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Abstract

Nonlinear analysis is presented of localized regions of strong divergence of parallel

heat flux - thermal fronts - in the edge and scrape-off-layer of tokamaks. The

phenomena of divertor detachment and marfes are discussed in terms of one-dimensional

thermal conduction in the parallel coordinate, but retaining cross-field transport power

divergence and radiation as source terms. Full finite aspect-ratio geometry is retained

and has important effects. Thermal fronts are shown to require either localization of

the source terms or density control, to be stable against parallel motion. The edge

density range over which the front is naturally localized to the divertor leg is shown to

be rather small. The size, stability, and preferred position of marfes are predicted and

are in agreement with experiment.
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1. Introduction

The behaviour of radiative regions in the edge of tokamaks has attracted considerable

attention, especially since the "dissipative divertor" has become the preferred solution

for reducing ITER's divertor-plate heat loads. Experimental observations of detached

divertor operation [1,2,3] have been made in several tokamaks. These operating modes

have documented substantial plasma energy flux reductions as a result of radiative

losses leading apparently to large heat flux gradients parallel to the magnetic field. It

is important to distiguish between "detached divertor" operation, in which the power

is suppressed at the divertor plates but the main scrape-off-layer remains hot, from

"detached plasma" operation, seen also in limiter discharges, where the plasma edge

is cold all around the poloidal circumference and parallel heat flux gradients are not

significant. Detached divertor operation is our present concern.

A closely related phenomenon is the marfe [4,5,6]: a localized radiative region in

the plasma edge that is axisymmetric and hence has substantial parallel gradients of

temperature, density and heat flow. Indeed, in some cases, the divertor detachment

appears to be related to the formation of a marfe-like region near the magnetic x-point.

Large, two-dimensional, multifluid, computer simulations of detached divertor and

marfe behaviour have been vigorously pursued [7,8], and various suggestive phenomena

have been observed in these numerical experiments, e.g. [9]. The large codes have

the merit of rather realistic geometry, and the ability to follow the atomic physics

of hydrogenic species in considerable detail (e.g. [10]). However, since (among other

limitations) the perpendicular transport coefficients and their spatial and parametric

dependences are essentially unknown, the boundary conditions applied to the simula-

tional region are rather ad hoc, and the impurity species modelling is at a rudimentary

stage, it is clear that the details of such simulations should be treated with caution.

Moreover, with so many free parameters and such complex nonlinear behaviour, even

if the simulations were definitive and gave good agreement with experiments, it would

still be necessary to interpret those simulations. That is, the results would have to

be analysed and organized using compound concepts such as flow reversal, thermal or

ionization fronts, neutral cushions, and so on, before a true understanding of the factors

governing the divertor behaviour could be claimed and sufficient confidence in future

designs obtained.
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The purpose of this paper is to study the theoretical behaviour of thermal fronts:

that is, localized regions of parallel heat flux gradient. It is shown that several char-

acteristic nonlinear features of such fronts can be understood analytically and used

to discuss the general behaviour of radiative divertors and marfes. The dominant

processes in such fronts are parallel heat flow divergence balanced against radiative

losses. Therefore it is appropriate to consider only one dimension, along the field,
approximating perpendicular flux divergences as sources in the one-dimensional equa-

tion. Although this approximation excludes much complex two-dimensional behaviour,

one-dimensional treatments give much insight, and have often proven to be quantita-

tively quite accurate [11]. Also, when the perpendicular transport coefficients are so

uncertain, any accuracy lost in the one-dimensional approach may be equally elusive

in two-dimensional simulations.

The present approach focusses on the energy equation, since heat flow is our in-

terest. The momentum equation is treated approximately via a constraint of constant

pressure, and the continuity equation is treated only indirectly by assumptions about

the average density variation. The justification for this is the demonstration that there

are characteristics of the energy equation's behaviour that can be understood sepa-

rately from the other complexities. Where necessary, it must be understood that we

are assuming that the continuity and momentum equations can be satisfied by some

unspecified processes. This assumption is most likely to be reasonable when we are dis-

cussing the high-density, collisional, conduction-limited scrape off layer (SOL), which

is the regime most likely to exhibit thermal fronts: divertor detachment and marfes.

The analysis is in some respects related to previous discussions of marfe stability

on the basis of heat conduction equations [12,13,14]. However, it is different in several

respects. First, unlike the analysis of Drake, [13], we focus on the parallel conduction,

not the perpendicular. Second, these earlier analytical treatments are linear stabil-

ity analyses of poloidally uniform equilibria. In contrast, the present concern is the

non-linear behaviour of already formed radiative non-uniformities, their size, position,

stability, interaction with divertor boundaries, and general characteristics. Third, we

retain as far as possible a general treatment of the radiation form (as distinct from

the very specific nonlinear solution of [15]). And finally we treat the geometry in a

general way that accounts for such aspects of the fluxes as finite aspect-ratio effects
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and poloidal field variation along the surface.

Recent work of Capes et al. [16] discussed edge temperature bifurcation. The

present work goes substantially further in that it investigates directly the formation of

localized fronts, and addresses the realistic case where transverse heat flux divergence

is important.

