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ABSTRACT

The properties of the Kapchinskij-Vladimirskij (K-V) equilibrium and envelope equa-

tion are examined for an intense charged-particle beam propagating through an applied

periodic solenoidal focusing magnetic field including the effects of the self-electric and self-

magnetic fields associated with the beam space-charge and current. It is found that the

beam emittance is proportional to the maximum canonical angular momentum achieved

by the particles within the K-V distribution. The Poincar4 mapping technique is used

to determine systematically the axial dependence of the radius of the matched (equilib-

rium) beam and to explore nonlinear resonances in the nonequilibrium beam envelope

oscillations. Certain correlations are found between the nonlinear resonances and well-

known instabilities for the K-V equilibrium. It is shown, for the first time, that the

nonequilibrium beam envelope oscillations exhibit chaotic behavior for periodic focusing

magnetic fields and sufficiently high beam densities, and that there exists a uniquely

matched beam in the parameter regime of practical interest, i.e., ao < 90*, where ao is

the phase advance over one axial period of the focusing field in the absence of space-

charge effects. The nonlinear resonances and chaotic behavior in the nonequilibrium

beam envelope oscillations may play an important role in mismatched or multiple beam

transport, including emittance growth and beam halo formation and evolution.

PACS numbers: 07.77.+p, 29.27.Eg, 41.75.-i, 52.25.Wz
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I. INTRODUCTION

The exploration of equilibrium and nonequilibrium properties of an intense charged-

particle beam in a periodic focusing channel has been emphasized in high-current ac-

celerator and charged-particle beam research [1, 2]. Such research is critical to the ad-

vancement of basic particle accelerator physics and to the design of high-current linear

accelerators and high-current beam transport systems. An important application of high-

current charged-particle beams is heavy ion fusion [3].

In 1959, Kapchinskij and Vladimirskij [4] constructed the first and only known equi-

librium distribution function for a continuous beam in a periodic focusing channel in-

cluding the effects of beam space-charge and current. This pioneering work has led

to theoretical and experimental investigations of several critical aspects of an intense

beam focused by a periodic transport channel, including: (i) introduction of the concept

of root-mean-squared (rms) emittance [5]-[7], (ii) derivation of the rms beam envelope

equations [5, 6, 8], (iii) investigation of current intensity limits [9], (iv) analysis of the

stability properties of the Kapchinskij-Vladimirskij equilibrium [10], (v) study of the

phenomenon of emittance growth [11]-[15], and (vi) exploration of beam halo formation

and evolution [16]. Despite these efforts, a basic understanding of the physics of intense

charged-particle beam propagation in periodic focusing channels has not yet emerged.

The purpose of this paper is to examine the basic properties of the Kapchinskij-

Vladimirskij (K-V) equilibrium and envelope equation for intense charged-particle beam

propagation through a periodic solenoidal focusing magnetic field, including the effects of

the self-electric and self-magnetic fields associated with beam space charge and current.

The K-V equilibrium distribution function is derived. It is emphasized that the periodic

solenoidal magnetic field configuration possesses a higher degree of symmetry than the

alternating-gradient quadrupole magnetic field configuration. It is shown that the un-

normalized emittance determines the upper and lower bounds on the canonical angular
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momentum of the particles within the K-V distribution. A normalized beam envelope

equation is presented, and it is characterized by two parameters, namely, the intensity of

the focusing field and the beam self-field perveance. The properties of the beam envelope

equation are examined over a wide region of parameter space. The Poincari mapping

technique [17] is used to determine systematically the axial dependence of the radius of

the matched (equilibrium) beam and to explore nonlinear resonances in the phase space

described by the beam envelope equation. Certain correlations are found between the

nonlinear resonances in the nonequilibrium beam envelope oscillations and well-known in-

stabilities [10] for the K-V equilibrium. It is shown, for a periodic focusing magnetic field

and sufficiently high beam density, that the nonequilibrium beam envelope oscillations

can exhibit chaotic behavior, i.e., a very sensitive dependence on initial conditions. The

nonlinear resonances and chaotic beam envelope oscillations may play an important role

in mismatched or multiple beam transport including emittance growth and beam halo

formation and evolution. Furthermore, it is shown that there exists a uniquely matched

beam in the parameter regime of practical interest, i.e., in the regime where the strong,

second-order (envelope) instability [10] is avoided.

