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Abstract

The two-dimensional kinetic model of the scrape-off layer recently suggested by Catto and

Hazeltine [Submitted to Physics of Plasmas] is extended by allowing for ion recycling at

the limiter or divertor plates by an effective ion reflection coefficient. The model describes
the balance between radial diffusion and streaming along the magnetic field, and the
structure of the resulting scrape-off-layer is found to depend on the reflection coefficient.

The particle and heat loads on the limiter or divertor plates are calculated, as well as the
boundary conditions on the density and temperature gradients of the core plasma. By
assuming that electrons have a Maxwell-Boltzmann distribution, the radial variation of the

plasma potential is determined, and the potential of the Debye sheaths formed at the limiter

or divertor plates is estimated.

PACS numbers: 52.40.Hf, 52.55.Fa
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I. INTRODUCTION

The physics of the edge plasma in a tokamak is very intricate since a large number of

effects come into play.1 Densities and temperatures vary by several orders of magnitude,
neutral particles are abundant, making ionization, recombination and charge-exchange

processes important, and the interaction between the plasma and the wall is of significance.

It is therefore very difficult to construct reasonably simple mathematical models of the edge

plasma. Either one has to resort to computer simulation of complex systems of equations,

or substantial simplifications must be made. Although the latter approach does not give

results that are accurate enough for a detailed comparison with experiments, it has the

advantage of giving physical insight, providing qualitatively useful information and simple

limits that can be used to check large codes. This is the philosophy of, e.g., the two-

dimensional kinetic models for the scrape-off-layer (SOL) suggested by Hinton and

Hazeltine 2 , and, more recently, by Catto and Hazeltine 3. The latter model describes the

streaming of the plasma along the magnetic field lines and the diffusion across the field,

and is, probably, the simplest two-dimensional kinetic model possible. Analytic tractability

is achieved by only considering one particle species, neglecting collisions, and assuming
perfectly absorbing walls. However, within the same mathematical framework it is possible

to describe a more realistic wall-particle interaction by modeling the effect of recycling as a
effective reflection coefficient. The motivation for this approach is that an ion hitting the
wall usually recombines and returns as a slightly less energetic neutral particle, which
subsequently is ionized. 1 In addition, we are able to estimate the potential of the Debye
sheaths formed near the limiter or divertor plates. These topics are the subject of the present

paper, which is organized as follows. In Sec. II, we formulate the model equation,

identical to that in Ref.[3], but introduce more general boundary conditions allowing

particles to be reflected at the limiter or divertor plates. The solution of the resulting

boundary value problem is derived in Sec. III, and is simplified in Sec. IV. In Sec. V, the
matching to the core plasma is discussed, and the particle and heat loads on the wall are

calculated. The physics of the electron population is treated in Sec. VI. By equating the ion

and electron loss rates, the Debye sheath potential is calculated. Since the fluxes of ions and

electrons turn out to have different radial distributions, we conclude that a current must

flow in the limiter or divertor plates, a fact which is indeed observed in experiments.

Finally, in Sec. VII our conclusions are summarized.
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II. KINETIC MODEL FOR THE IONS

In describing the SOL plasma, we use the simple kinetic model developed in Ref.[31,
describing ions from the core plasma diffusing into the SOL, and flowing along the
magnetic field lines into the limiter or the divertor plates. However, we modify the
boundary conditions to allow for the reflection of particles. Since the radial width of the
SOL is very small, it is reasonable to assume that only the terms describing radial diffusion

and motion along the magnetic field lines need to be retained in the kinetic equation, i.e.

/ s Dr .(1)

Here, f is the ion distribution function, v11 the parallel velocity, s the coordinate along the

magnetic field lines, and D denotes the diffusion coefficient in the radial direction r. We
have neglected any parallel electric field, as well as magnetic trapping and drift motion, but
a radial electric field is admissible. The diffusion may be either classical or anomalous. In
the former case, only those parts of the collision operator leading to radial diffusion are
retained in (1); in the latter case, collisions are ignored altogether.

It is convenient to introduce the normalized coordinates

x = (r - ro)(I v,,LD)1 , (2)

y s/L,

where ro is the radius of the last closed flux surface, and L is the connection length, i.e.

the characteristic length of a magnetic field line connecting the last closed flux surface to the
limiter or divertor plates. In these coordinates, the kinetic equation (1) becomes

af a2f,
a = Tx 2 ' (3)

where a =v-/I v,,I, and f, and f_ refer to the co- and counterpassing populations,

respectively.