2. Formulation

We consider a situation in which heat transport can be taken as purely conductive, with

convection ignored for simplicity. We use natural, flux-surface, coordinates: toroidal

angle 4 with associated unit vector e4, poloidal flux, 4 such that the poloidal field

is Bp = e4 A VO/R, and poloidal arc length lp. The heat balance equation for an

axisymmetric case can then be written

IVOI P R \p = Bp a \Pa
R | | Balp B, al,(1)

where subscript p means the poloidal direction along the flux surface and H is the sum

of volumetric power source density plus the contribution from the divergence of heat

flow across flux surfaces: KnV.T. Note that 60R/IVol = 6/BP is the area across

which the poloidal heat flux flows, between two flux surfaces separated by 64,

The poloidal heat conduction, qp = Kp8T/al,, can be expressed in terms of com-

ponents parallel and perpendicular to the field: qli = KjIVIIT, and qA = KAVAT, where

VI = (1/B)B,.V, and VA = (B A VO/B|VOI).V = (B4/BBp)Bp.V. Then, since

qp = (Bp/B)qll + (BO/B)qA, the poloidal conductivity can immediately be written

B 2  B2

Eq.(1) can be reexpressed by transforming to a parallel coordinate z, such that

Bpdz = Bodl,, where Bo is a (fixed) typical total field. We find

z =9Z -H ,(3)

where
Bd B2 BiB

K =KpW_ = 1WjK 1 + M '2A (4)
p p

is the effective parallel conductivity. This is a more natural coordinate system for the

case where K is dominated by parallel conduction. Eq. (3) refers physically to con-

duction along a 'flux tube' whose cross-sectional area is inversely proportional to the
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total field, B. We see that the effective parallel conductivity is actually approximately

inversely proportional to B 2 . ( An alternative is to use the true parallel distance I such

that B,,dl = Bdl,,, but that leads to a less convenient mathematical form, where the spa-

tial variation of B appears outside the derivative: (B/Bo)/Ol[(cB/Bo),9T/&l] = -H.)

The deceptively simple-looking Eq.(3) is the basis of our one-dimensional investigation.

The functional dependencies of r, and H determine the characteristics of its solution.

Normally, the VA term is ignored on the grounds that the parallel conductivity is

so much larger than the perpendicular. The relative importance of this term may be

estimated by approximating the derivatives as scale-lengths: V± ~ 1/A± V, ~ 1/L,.
Then, equating the parallel conducted power to the perpendicular divergence, we get

K11ViiT ~ (L/2)riT/Ai, so that

VAKAVAT B4 A AL

V11 11 V11T B, K- LL, . (5)

For a localized front, the poloidal scale length may under extreme circumstances be

as short as the SOL thickness L, - A_. The ratio rcA/tq depends on the anomalous

diffusivity due to turbulence, but assuming that this dominates over classical perpen-

dicular transport, it is reasonable to assume that the ratio is of order unity. Since the

SOL length, L, is perhaps 1000 times A1 , the ratio of the power divergence terms is

unity only when Bp/BO ~ AI/L ~ 1/1000. Thus the VA term can be significant only

where the poloidal field is very much less than its typical value of B4 /10; that is,

only very near the x-point. The effective conductivity, K, is increased there but only

significantly in an extremely small region where B, is small enough. We shall be well

justified in retaining only the ri1 term in most situations. If we had done so from the

beginning, Eq. (3) could have been derived directly from the expression for the diver-

gence of parallel flux: V.[c 11(B/B)(B/B).VT)] = Bd/dl[(c 11/B)dT/dl], regardless of

axisymmetry.

The contributions to H are perpendicular transport from the adjacent flux surfaces,

denoted S, and radiative losses, denoted R. Thus H = S - R. We shall ignore the

possibility of internal heating or any distinction between electron and ion temperatures

for simplicity. In general, H is a function of T and z, and depends on many details of

the radiative species and processes. However, at any position, the general form of H

as a function of temperature will be as illustrated in Figure 1. At low temperature the

heating will be small and non-negative (since cooling at T = 0 is physically impossible).
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As the temperature rises, R rises, and so H passes through zero at a temperature

Tc > 0. As R rises further it then tends to dominate the heating term but eventually

the radiation falls off, because of the ionization of the more radiative atomic states.

Consequently, H has a minimum at a large negative value. Radiation finally becomes

essentially negligible compared to the transport term at a temperature Th.

In the presence of such a heating term, one can envisage the occurrence of a thermal

front of the form illustrated in Figure 2. Here the solution to Eq. (3) can be considered

to consist of 3 regions. The first is the cold region, in which the temperature is flat

at a value of essentially Tc. (Note that if H is not explicitly dependent on z then

with appropriate boundary conditions, T = const. = T, is a solution to Eq. (3).)

The second region is the thermal front, in which the dominant radiation loss takes

place; the temperature rises from T, to Th. In the third, hot, region, the radiation is

negligible compared to the transport and the temperature rises, but with a negative

second derivative. The question we'wish to address is whether the thermal front solution

is stable. That is, supposing such an equilibrium solution to exist, will it remain in

steady state or will the front tend to move either to the right or to the left to a new

state.