The organization of this paper is as follows. In Sec. II, the Hamilton equations of

motion are presented for a single particle in both the laboratory frame and the Larmor

frame in the paraxial approximation. In Sec. III, the Kapchinskij-Vladimirskij equilib-

rium distribution function is constructed, and the beam envelope equation is derived. It

is shown that the unnormalized emittance determines the upper and lower bounds on the

canonical angular momentum of the particles within the K-V distribution. In Sec. IV, the

properties of the beam envelope equation are studied using the Poincar6 map. The axial

dependence of the radius of the matched (equilibrium) beam is obtained and shown to be

unique in the parameter regime of practical interest. Chaotic beam envelope oscillations

are found for a periodic focusing magnetic field and sufficiently high beam density.
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II. CANONICAL DESCRIPTION OF SINGLE-PARTICLE MOTION

In this section, we present a canonical description of the motion of a single particle in

an applied periodic solenoidal focusing magnetic field and the equilibrium self-electric and

self-magnetic fields associated with an intense nonneutral charged-particle beam. After

making the paraxial approximation, we express the Hamiltonian and the equations of

motion for a single particle in both the laboratory frame and the time-dependent Larmor

frame.

A. Equations of Motion in the Laboratory Frame

We consider an intense charged-particle beam propagating with average axial velocity

Ibce, through an applied periodic solenoidal magnetic field described by [1]

(ext)(x, ys) = B,(s)e- - -B'
2 e. B(s)(xe'±ye')()

in the thin-beam approximation. In Eq. (1), use has been made of the convention s = z

to denote axial coordinate, the "prime" denotes derivative with respect to s, and c is the

speed of light in vacuuo. For a periodic solenoidal magnetic field with the fundamental

periodicity length S, the axial magnetic field Ba(s) satisfies the condition

B,(s + S) = B,(s) . (2)

The vector potential for the applied magnetic field can be chosen as

,(ext)(X, s) = B.(s)(-ye', + xe) (3)

with B(ext) = v x Z(ext).

In the paraxial approximation [1], the transverse particle motion is assumed to be

nonrelativistic, and the Budker parameter is small compared with unity, i.e,

v = q2 N/mc 2 < 1 , (4)
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where N = f dxdyno(x, y, s) is the number of particles per unit axial length of the beam,

and q and m are the particle charge and rest mass, respectively. Under these conditions,

the equilibrium self-electric and self-magnetic fields associated with an intense nonneutral

charged-particle beam can be approximated by

P(S)(X, Y, s) = e + e, (X, , S) , (5)

and

~sF -, ~ A(s)(X, y, IS) ,(6)

where the scalar potential for the self-electric field obeys the Poisson equation

/82 i92\(

-(s)(Xys) = -47rqno(x,y,s) , (7)

and the vector potential for the self-magnetic field is given by

(= flb(S)(x, y, s)ez . (8)

Throughout this paper, the equilibrium particle density no(x, y, s) in Eq. (7) is assumed

to be uniform over the cross section of the cylindrical beam with radius rb(s), i.e.,

no(x, y, s)= N/irr(s) for 0 < r < rb(s),
0 for r > rb(s),

where r = (x2 +y 2 )1/2 is the radial coordinate, and r6 (s) = rb(s+S) is a periodic function

of s. From Eqs. (7) and (9), the scalar potential within the beam is easily found to be

4(S) = - qNr 2  (10)
ri(s)

The equations of motion in the laboratory frame can be derived from the single-

particle Hamiltonian defined by

H(x,y,s, P.,P,,P)

= p - (ext 2 (ext ))2+C2 (11)
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where (s, P.) is a canonical conjugate pair and the canonical momentum P is related to

the mechanical momentum P by P = y+ (q/c)[(ext) + A(s)]. Here, s = ibct is the

axial coordinate, where Jic is the average axial velocity of the beam particles. Because

the transverse motion is assumed to be nonrelativistic in the paraxial approximation, the

axial mechanical momentum p, = ybmpbc can be treated approximately as a constant.

Hence, the full Hamiltonian can be approximated by

H = ybmc 2+ H 1 , (12)

where Yb = (1 - p2)1/2 = const., and the Hamiltonian for the transverse motion is defined

by

H±(x, y, P,, P,, s) = [ B+(s) - (2)2 q(s) 2 2+y2), (13)
2-m 2c 2c 1 srb(s)

where s = fbet is the axial coordinate.

