192 Pa solid curve, b) p, =480 Pa, c) pi = 510

Pa (short-dashed curve).

FIG. 2. Solution for the perturbation of the equilibrium temperature, 6 , with y values

of 0 and -15 respectively. The equilibrium (p1 = 480 Pa) is shown in Fig 1.

FIG. 3. Along-the-field-line profiles in the vicinity of the end plate for cases II (dashed

curves) and III (solid curves) in Table I, i.e. for low and high neutral density: a)Temperature

(eV), b)Pressure (Pa), c) Electron density (m-3) and d) Radiated power loss (W/m 3 ).

FIG. 4. Ratio of upstream pressure to pressure at the divertor plate as a function of the

neutral atomic hydrogen density (m-3).

FIG. 5. Position of the ionization front (A) where T-10 eV point vs neutral density.
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