Initially we will consider the boundary conditions on the solution to be that the

temperature is held at a fixed value T(0) = T,. This takes credit for the prior realization

that if a detached solution is in fact to be obtained, then the approximately uniform

solution in the cold region must be near Tc. More complicated boundary conditions

based on sheath conditions are possible but have little impact on the conclusions. The

right-hand boundary condition will be considered initially to be a symmetry condition:

dT/dz = 0 at z = L where L is the (half) length of the SOL to the stagnation point.

We require some assumptions about the dependence of S on T. This somewhat

debatable question arises for all SOL analysis, including the boundary conditions of

two-dimensional simulations. In the situation where the total power flowing out into

the SOL is prescribed, a natural assumption is to take S independent of T. In other

words, the heat flow into the SOL is prescribed constant (not necessarily uniform) at

all positions and temperatures. Another natural possibility, when we are considering

only part of the SOL 60 with adjacent surfaces at effectively constant temperature, is

to take S oc T, - T.



We can express the radiation in the form R = neniQ(T) = n 2 fiQ(T) where ne = n

is the electron density, ni = nfJ is the density of the radiating atomic species, and Q(T)

is the radiation function, to first order independent of n. The pressure is generally

approximately constant along a flux surface (ignoring the momentum convection term

from the pressure balance, consistent with ignoring thermal convection.) It is natural

then to write the radiation in terms of the pressure, p = nT

R = fp2 Q(T)/T 2  . (6)

Figure 1 will be regarded as a plot of R at constant pressure (oc Q(T)/T 2 ) so that we

can apply it to a uniform plasma flux surface on which p is constant.

3. Uniform Source-Functions

We multiply Eq (3) by KdT/dz and integrate across the thermal front, i.e. from z = z,

(the rightmost position where T = Tc) to z = zh (where T = Th) to obtain

dT\ 2 dT 2 Th

KT -2K HdT. (7)

Naturally, for a detached solution we require the heat flow to be zero at the left hand

end of the front (zc), in which case the second term in Eq. (7) is zero. Thus the slope

of a detached solution at the boundary between the hot region and the thermal front

is given by the integral over the front of KH, and in particular the heat flow at the hot

end of the front is given by

qh = - h-2sHdT . (8)

It should be noted that the form of this first integral of the conduction equation is

independent of the choice of coordinate system.

Returning to Eq. (3) and integrating from Zh to L, i.e. over the hot inner region,

we find
(dT\

qi = - = -h H dz . (9)
(d h ha

We can regard qf and qi as unique functions of the front position, Zh. The equilibrium

requires that the heat flow from the thermal front integration, Eq. (8), and from the

inner hot region integration, Eq. (9), should match at the join of the two regions:

qi = qf . (10)
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In a non-equilibrium situation, the front will move. The direction of motion de-

pends on the sign of qg - qg. If the dissipation in the front, -qf, is less than the

total heat input to the SOL, -qj, then there is a net heat input into the SOL and its

temperature will rise. This implies that the front moves towards the cold side (smaller

z), because the front position, Zh, is the point at which the temperature has the fixed

value Th. If the heat imbalance is the opposite, qi - qf > 0, then the front will move

toward the hot side (greater z). (From the viewpoint of a stability analysis linearized

about the an original front equilibrium, this simple conclusion requires the eigenmode

of interest to be unipolar, i.e. have no zero crossings, which is the case for the most

unstable mode.)

The stability of the solution then depends on the derivatives of the two fluxes with

respect to the position of the front. Stability requires that

d

dZ(11)

at the equilibrium point where qj = qf.

If r, and H are not explicit functions of position, but only functions of temperature,

then the integrand in Eq. (8) is a unique function of temperature, and so qf is a constant,

independent of Zh. Meanwhile, from Eq. (9), dqi/dzh = H(zh), which is positive since

f Hdz is positive and H is uniform. Therefore the stability criterion, Eq. (11) is always

violated and a detached thermal front in a SOL whose source terms are not explicitly

dependent on position is always positionally unstable.

If the radiation term, R is raised from an initially low value, then the solution

develops a decreasing slope at the boundary. However, as soon as the slope reaches

zero, and the heat-flow detaches, the front is unstable and the solution flips to a form

that is cold throughout the SOL. This corresponds to a 'detached plasma' rather than

a 'detached divertor'.

This can be illustrated by Figure 3 where the forms of qj and qf are plotted for

a sequence of increasing radiation cases. When qf(0) > qj(0) (cases 1 and 2) there

is a crossing point of qf and qi somewhere in the range 0 < Zh < L where the front

equilibrium Eq. (10) would be satisfied. However, this is unstable, and could never be

accessed. Instead, the front will remain at zh = 0. When, as the density is raised (case

3), qf(0) falls below q2(0), to cause detachment, there no longer exists an equilibrium,

the whole SOL will collapse.
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4. Detached Divertors

In view of the above demonstration, it is clear that any steady detached divertor solution

requires that K or H should depend somehow on zh, so as to stabilize the position of
the thermal front by making dqf /dzh > dqI/dz,, at an intersection, qf = qi.