The limiter or the divertor plates are taken to be situated at y=O and y=1. When they are hit
by an ion, the latter is either absorbed, as assumed in Ref.[3], or it is reflected. If the
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probability of reflection is y, the boundary condition at the plate y=1 is

f_(x,y= 1) = If.(x,y = 1). Because of the symmetry about y=1/2, we must have

f_ (x, y) = f, (x, 1 - y), and the boundary conditions for f, are thus

If,(x,y = 1) = f,(x,y = 0), x > 0,

f,(x, y =1) =f,(x, y =0), X < 0. (4)

For notational simplicity, we suppress the velocity dependence of f, and y. The second

boundary condition describes the periodicity of the core plasma in the poloidal-angle-like
variable y. In practice, the reflected particle usually comes back with less energy than the
impacting ion. 1 On the other hand, the latter is accelerated in the Debye sheath, which is
formed near the material surfaces. To some extent, these processes can be expected to
cancel; we neglect them both for the sake of simplicity and analytic tractability. More
importantly, the backscattered particle is usually neutral, and is subsequently ionized. In
our analysis, we assume that the ionization takes place inside the SOL, close to the limiter
or divertor plates, so that we can model this recycling by the effective ion reflection
coefficient y. When this is the case, the boundary conditions (4) are appropriate. As we
shall see, the solution to the model equation (3) is quite insensitive to the exact value of y.
In Ref.[1], a graph of y as a function of energy can be found. In the solution of the kinetic

equation presented in Secs III and IV below, we allow for arbitrary velocity dependence of
y and D. In Secs V and VI, however, we take y and D to be velocity independent for

simplicity.

The distribution function should be small for x>>1, and in the opposite limit, -x>>1, we
expect it to give a y-independent flux out of the core and into the SOL. Therefore, the
boundary conditions at infinity are

f, (x, y) -+ 0, x - +-o,

f+(x, y) -> a + x , x -+-oo, (5)

where a and P are (velocity-dependent) constants.

Close to the limiter or divertor plates, a Debye sheath is formed, as will be discussed in
more detail in Sec.VI below. The thickness of the sheath is ignored since it is comparable
to the Debye length (or perhaps an ion Larmor radius is the magnetic field lines intersect the
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divertor plates at a shallow enough angle), and it therefore is very small in comparison with

the SOL width.

III. SOLUTION

The solution to the equation (3) with the boundary conditions (4),(5) can be solved by the

Wiener-Hopf method4 , using Fourier transforms in the complex plane. For complex k, we

define

F,(k, y) f f,(x, y)exp(ikx)dx, (6)

0

L(k) ff(x,1)exp(ikx)dx, (7)

U(k) Jf+(x,1) exp(ikx)dx. (8)
0

Because of the boundary conditions (5), L(k) and U(k) are analytic in the lower and
upper half planes, respectively. Moreover, anticipating that If, (x, 1)1/ exp(- x) < -c as
x -> -c, we conclude that U(k) is also analytic in at least a narrow region below the real

axis, i.e. for Im k>-8. (Here and in the following, 8 denotes any arbitrary, sufficiently

small positive number). Furthermore, from the definitions (7),(8) it follows by integrating
by parts that L(k) and U(k) are O(Ikr' ) as IkI-> -c in the respective regions of

analyticity.

After Fourier transformation, the model equation (3) and the boundary conditions (4) give

F,(k, y) = [L(k) + yU(k)]exp(-k 2y), (9)

V(k) U(k) _ 1 - exp(-k 2 ) (10)
L(k) 1 - y exp(-k 2 )

In order to find the unknown functions L(k) and U(k), we write V(k) as a quotient,

V(k) = V,(k) / V.(k), (11)
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of two other functions V,(k) and V.(k), which are analytic in the lower and upper half

planes, respectively, and have the additional property of being 0(1 kI) as Iki-+ oo. If this

can be done, the function

( L(k)V,(k) ,Imk<0 (12)
S -U(k)V.(k) ,Imk > -8

which is defined by either of these expressions when -8 Im k < 0, is apparently

analytic in the entire complex plane and bounded when k -+ o. Therefore, by Liouvilles

theorem5 , it must be equal to a constant, C(k) = C, and we have simply

L(k) = C / V,(k) and U(k) = -C / V,(k).