It is useful to introduce the normalized transverse canonical momenta and Hamilto-

nian,

p ___ P._y__ H-L(14)
7bM/ibC 7bM JbC' yb2(4

the normalized focusing strength parameter,

)= 2 (a) (15)

and the normalized self-field strength parameter,

K
K,(S) = , (16)

where K = 2v/-y3fi2 = 2q 2N/ybJfimc 2 is the normalized perveance of the beam. Making

use of the above notations, the normalized Hamiltonian for the transverse motion can be

expressed as

A A 2 ] [ 2)1 , (17)H-L(x, y, P., Py, s) = 2P,[~ + y Vr,. (s)] + [PY - X Vr--(s)] - ., (S)(X2 + y2) (7

7



where the axial distance s = /Ict is an effective time variable. The equations of motion

for a single particle in the laboratory frame are given by

=$ -~-
y' = -A = p, -Y xVx, - ,S

op.

a' = - = Vyf z(s) -k[z(s) - (s)Ix , (18)

P'= - = = -P - [X.(s) - .(s)y

Note that the motion in the x-direction is strongly coupled to the motion in the y-direction

in the laboratory frame.

B. Equations of Motion in the Larmor Frame

We now perform a canonical transformation from the laboratory frame to the so-called

Larmor frame [2] which rotates with respect to the laboratory frame with angular velocity

Ob6c (s) = qB,(s)/2ybmc, i.e., at one-half of the local relativistic cyclotron frequency.

The generating function for such a transformation from (x, y, P, Py) to (:,# , Px, b) can

be chosen as

F2(x, y; P., f,, s) = {x cos[O(s)] - y sin[O(s)]}P, + {x sin[(s)] + y cos[O(s)]}P, , (19)

where O(s) = f,, ds x2 (s). The generating function F2 defines the following transforma-

tion

x = x cos[O(s)] - y sin[0(s)]

= x sin[O(s)] + y cos[(s)]

P, = P. cos[O(s)] - fl, sin[O(s)] , (20)

= A, sin[O(s)] + Py cos[O(s)] .
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The Hamiltonian in the new variables (i, g, P., P,) can then be expressed as

Ni~z 9,P )=[P2 + p-2 + K(s)(.i2 + p2)] ,(1
=Li X) VI (21)

where K(s) = Kc(s) - K,(s), and use has been made of the property that Hi . = H1. +

8F2/8s. The equations of motion in the Larmor frame are given by

= ., (22)

(23)

P'= -tc(s)i , (24)

P,',=-~) (25)

Combining Eqs. (22) and (24) gives

+ lc(s)i = 0 . (26)dS2

Similarly, from Eqs. (23) and (25), we obtain

d 2
+ rc(s) = 0 .(27)

For an even periodic function ic(s) = K(-s) = K(s + S), which is a special case of the

present analysis, Eq. (26) or Eq. (27) is known as Hill's equation.

Two remarks are in order regarding the canonical transformation in Eq. (20) from

the laboratory frame to the Larmor frame. First, because the transformation is a pure

rotation, it preserves the invariance of an arbitrary axisymmetric equilibrium density

profile, i.e., no(r, s) = no(F, s), where F = (i2 + i2)1/2. Second, the motion in the ;-

direction is decoupled from the motion in the u-direction for the uniform density profile

defined in Eq. (9). Such decoupling can be accomplished with a pure rotation if and only

if the equilibrium density profile is both axisymmetric and uniform within the beam.
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III. KAPCHINSKIJ-VLADIMIRSKIJ DISTRIBUTION FUNCTION

The Kapchinskij-Vladimirskij (K-V) distribution [4] is the only known self-consistent

Vlasov equilibrium (,/as = 0) for an intense charged-particle beam in a periodic linear

focusing field including self-field effects. Such a periodic focusing field can be realized

either in an alternating-gradient quadrupole magnetic field configuration in the labora-

tory frame or in a periodic solenoidal magnetic field configuration in the Larmor frame as

shown in Sec. II. Because the latter configuration possesses a higher degree of symmetry

than the former, there are subtle differences between the two configurations. The aim of

this section is to construct the K-V distribution function for a periodic solenoidal mag-

netic field configuration and to point out the differences between the periodic solenoidal

and alternating-gradient quadrupole magnetic field configurations.

To construct the K-V equilibrium distribution function for an intense charged-particle

beam propagating through a periodic solenoidal magnetic field, we adapt Courant and

Snyder's treatment [18] of the alternating-gradient synchrotron, noting the symmetry

that rc,(s) = rc(s) = tc(s). We define

Sds
i(s) = Aw(s) cos +, (28)

and

g(s) = Aw(s) sin j + . (29)

In Eqs. (28) and (29), w(s) = w(s + S) is the square-root of the so-called amplitude

function, and A., A, %,o and %,y are constants which can be determined from the

"initial" conditions i(so), P(so), P, (so) = '(so), and Pf,(so) = g'(so). Substituting

Eq. (28) into Eqs. (22) and (24), and Eq. (29) into Eqs. (23) and (25), we find that

Eqs. (28) and (29) solve the Hamilton equations (22)-(25), provided w(s) solves the

differential equation [18]
d2w 1
d2 + rc(s)w = - (30)
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subject to the periodicity constraint w(s) = w(s + S).