The generic types of situation that we are most likely to be interested in are
illustrated in Figure 4. In Fig. 4(a) is shown a form where a continuous detachment

will occur as qf(0) is lowered below qj(0), with the front equilibrium moving steadily

to larger zh until the point is reached where the curve of qf becomes tangent to qi,
beyond which, collapse of the solution (rapid motion of zh to L) will occur. In Fig. 4(b)

is illustrated a shape where a bifurcation will occur as qf(0) is lowered below qj(0) and

the front will suddenly detach and move to the stable solution point of intersection.

Further decrease of qf will eventually then lead to complete collapse after the tangency

point is passed.

Note that qi has been drawn curved in Fig. 4 to illustrate a case with H decreasing

at larger z or, equally well, at larger T. Denoting the mean of H in the inner hot region

by < H >, one can write qi = - < H > (L - zh). The scale length, Ai, of its variation

can be written
1 dqi _ 1 H(zh)
qj dzhAi <H>(L-h)

if H(zh) ~< H >, and L >> Zh this is approximately 1/L.

The qf variation we require can arise from variation with zh in any of the quantities

S, R or K. Such variations can be either specific dependency upon z, due, for example,

to spatial variation of sources, cross-field transport, neutrals or impurities, or they can

be non-local dependence of parameters upon the overall solution. This latter form

might encompass deliberate attempts to stabilize the front through feedback, but it

also includes naturally occuring effects to do with pressure variation.

It is not obvious how p should be taken to vary with front position. In general,

this depends on the density transport problem, which we naturally do not wish to

solve here. Perhaps the simplest assumption one could make is that the density at the

stagnation point z = L be fixed: nL. The pressure then depends on the temperature

at z = L, TL, and hence on the entire solution in a non-local way. If zh increases,

then clearly TL decreases, causing p = nLTL to decrease, and therefore the radiation

to decrease. This leads to a positive slope on qf, which is a stabilizing effect.
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If S is taken constant in the inner hot region, then the value of TL is the solution
of

TL J dT = S(L - Z )2 (13)

For the case of particular interest, where K = x 1T 5/2 , Spitzer parallel electron conduc-

tivity ignoring B-variation, we can obtain an explicit solution

TL = S(L - zh)2 +T/2 , (14)

which is approximately (7S/4K1 )2 / 7 (L - zh)1/ 7 if 7/ 2  7/ 2 . This leads to a scale

length Af for qf

1 _ 1 dqf 1 dp 1 dTL 4 1
Af qf dh p dzh TL dzh 7L-Zh (15

By itself, this gradient is insufficient to stabilize the thermal front, since the scale-length

of qi is shorter, L versus 7L/4.

When we consider, in addition, possible variation in the cross-field heat source S,

due, for example, to the proximity to the central plasma, it appears that stabilization of

the front is possible. The cross-field heat flux into the whole SOL width is substantially

positive when the field line is adjacent to the plasma, i.e. in the main chamber, but

zero (or slightly negative) when the field line is adjacent to the cold private flux region,

i.e. in the divertor chamber. Therefore, the variation of qi with Zh in the divertor

chamber is small, and the qi curve has a flat section, from zh = 0 to Zh = z. where z,

is the position of the x-point, as illustrated in Fig. 5. It is then possible for a stable

detached solution to exist, given the qf slope arising from pressure variation.

The density range over which this stable detachment exists can immediately be

deduced from the functional dependence of qf oc p oc nL(1 - Zh/L)41 7 . If qi is constant

in the divertor leg (zh < z,) then as the density is raised, detachment starts when

qf(0) = qi, and the front reaches the x-point when qf(0)(1 - z./L) 4 /7 = qi. The

ratio of these two densities is therefore (1 - z,/L)- 4 /7 . Even for a long divertor leg,

z'/L = 0.3 say, this ratio is therefore only 1.23, a roughly 20% range in main-chamber

density.

The effects of S variation on qf itself are not as strong as the variation of R,

because within the front, the magnitude of R is larger than S by roughly the ratio of

10



the total length (L) to the front length, a large factor for a well localized front. Spatial

dependence of R, would describe a plausible situation in which the impurity fraction

(or neutral fraction in the case of hydrogen radiation) possessed an intrinsic gradient

along the field-line, for example due to localization in the divertor. Localization near

z = 0, giving rise to positive dqf /dzh (decreasing front radiation as a function of zh) is

stabilizing, requiring a modest scale length of variation of fi, less than roughly L for

stabilization.

The effects of K variation may be summarized by saying that the front tends to

be stabilized when the cold region is in the highest . region. If the parallel transport

is dominant, and given by Spitzer thermal conductivity, then -gradients could arise

from gradients in Zeff (but not Zeff-gradients arising from the front's temperature

dependence, which are not a function of zh). If impurities are localized to the divertor,

then the Zeff gradient should be negative and so this term makes dqf /dzh more negative,

which is destabilizing.

The variation of K proportional to 1/B 2 produces a quite strong intrinsic variation,

typically a factor of four in a conventional aspect-ratio tokamak SOL. This will tend to

stabilize a front whose cold region is at larger major radius. This introduces a puzzle

concerning marfes, whose cold region is on the inboard. It will be resolved in the next

section when we consider the additional effects of conductivity asymmetries.