The factorization (11) is not unique. Instead of following Baldwin, Cordey and Watson,6

as was done in Ref. [3], we employ a different factorization7

k2
V,(k) . exp[-q,(k)],

k - ia (13)
V. (k) a (k + ia) exp[-q. (k)],

where a is an arbitrary positive number, and

1 **Ti6 q(z)dz
q1,(k) a- _ f , (14)

2ri -.. i, z-k

(z)=In(Z2 + a2 1 - exp(-z 2 ) (15)
Z2 1 - y exp(-z Z)

Here and in the following, the upper sign is taken for q (k) and the lower one for q, (k),

so that the integration path is slightly below the real axis for q,, (k), and slightly above it

for q, (k). Since the logarithm is analytic in a strip around the real axis, it follows from

Cauchy's theorem that q.(k) - q,(k) = q(k). Together with the definitions (13), this

proves the validity of (11).

This solves, in principle, the problem of finding L(k) and U(k), and the distribution

function f+ (x, y) can be obtained by taking the inverse Fourier transform of (6). From

Eqs (9) we have

6



1 - -1 
2f+(x,y) = J [L(k)+ WU(k)] exp(-ikx - k2y)dk, (16)

and by using Eqs (12)-(14), we obtain

(X ) C(1- y) ~-s2 k - ta - k (72(xy)= exp[-ikx-ky +q,(k)] k2 dk (17)

_C(1 - y) dki
= K - exp[-ikx - k2 y + q(k)] (k (18)

27r _-. f (k + ia)[1 - exp(-k 2)]

This completes the solution of the kinetic equation.

IV. LIMITING FORMS

Unfortunately, the solution (17),(18) for the distribution function we have obtained is not

very explicit. It is, however, possible to find useful asymptotic expressions, which is the

purpose of this Section.

First, we derive expressions for q,, (k). Integrating (14) by parts gives

1 [*F 1 z a2  ~
qu,,(k) = -- f zdz exl ) ep(2 2(2+a2 n(z - k) (19)m .;s exp~z) _-1 exp(z 2 ) _ y -2z +a 2 )J -k)(9

The last term in this integral is readily integrated by closing the integration contour in the

upper or lower half plane,

1 **ib a2zdz
- f 2 2 2)ln(z - k) = ln(Tia - k), (20)
7(i _.;; 8 z2(z +a)

where, again, the upper signs are to be taken in the expression for q (k), and the lower

ones in that for q,(k). The first two terms in (19) can be handled by expanding the

logarithm as ln(z - k) = In z - Y'n-(k/z)". Then, noting that In(-I zI) = InI zl~F ri, we

obtain
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1_ *T-i Y In z 1=+ - z In zdz

zi __;;,exp(z)-y . exp(z2)-y i _vexp(z2)_y

+1n(1 - y)1/2 y=< (21)
7r / 2i y = 1

where the integral from -E to e is taken below the origin for q, (k), and above it for q, (k).

As shown in the Appendix, the remaining integrals can be expressed in terms of Riemann's
zeta function, 4(s), and a slight generalization of it, the so-called polylogarithmic function

O(s, y),

1 **-i8 )C~" (±i)"
-- f 2 zdz = T 0(1 - n/2, y), (22)ni -. Fi exp(z )-y F(n/2)

where O(s, 1) = C(s). Collecting our results, we obtain the following series
representations for q,, (k) for y<1

q,,,(k) = ni/2 ± ln(Fia - k) T ln(1 - 7)1/2

~i (±ik)" [4(1 - n / 2) -p(1 - n / 2, y)]. (23)
,= nF(n / 2)

It is possible to sum the even terms in the series by using the knowledge that
q.(k) - q,(k) = q(k). Using the definition of q(k), Eq.(15), and evaluating the
difference between q. (k) and q, (k) as given by (23) gives

q,, g(k) = 7d / 2 t In (+ia - k) ± 1 In I1 exp(-k 2)

2 Ik2(l- yexp(-k 2)

** (-1)" k2n+1
-i ++ [C(1/2 - n) -0(1/2 - n, y)]. (24)

n=O (2n +1)IF(1/2 + n)

The expressions (23) and (24) are useful for small k. The power series converge for
Ikl< min[Iln Y11/2 ,(2r)1/2].