It is convenient to make the canonical transformation from (i, yPP1 ) to the new

variables (X, Y, Px, Py) defined by [10]

w

Y = Y
w

Px = WP. + W , (31)

Py = WP' + -T ,
ds

with the generating function

2 (,; PX, Py, S) = x +-d +L Py +E .(32)

The Hamiltonian in the new variables (X, Y, Px, Py) can be expressed as

H(X,Y,Px,Py,s)= 2 (S)(X 2 +Y 2 +P +Py), (33)

which is proportional to the sum of the following two independent constants of the motion,

A2 = X 2 + PX= const., (34)

and

A2 Y 2 + Py = const. (35)

The constancy of the quantities X 2 + PX and Y2 + Py is readily verified from Eqs. (28),

(29) and (31).

The Kapchinskij-Vladimirskij distribution function [4] can be expressed as

N
fo(XY,PxPy) = -2-(X 2 +Y 2 +P +Py -c) , (36)

which describes a class of self-consistent Vlasov equilibria (a/Os = 0) for an intense

charged-particle beam in a periodic solenoidal magnetic field including the effects of the
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self-electric and self-magnetic fields [1] associated with the beam space-charge and cur-

rent. In Eq. (36), the parameter e is the unnormalized emittance of the beam. Integrating

fo over the momentum space (Px, Py), we find that the particle density no(x, y, s) is given

by the step-function profile in Eq. (9) provided

rb(s) = e/2w(s) . (37)

Therefore, the assumption made regarding the density profile in Sec. II is consistent with

the choice of the K-V distribution function in Eq. (36).

The relationship in Eq. (37) can be derived independently by observing the axisym-

metry of the beam and the fact that the beam radius rb(s) corresponds to the maximum

value achieved by i(s) along the i-axis when A, = 0. Indeed, setting A, = Amax=

and cos[T.,o + f, ds/w 2 (s)] = 1 in Eq. (28) yields Eq. (37). From Eqs. (30) and (37), we

obtain the beam envelope equation

d2rb K e2

+ i,(s)rb -- , (38)_ _2rb rb

where use has been made of the relation te(s) = Ks(s) - r.,(s) and Eq. (16). Equation

(38) is also referred to as the Kapchinskij-Vladimirskij equation in the literature.

In the present solenoidal magnetic field configuration, the beam envelope evolution is

described by a single second-order ordinary differential equation because of the axisym-

metry in both the applied focusing field and the beam density profile. This is in contrast

to the case of alternating-gradient quadrupole magnetic field configuration [4] in which

the K-V equilibrium corresponds to a beam whose density is uniform over an elliptical

area of the beam cross section and whose envelope must be described by two coupled

second-order ordinary differential equations [1, 4].

To complete the construction of the K-V distribution function for an intense charged-

particle beam in a periodic solenoidal focusing field, periodic solutions to Eq. (38) remain

to be found. The procedure for finding a stable periodic solution to Eq. (38) with
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periodicity length S is often referred to as beam matching, which will be discussed in

Sec. IV. For a matched (equilibrium) beam, the phase advance over an axial period of

the focusing field is defined by

o fo+s ds so+S ds
s=- =S) (39)
o0  w2 (s) ,8 rb(s)

where use has been made of Eq. (37). As shown in Sec. IV, the phase advance without

space-charge, i.e., ao = UiK=O, is an important parameter characterizing the focusing

field.

The unnormalized emittance e in Eq. (36) is a measure of the phase-space area occu-

pied by the beam. Indeed, it is readily shown [18] from Eq. (38 ) that 7re is equal to the

minimum area, in either the phase plane (X, Px) or the phase plane (Y, Py), required

to enclose all of the particles described by the K-V distribution function fo. Further-

more, it is straightforward to show that the unnormalized emittance e is equal to the rms

emittance defined by [5, 6]

Erms = 4[(X 2)(P2) - (XPx) 2 112 . (40)

In Eq. (40), the average of the phase function X(X, Y, Px, Py) over the phase space

(X, Y, Px, Py) is defined by

= f Xfod (41)
f fodr

where di = dXdYdPxdPy.