5. Marfes

Two key distinctions between a marfe and a detached divertor are that a marfe consists

of two thermal fronts back-to-back which are able to move together, and that the cold

region between the fronts, i.e. the marfe itself, is adjacent to the main plasma region.

The mobility of a marfe means that it is unlikely that its stability can depend

solely on localization of the radiation sources. This is in contrast to a divertor where

localized recycling is a very natural mechanism to localize the radiation effects. The

fact that a marfe is next to the main plasma means that it does not experience the

stabilizing effect mentioned above for a divertor leg, that the cross-field heat flux, S,

might be zero.

The proximity to the main plasma, however, suggests a greater stabilization effect

through the density 'feedback'. Again, it is impossible to give a definitive description

of how the SOL density might be expected to behave. It is plausible to assume that
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the increased density in the marfe tends to diffuse out of the SOL. The simplest model

of this overall effect seems to be to assume that, for the marfe case, the average density

around the poloidal circumference is constant. This would model a situation where

the particle cross-field flux divergence into the SOL was proportional to the difference

between the local SOL density and some average exterior density. One might note that

this assumption of constant average density has been implicitly made in most of the

previous linear stability analysis of marfes.

We treat the SOL with a marfe, as a full periodic domain of length 2L. Then, for

constant S in the hot region, the solution there for temperature is essentially the same

as Eq. (14), namely,

= TL7/2 - - z)1/ , (16)

while inside the marfe we shall approximate the temperature as constant, Tc. The

average SOL density is then

_ 1 p p 2Zh + 2L -z" dz < 1J dz = 2 T Th~ 1 1  C(i - ()2]2/7

(17)

where ( = zh/L is the fractional size of the marfe, and C = 7SL2/4KiTL/ 2 , which is

(at most) unity when T <7/2« T7/ 2 . The integral over the hot region, the last term,

is only slightly underestimated by the simple approximation (1 - ()/TL and this is

partially compensated by approximating

TL = [(7SL 2 /4)( _ )2]2/7 (18)

Then the density equation (17) can be solved for pressure, giving

fiJTM

TM( + Tc(1 - ()3/7

where TM = (7SL2 /4. ) 2/ 7 is the maximum temperature in the SOL, i.e. the value of

TL when ( = 0.

The stabilization implied by this pressure dependence is much stronger than that

obtained by the assumption of constant density at z = L. Expressed in terms of the

scale lengths, the stability of the marfe to expansions or contractions of its size then

requires

1 1 dp 1 TM - (3/7)Tc(1 - ()2/7 1 1 1
-1  = - TM( +Te(1-() 3 /7  > -. (20)

S pL d( L T'T(1 - (A L 1-
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This may be solved to write the condition on the fractional marfe size as

1 10 T, 300 Tc )1 _ Tc

23/77 Tm 26/7343 + (21)

Thus, when the average SOL density is kept constant, and the cold temperature is much

less than the hot, the marfe size is stable if it is smaller than slightly less than half

the poloidal circumference. Experimentally, marfes are observed to be substantially

smaller than this, and so are very stable, as far as their size is concerned.

The freedom of the marfe to move around the circumference is not impeded by

this density feedback. Instead, its poloidal location must be dictated by asymmetries

in , and possibly S. Experimentally, marfes are always observed on the inboard side

of the plasma, although they do tend to be quite mobile. It appears that this inboard

preference is caused by finite aspect-ratio effects. It has been proposed that the pref-

erence for the inboard is caused by increased cross-field transport at the outboard (in

the present approach, larger S there). However, as noted above, there is a strong K

variation with major radius that requires no ad hoc assumptions about the spatial vari-

ation of anomalous transport. It turns out that this effect causes the marfe to prefer

the inboard position, as we now demonstrate.

We assume that the effective conductivity, K(z, T), can be written in a separable

form K = K(z)K(T), so that the spatial dependence is contained in the function K(z),

which we can choose to be normalized, for example such that K = 1 where B = B 0 .

Obviously this separability is possible if Spitzer parallel conductivity dominates. For

the purposes of analysing the poloidal asymmetry, it is then best to work in what

may be considered 'standard' coordinates. We define new spatial coordinate x and

temperature coordinate U by

dz
dx = , dU = rdT . (22)K

The transport equation (3) then becomes

d2U
dx2 = KH .(23)

We note that since K is inversely proportional to B 2 , it is approximately proportional to

the major radius squared. There are then two competing effects. The front dissipation

is largest where K is largest, and this makes the marfe tend to move toward the position
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of largest K, the outboard. But the effective cross-field transport power, KS, is largest

there also, and this tends to move the marfe away from this position. Which of these

tendencies is the larger depends on the size of the marfe, as follows.