We are now able to determine the asymptotic behavior of f,(x,y). For x -> -oc, i.e.
towards the core plasma, f, (x, y) should approach a linear function in x, according to our
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boundary condition (5). Indeed, if the path of integration in (18) is displaced into the upper
half plane but still passes below the singularities where 1 - exp(-k 2 ) = 0, it is clear that

the double pole at the origin will give the principal contribution to the integral if -x>>1. In

other words,

f(x, y) = iC(1 - Y) d exp[-ikx - k 2 y + q(k)] (25)
dk k + ia lk=O

when x -+ -o. The behavior of q. (k) can be read off from Eq.(24), and gives

f,(x,y) ~ #(v)(x - i) , x -+ -00, (26)

where # = -iC(1 - Y)12, and

, = -a/# = 7r-12 [ (1/2, y) -(1/2)], (27)

$(1/2, y) = 7 > 2 3/ 1/2)
n=1 nY

4(1/2) ~ -1.46.

This proves that f, (x, y) indeed satisfies the boundary condition (5).

In the opposite limit, x -* +oo, it is convenient to use Eq.(17), deforming the contour of

integration into the lower half plane, still making it pass above the singularities

kn = ±(-Il In yl+2,rni) 1/ 2  (28)

satisfying 1 - y exp(-k2) = 0. The distribution function is equal to the sum of the

residues at the poles,

f+(x, y) = #(v)(1 - Y)1/2 - k2ia exp[-iknx - k,2y + q,(kn)] (29)
n=-- 2

The pole closest to the real axis, ko = -i lIn Y11/2, will of course make the strongest

contribution. For large x, we therefore have
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f,(x,y) - #(v)(1 - y) y-' exp[-x In y11 2 +S(y)] (30)211n y1312

where we have made use of Eq.(23). S(y) denotes the infinite sum appearing in (23) taken
(with the lower signs) at k = ko. The spatial behavior of the distribution function inside the
SOL, f, (x, y) - fy exp(-xl in Y112 ) is in remarkable contrast to the case when y = 0
and f+(x,y) _ (y 112 / x)exp(-X 2 / 4y), as shown in Ref.[3]. Note that IIn Y1/2 is an

extremely slowly varying function of y, and is of the order of unity for almost any value of
y. Therefore, even a very small reflection coefficient has a profound influence of the outer
parts of the SOL, but its exact value is quite unimportant.

Still, when y is very (unrealistically) small, I In Y11/2 >> 1, the approximation (30) breaks

down, and the contributions from the other poles need to be taken into account. In this
case, the sum in (29) can be replaced by an integral over n since a large number of poles
have nearly the same imaginary part and thus make comparable contributions to the sum. In
addition, since all k, are large, q, (k,) is small [cf. Eq.(14)], and we recover the Y = 0
result3

f,(x, y) - ) exp(-ikx - k2y)k-dk = -I2 exp(-y). (31)JXY)=2m _._ Xc x 4y*

V. MATCHING TO THE CORE

The still arbitrary function #l(v) is determined by the conditions in the core plasma. In
order to rigorously derive an expression for # (v), the solution to the kinetic equation in the
SOL should be matched to that in the main plasma, for which it thus is necessary to have an
accurate model. However, considering the x -* -o form obtained above (26),

f+(x, y) = #(v)[(r - r,)(I v, I /LD)/ 2 - 17], (32)

it is reasonable to assume that #l(v) should be chosen as a Maxwellian, as was done in
Ref.[3],

#l(v) = -(no/fl)fM(v) = -(no/n)(M;/2;rTo) 1 2 exp(-Miv2 /2TO), (33)

10



where no and To denote the edge density and temperature, and M the ion mass. It should

be pointed out that (33) is by no means the only possible choice consistent with the

assumptions we have made. Alternatively, one could, e.g., choose #(v) - fm (v)11 v// l/2.

This has the advantage of making the distribution function approach a Maxwellian towards

the core (if D is velocity independent), but introduces a singularity at v11 = 0. In

addition, the total number of ions in the SOL becomes infinite, as follows by integrating the

distribution function over the velocity space and over r > ro, i.e. x>0. This is somewhat

unsatisfying, especially when calculating the Debye sheath potential as in Sec.VI below. A

rigorous matching to the core is beyond the scope of this work, and we therefore adhere to

the choice (33) used by Catto and Hazeltine3. The generalization of the results given below

to other choices of #3(v) is straightforward.

The ion density n, and temperature T; are obtained by integrating the distribution function

over velocity space, keeping r (and not x) constant. With the choice (33) for #3(v), we find

for -x>>1

n fj 2  [f+(x,y)+ f,(x,1 - y)]d 3v

r const.

no "1+ 1 r(3/4)( 2T r T0 - r (34)

3noTo/2)[ 17/6) 1(y) M, (irLD)/ 2

where t(y) is defined by Eq.(27). This determines the boundary conditions on the

solution to the core plasma equation. For simplicity, we have assumed that y and D are

independent of velocity, and we continue to do so throughout the rest of this paper.