The motion of either of the thermal fronts is determined, as we analysed above,
by the balance between the front dissipation, qf and the incoming conducted heat qi.
In a marfe, the two fronts are strongly coupled together by the density feedback effect,
which adjusts the radiated power in such a way as to maintain essentially constant

marfe extent, C. Therefore the fronts can move, but must move at the same speed. The

speed of motion of a front can be obtained by including the time-dependence of the

thermal energy on the right hand side of the conduction equation. That is by replacing

H with H - CpaT/Ot, where C, is the specific heat (3n for two species). Then we can

obtain the first integral as before , which may be written in terms of the front speed

by assuming that the front retains its shape as it moves:

dzh 2KCp az dT 2KCp dT = q2 - q . (24)

This equation applies two each of the two back-to-back fronts. But the sign of the

coefficient of dzh/dt is opposite for the two fronts because their aT/az is opposite. We

can subtract the two equations corresponding to the right and left fronts (referred to by

subscripts + and -) but noting that dzh/dt is the same for both; they move together.

There results

I h = (q + _ q 2- ) - ( q + - q 2- . (2 5 )

where I = f+ - f_ 2KCpT/&zdT is the (positive) effective total resistance to motion

of the marfe, due to heat capacity. This equation shows the competing effect of asym-

metries in qf and qj. The direction of marfe motion is determined by their relative

magnitude.

2Now the dissipation asymmetry qf+ - qf- is given simply through K+ - K_. The

heat conduction asymmetry - q_ has to be determined by solution of Eq. (23) in

the hot region. Although this depends to some extent on the specifics of the geometry

under consideration, it proves straightforward to calculate the conduction asymmetry

in the approximation that the K-variation can be considered to be given by its lowest

Fourier harmonic:

K = KO + K1 cos(,rx/L + 0) . (26)
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Naturally, for a circular cross-section tokamak, this can be regarded as an inverse-

aspect-ratio expansion. The coefficient is then K 1 1/Ko = 2a/R, although our result will

turn out to be independent of the value of K 1. Taking the marfe to be of negligible

extent as far as the external integration is concerned, and located at x = 0 we can

integrate Eq. (23), with H = S = const. to obtain

dU SL [K 1 .
qi± d- = - Ki sin(O) ± r . (27)dx 7r [KoJ

Naturally, the asymmetry depends on 0 the phase angle (approximately poloidal angle)

of the marfe with respect to the K-asymmetry. The value of the asymmetry is

q , q 2 = (SL )2--sin . (28)i - (SL Ko

This must be compared with the dissipation asymmetry, which for a marfe of small

fractional x-extent, ( = (x+ - x-)/2L, is

2f+ q-_ qK [cos(O + 7r ) - cos( - 7r )] ~ q27r- sin(O) . (29)

Here, qf denotes the average of the squared dissipation. The density feedback effect

adjusts the pressure so that q is equal to the average value of the squared heat inflow,

approximately (SL) 2 . Comparing Eqs. (28) and (29) we see that the stable position

of the marfe depends on its fractional extent, . If is small then the conduction

asymmetry will be controlling, and the marfe will be located on the inboard. Conversely

if the marfe is large the dissipation asymmetry will be larger and the marfe will be on

the outboard. Quantitatively, regardless of the magnitude of K 1 /Ko, (provided the

retention of only lowest Fourier terms is justified) the marfe will be on the inboard if

its fractional extent satisfies

722 (30)

This rather remarkable result shows that for the extent of experimentally observed

marfes (typically 10 to 30 degrees), the finite aspect-ratio asymmetry of the effective

conductivity due to geometry is sufficient alone to localize the marfe on the inboard.

Therefore, even though an increase in S at the outboard side would indeed tend to

induce the marfe to occur at the inboard, one cannot deduce from the marfe position

the necessity of such an asymmetry in the cross-field transport to explain the marfe

position, contrary to what is often assumed.
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(It should be noted that the compression of the coordinates implied by Eq. (22)

and B~dz = Bodl means that the x-extent of a specified poloidal angle is larger at

the inboard than the outboard. For typical aspect-ratios, in a circular tokamak, the

poloidal angle corresponding to an extent of 2/7r2 at the inboard is roughly 20 to 30

degrees but the coordinate transformation depends also on the variation of the poloidal

field about which it is hard to generalize.)

Equation (27) is interesting also in respect of the experimentally observed asym-

metries of power to the inner and outer divertor plates in single-null divertors. We

can regard the single-null divertor configuration as placing the two fronts (in this case

the divertor plates) at roughly 0 = 7r/2, the top (or bottom) of the tokamak. Then

parallel power density ratios as large as approximately (7r+1)/(7r - 1) - 2 (outer/inner)

may be expected on the basis of effective conductivity asymmetries alone, regardless of

any cross-field transport asymmetries. It should be emphasised that these conductivity

asymmetries are not in the parallel conductivity per se, but in the effective conductivity

once the geometric effects of variation in the field angles, the major radius, and the

flux-surface spacing have been accounted for. Note, though, that the observed asymme-

try at the plates may not reflect the conduction asymmetry (calculated here) directly

if radiative losses are important. Also note that the present theory cannot explain the

observed dependence of the asymmetry on the direction of B A VB. So other effects

are also significant.