The fluxes of particles and heat to the limiter or divertor plates are calculated as in Ref. [3].

Locally, they are equal to

- (" a (1 - y)(B, / B) ff(x, 1)v//( 22 d3v (35)
v//>0  r const.

per unit length in the toroidal direction for each surface (y=0 and y=1) facing the plasma.
B, is the poloidal magnetic field, and 1-y is the probability that an impacting ion is
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absorbed. Integrating over r and using Jff+(x,1)dr =J'f,(x,1)(LD/v1 I) 1/ 2 dx -

(LD/I v,,)112U(0), gives

( = 2-3/47-1/2(LD)1/2 n,( B 1. ()
Pi) 4 B M) i(y) 7T 0 /4 )(

The total particle and heat loads spread over both plates is obtained by multiplying (36) by
47R with R the major radius.

VI. THE ELECTRONS

The SOL width is determined by the ions, and quasineutrality is maintained by the electron
population. Close to the limiter or divertor plates, a Debye sheath is formed, which reflects
all but the very fastest electrons, and most electrons thus bounce back and forth between
the plates. In Refs [2,3], the customary assumption was made that the electrons have a
Maxwell-Boltzmann distribution,

f,(v) = n,(M, / 2nT,)112 exp(-Mv 2 / 2T,)
n, = Zn = Zn, exp[e( - (DO) / T,] , (37)

where n, is the density of the electrons, T, their temperature, Z the ion charge number, and

o an edge potential. Apparently, this assumption cannot hold in the outer parts of the SOL
since the ion density goes to zero there, which would force cb to become negative infinite.

However, it is reasonable to assume that (37) holds locally, in the vicinity of the last closed
flux surface. This allows us to calculate the electrostatic potential (D in this region, and to

estimate the sheath potential.

For -x>>1, the ion density ni has already been calculated in (34), and the electrostatic

potential becomes

T I F(3/4) 2T; )14 ro - r

e I 17(y) Mi ) (ZLD)121
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where the second term in the logarithm is dominant. Apparently, (D decreases

logarithmically towards the last closed flux surface.

Near the limiter or divertor plates, the density is

n;(r,1) = (1+ y) J f+(x, y = 1)d 3V

_ no 2(1+ y)LD 1 M4)xx, (39)
7(y) (r - ro) 2  2gxTo (

where g(x) = f+(x, y = 1)/P (v) and q = (LD) 2 (M; / 2T;)/(r - ro)4 . For q<<1, i.e.

far outside the last closed flux surface, the integral in (39) can be approximated by

fg(x) exp(-qx4 )xdx f g(x)xdx = U' (0)/i#(v) = - i(y)/(1 - y) (40)
0 0

[cf. Eq.(8)], and therefore

ni(r,1) = no+y L 2 )/. (41)
1 - y (r - ro) 7rTi

This shows that the SOL width is roughly

[ (1+ Y)LD 1 2(2M (42)
W- (1 - Y) rT; 42

Let us now turn to estimating the potential of the Debye sheath formed near the limiter or
divertor plates, which is equal to the difference between the plasma potential (D(r,1) and the

plate potential dp. Only electrons fast enough that v11 > vo [2e(4) - O,)/M]

penetrate the potential barrier and are lost to the plates. If the Maxwell-Boltzmann

assumption (37) holds, the local flux of electrons to a plate is therefore

dre/dr = (BP/B) f fe(r,1, v1)v1/d3v 
V// >VO (43)

Zno(Bp/B)(T/27rMe)V2 exp[e(cIp - c)o)/Te]
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Apparently, it does not vary with r. The reason for this is that the Maxwell-Boltzmann

assumption (37) makes the sheath potential barrier decrease at the same rate as the density

as a function of r, so that the electron flux remains constant. As we have already remarked,

however, inside the SOL the Maxwell-Boltzmann assumption can only hold in the vicinity
of the last closed flux surface, i.e. approximately for ro r . ro+w, where w is the SOL

width defined in (42). For still larger radii, the plasma potential is expected to fall off less

rapidly than suggested by (37), and should smoothly approach the plate potential as

r -+ oo. The total electron flux is thus approximately

Fe ~ w de/d r = Zno L exp[e((, - (IO)/Te]. (44)
B (1- y) D M, 2MT )

The total charge flux must vanish in steady state. Therefore, I, is equal to the ion charge Z

multiplied by the number of ions hitting the limiter of divertor plates in unit time. Since

most reflected ions come back as neutrals, all impacting ions deposit the charge Ze on the
wall, not only the absorbed ones, and therefore the ion charge flux is ZF;/(l - y).
Equating this to the electron flux (44) and solving for 4)p, we obtain

(Do - , ~ TIn 2 (y)(1 - y 2 ) M;Te (45)
2e IMTiII

where we have omitted numerical factors of the order of unity. It should be kept in mind

that the estimate (45) is only a very approximate one. Still, it can be expected to give a
reasonable estimate for the y-dependence of OP. In Ref.[2], an estimate for the sheath

potential was obtained in a similar manner but neglecting the radial variation of the plasma

potential.

When the potential (45) is established, the number of electrons hitting the plates is equal to
the corresponding number of ions multiplied by Z. However, the electron and ion fluxes do

not have the same radial distribution. This means that the local charge flux does not vanish,

and must be compensated by a current flowing in the limiter or divertor plates. Since the
ion flux is largest near r = ro and decreases for larger r, whereas the electron flux is

approximately constant near r = ro, the current is expected to be directed in the positive r-

direction close to r = ro.
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VII. SUMMARY

The inclusion of an effective ion reflection coefficient y to model recycling at the limiter or

divertor plates leads to several quantitative modifications in the SOL structure. In the part of
the SOL facing the core plasma, r < ro, the boundary condition, i.e. the relation between

the edge density and gradient, changes and this modifies the matching conditions to the
core solution. The distribution function in the outer part of the SOL, r > ro, is significantly

affected at high energies by the presence of even a very small reflection coefficient. This is,
of course, to be expected since the reflected particles diffuse in the radial direction whilst
bouncing back and forth between the divertor plates. This leads to a broadening of the SOL
of order I ln y-1/ 2 due to recycling [Cf. Eqs. (30) and (31)].

The density decreases as (r - r,)-2 a SOL width outside the last closed flux surface, and
not exponentially, exp[-(r - ro) / 2], as commonly assumed.1 By assuming the

electrons to have a Maxwell-Boltzmann distribution, it is possible to estimate the potential
of the Debye sheath which is formed near the limiter or divertor plates. As usual, it depends
only weakly (logarithmically) on the plasma parameters, and, in particular, as
(Te2e) ln[j2 (y)(1 _ y2)] on the reflection coefficient, where 7(y) is defined in Eq.

(27). Consequently, recycling reduces the sheath potential and thereby the ion acceleration
to the wall. The particle and heat loads on the limiter or divertor plates have been calculated
for the ion population. The different radial distributions of the particle fluxes give rise to a
current flowing in the plates, which is predicted to flow outwards (i.e. in the positive r-
direction) near the last closed flux surface.
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APPENDIX: THE POLYLOGARITHMIC FUNCTION

In this Appendix, we show how to express integrals of the type (22) in terms of the so-
called polylogarithmic function8 4(s, x), defined by

0(s'x) , (Al)
n=1 t

whenever this sum converges. It does so for all Re s > 0 if I xl < 1.For x=1, it reduces to

the Riemann zeta function, and for s=1, xi < 1 to the natural logarithm ln(1+x). When the

sum (Al) does not converge, it is possible to obtain an alternative definition as follows.

From the definition of the gamma function

n-Tf(s) = y'-1 exp(-ny)dy. (A2)
0

When (Al) converges, we therefore have

J(sx) - dy. (A3)
IF(s) 0 exp(y) - x

Now consider the integral

(-z)s-lxI = J dz, (A4)
Hexp(z) - x

where (-z)sl -I zls-1 exp[(s - 1)iarg(-z)], Iarg zl ir, and H is Hankel's contour5 ,
which starts at z = +oo on the real axis, encircles the origin once counter-clockwise, and

returns to the real axis at z = +oo. It is easily verified that if Re s > 0, this integral is equal

to

.. s-1
I = -2i sin(sr) J U dy. (A5)

0 exp(y) - x

This is done by letting H follow the real axis and encircle the origin very close to it.
Finally, recalling (A3) and using T(s)F(1 - s) = 7r / sin szr, we find
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O(s,x) = - s) I(-Z)s~x dz. (A6)
2 H p(z)-x

This expression is analytic for all s except the positive integers s=1,2,... It therefore serves

as a more general definition of #(s, x) than the sum (A1). Still, the latter is a suitable

definition when s is equal to a positive integer. Using (A6), it is straightforward to evaluate
the integral (22) in Sec.IV.
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