The transition of a detached divertor to a marfe can plausibly be described by a

combination of the two types of density behaviour. We assume that the density that is

conserved is the average density in the main chamber. The rationale for this assumption

is that the main-chamber region, adjacent to the bulk plasma, will be influenced by

cross-field transport, while the divertor leg density will experience rather independent

behaviour dependent on ionization, recycling, and so on. One can readily show, then,

that a calculation along the lines of Eqs.(16) through (19) but integrating only over

the main chamber region C, < C < 1, leads to

P = iTM(- ()4/7 ,for ( <c

= T, for > ( (3.4)3
((- )TM/TC + (1 - ()3/7

Figure 6 shows this combined form. Even though the density range over which the

front is confined to the divertor is very narrow, as soon as it emerges into the main
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chamber, the much stronger density feedback effect keeps the front close to the x-point.

This behaviour bears a remarkable similarity to the experimental observations.

6. Quantitative Radiation Estimates

The strength of what has so far been discussed is that it does not depend on the
quantitative details of the radiation process. Nevertheless, it is useful to note that

using the present formalism we can immediately transform quantitative assumptions

about the radiation function into quantitative predictions about the fronts.

A variety of approximations to the radiation function Q(T) have been used. The

variability of these assumptions reflects in part the considerable uncertainty that arises

in the radiative processes once finite confinement time and charge-exchange effects [171

are included in the radiation calculations. For carbon a reasonable approximation to

the radiation function in coronal equilibrium is

Q(T) = 2 x 10~ 31 (T/10eV) 3 /((T/10eV)4. 5 + 1) W m3  . (35)

However, if the non-coronal effects are dominant, the fall off at higher temperatures is

virtually absent, so the exponent in the denominator is reduced to approximately 3.

The qgl radiated in the front, assuming Spitzer parallel conductivity, Ki1 = I1Te/ 2 , is

given by
2 2 /J2qf = RdT = 2f 1 (nTe) r 1  QTe'dTe , (36)

where T, is the temperature in eV. (In calling this qf we have ignored the distinction

between H and R within the front). For the coronal form (Eq. 35) the required integral

can be done analytically to any maximum temperature Tm. It is

T /2 103/2
QT/ 2 dTe = 2. x 10ln[(Tm/10)4 5 + 1] W m3 (eV)3 /2  . (37)

This is a weak function of the upper temperature Tm. For Tm = 100 (eV) it equals

1.5 x 10-29 W m 3 (eV) 3/ 2 (and is about 1.0 x 10-31 for Tm = 50 eV). This is within a

factor of two the same as the value obtained by Lengyel [18] for oxygen. Substituting

this value and ,i = 2000 W m- (eV)-7/ 2 appropriate to Zeff = 1, we get

qf = 3. X 107 10 2 0m 3 eV W m- 2 . (38)

This is the amount of parallel heat flow that can be dissipated by a front, as a function

of radiative species fraction, fi, and plasma pressure, nT. As has been noted before
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[19], this value tends to be rather lower than is considered necessary for ITER. For

example if the SOL pressure is given by n = 1020 m--3 , T = 100 eV, and f, = 0.04,

we obtain qf = 600 MW m- 2, somewhat less than the roughly 1000 MW m- 2 peak

parallel power density anticipated to flow out of the ITER SOL. However, the actual

value of f QT1/ 2dT may be larger by up to a factor of 4 if non-coronal effects are

strong. This increases the qf by a factor of 2, which might be sufficient, especially

if hydrogen radiation is also important. One can estimate that for atomic hydrogen

f QT/ 2 dT ~ 3 x 10-29 W m 3 eV3 /2 . However, the atomic fraction, although it may

be very large in cold regions, will be a very strong function of position, so the present

analysis is not fully satisfactory for hydrogen radiation.

Another parameter that depends on the quantitative form of the radiation function

is the expected size of the marfe. This size is determined by the assumptions about

density. But if we assume that the average density after the marfe has formed is the

same as in the approximately uniform state prior to the marfe formation, an estimate

can be obtained.

When the marfe is formed, the large fractional decrease in its temperature causes

a strong increase in its local density at constant pressure; (this is the "condensation"

effect). If the marfe extent were a substantial fraction of the periphery, then the pressure

would have to drop a lot in order to conserve average density, as given by Eq. (19).

However the pressure cannot drop too much because if it did the radiation would be

insufficient to sustain the thermal front and the marfe would shrink. So instead, the

marfe adjusts its size (downward) till the pressure is high enough to sustain the front.

The condition for total power balance can be written by forming the first integral

over the half SOL (ignoring in this estimate the complication of asymmetries)

fip 2 ', JT QT 1/2 dT = J RdT = iSdT . (39)

We now need to estimate the lower limit of p allowed by this expression. This is

given by the lower limit of S (relative to radiation). The estimate may be obtained

by considering the linear stability of the uniform state prior to marfe formation. The

condition for this state to be unstable to marfe formation of the lowest order mode

(m=1) is

d Q dS (40)
dT24 T2 dT L
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The stability of this state to a symmetric (m=0) collapse, which occurs at constant

density, rather than constant pressure, is

2 dQ dS
dT dT ;

Both of these stability criteria must be applied at the equilibrium, which statisfies:

fln2 Q = S . (42)

(Qi denotes the initial equilibrium value). Whether or not a marfe instability will occur,

by virtue of satisfying Eq. (40), before the entire SOL collapses because of violating

Eq. (41) depends on the relative importance of the additional conductivity term in

Eq. (40). We will simply assume that conduction is low enough that a marfe does

form. If so, then the collapse stability equation (41) still dictates the minimum value of

S that must be used in Eq. (39). Therefore, we will use the marginal collapse stability

criterion in our estimate.

To make quantitative progress we need to adopt some specific functional form for

S(T). We shall use

S(T) = (T, - T) (43)

which represents a plausible approximation to cross-field transport under which an

equilibrium would be reached in the absence of radiation at temperature T,. If we

take, for generality, the logarithmic derivative of Q to be -C:

dQ = -Cq (44)
dTT

then we can solve the simultaneous equilibrium and marginal stability (equality in

Eq. (41)) to get T = TC/(1 + C) for the equilibrium temperature, and in particular

So = (1 + C)fIjj 2Q, . (45)

We substitute this into Eq. (39) and after elementary integration and some rearrange-

ment we get

f 1 [ 7 1/2 f QT'/ 2 dT 1/2 1
I (46)

p TL 2(1 + C) T /2 (1 _ )1/2
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Evaluating this expression using the carbon radiation form, Eq. (35), for which C ~ 1.5

and dispensing with a factor (Tm/TL)(TL/T)(1 - 7TL/9T,)-1/ 2 , which is nearly

unity in most cases, we get hTM/p ~ 1.5.

The equation (19) for p in terms of ( can be approximately solved for ( in terms

of p as
i TM/p - 1

Tm/Tc - 3/7

which then yields on substitution of i Tm/p and ignoring 3/7 in comparison to Tm/Tc:

( ~ 0.5-- . (48)
TM

For typical radiation functions, the cold temperature Tc, at which the marfe will

equilibrate because of falling radiation, is a few eV. So a typical value of Tc/TM is

perhaps 0.1. We therefore predict that the marfe extent is quite small, 5% of the

poloidal perimeter. Clearly, the exact value of hTM /p depends on the shape of the

radiation function, as represented by the value of C and the Q factors in Eq. (46).

Nevertheless, the dominant effect that causes the marfe to be small is the small value

of Tc/TM, which is a robust feature of the radiation function.

7. Summary

By nonlinear analysis of the parallel heat transport equation combined with pressure

balance, and making reasonable assumptions about density control, we have demon-

strated that a variety of qualitative and quantitative features of thermal fronts in

tokamak scrape-off-layers can be understood.

Divertor detachment has been shown to be possible either through a bifurcation or

through continuous detachment, in either case requiring either localization of radiating

species to the divertor or, more naturally perhaps, density control to stabilize the front

to the divertor. Such mechanisms are almost certainly already in play in the exper-

iments. Plausible assumptions about the density behaviour suggest that detachment

may be continuous but that the range of densities over which the front remains in the

divertor leg is small (~ 20%). The anticipated transition to much stronger density

feedback effects as the front emerges into the main chamber causes the resulting marfe

to remain localized to the x-point over a much larger density range.

Analysis of non-divertor marfes has explained in a very natural way several char-

acteristic features. A marfe's robust identity as a cold region of essentially constant
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size has been shown to be a consequence of the conservation of average density in the

SOL, which strongly stabilizes the marfe size, provided it is small. The marfe's posi-

tion on the inboard of the torus has been shown to be a natural (though somewhat

subtle) consequence of the purely geometric effects on parallel heat flow, regardless of

any presumed asymmetries in cross-field transport, again provided its fractional extent

is small. The expected fractional size of a marfe has been estimated to be of order the

ratio of the cold to the hot temperatures, under conditions of density conservation.

Undoubtedly there are many important effects that are omitted from the present

analysis, notably the transport dynamics of neutral hydrogen. Nevertheless, the fea-

tures we have deduced are in good agreement with experimental observations.
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Figures

Fig 1. Illustrative functional form of source terms versus temperature. Cross-field flux

(S), radiation (R), and total (H).

Fig 2. A thermal front solution of the equation d/dz(rdT/dz) = -H, showing the

'cold', 'thermal front', and 'hot' regions. (This is actually a numerical solution using

the forms of Fig. 1 and n cc T'/2, but with an additional spatially dependent factor

proportional to exp[-(z/0.13L) 2 ] multiplying R to stabilize the front's position. See

text.)

Fig 3. Spatial variation of the heat flux at the front, qi, and the front's dissipation,

qf, as a function of front position, for a uniform SOL and increasing values of density

(cases 1 to 3).

Fig 4. Schematic forms of power flux variation that would lead to continuous detach-

ment (a), and bifurcation (b).

Fig 5. Form of qj appropriate for a uniformly heated SOL except that the region 0 <

z/L < 0.2 corresponds to the divertor leg where the cross-field transport is negligible.

The form of qf OC (1 - Zh/L)4/7 appropriate to the density feedback effect with constant

stagnation-point density is shown. Stable detachment can be obtained, but over a

narrow density range.

Fig 6. Power flux forms for a divertor plasma with a transition to marfe density

behaviour for fronts in the main chamber. There is a strong tendency for the front to

be near the x-point.
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