Finally, we derive an important equation which relates the unnormalized emittance

e and the maximum canonical angular momentum Pom allowed for the particles within

the K-V distribution. Making use of Eqs. (14), (20), (28) and (29), we can express the

canonical angular momentum for an individual particle within the K-V distribution as

P9 = xP, - yP, = A.Ay(-ybm/3bc) cos(TI'o - Tyo) = const. , (42)

where the amplitudes A, and A, satisfy the relation A2 + A2 = e, and %P',o and yo are

the "initial" phases for the particle motion in the i- and g-directions, respectively. It is
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readily shown that Pe obeys the inequality

- Pe. PO Pe. , (43)

where the maximum canonical angular momentum is given by

1
Pem = 1 -fbmfbc . (44)2

It can also be shown that the particles with Pe = tPem always stay at the rms beam

radius [i.e., at r(s) = rb(s)/142], whereas the particles instantaneously reaching the beam

edge r(s) = rb(s) carry zero canonical angular momentum.
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IV. BEAM MATCHING INTO THE FOCUSING FIELD

The aim of this section is to study the properties of the beam envelope equation (38)

and present a numerical method for finding periodic solutions to Eq. (38). For present

purposes, we introduce the dimensionless parameters and variables defined by

s rb SK
-> I , e --+ rb , '2, -+ X ,I --- + K , (45)

and express Eq. (38) in the following normalized form

d2r -K 1

ds2 + t,(s) r - - 3= 0 .(46)

Equation (46) is equivalent to the first-order ordinary differential equations

drb
d rb (47)

and

dri K 1
= -K(s)rb + K + . (48)

The normalized beam envelope equation (46) is now characterized by two parameters,

namely, s,(s) and K, which measure the (focusing) strength of the applied periodic

solenoidal magnetic field and the (defocusing) strength of the equilibrium self fields of

the beam, respectively. Unless specified otherwise, the dimensionless parameters and

variables defined in Eq. (45) will be used in the remainder of the paper.

By making a Fourier expansion of the axial magnetic field profile B,(s) = B,(s + 1),

we express the normalized focusing strength parameter ice(s) as

c,(s) = {E[an cos(2nirs) + bn sin(2n7rs)] , (49)

where the coefficients an and bn are proportional to the coefficients in the Fourier expan-

sion for B,(s). Moreover, rc,(s) can be decomposed according to

ic(s) = K!+(s) + K)-)(s) , (50)
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where the periodic functions icj*)(s) ) K)(s + 1) = iKW(-s) are defined by

1 00

K.f)(s) = + ic(-s)] = a,,+ [a! cos2(2nrs) + bi sin2 (2nrs)] (51)
2 n=1

and

%-) (s) = [V2(s) - rcz(-s)] = 2 b anbm cos(2nirs) sin(2msrs) . (52)
n=O m=1

We refer to a focusing field with i2(s) = r,+)(s) as an even focusing field. A sufficient

condition for Kz(s) = ,c+)(s) is that bn = 0.

A. Poincar6 Map Deduced from the Beam Envelope Equation

Periodic solutions to Eq. (46) with unit periodicity can be found using the Poincari

mapping technique [17] which tracks an ensemble of phase-space trajectories as they

intersect the phase plane (rb, r') located at successive axial positions s = 0,1,2,---.

Formally, we may express such a map as

T = ,(rb,rb) n=0,±i,±2,---, (53)

which maps the phase plane (rb, r() onto itself from s = n to n + 1. Because Eq. (46) is

a Hamiltonian system, it follows that the map preserves area in the phase plane. In the

present analysis, the functions C(rb, r() and (rb, r') are obtained implicitly by integrating

Eqs. (47) and (48) numerically with the fourth-order Runge-Kutta algorithm. In general,

they have a highly nonlinear dependence on their arguments.

A periodic solution to Eq. (46), or equivalently to Eqs. (47) and (48), corresponds to

a fixed point of the map defined by

T .(54)

In principle, such a fixed point may correspond to a periodic solution with a fundamental

periodicity of 1/m, where m = 1,2,. - -. Linearizing T about the fixed point yields the
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tangent map defined by

48!r (55)
~ I~rbOrb Orb

where 6rb = rb - fb and 6r' = r - f( are small quantities. A fixed point is stable if the

eigenvalues of the tangent map about that fixed point are of unit module. It should be

emphasized that as far as completing the construction of the K-V distribution function

in Sec. III is concerned, we are interested in locating the stable fixed points of the map.

In the limit of a uniform solenoidal magnetic field with rc(s) = .,io = const., it is

readily shown that the beam envelope equation (46) is integrable and possesses a unique

stable steady-state solution given by [1]

rb(s) = r= {[K) 2 + -- ]1,2 + K 1/2 . (56)
21c,o r%'Z 2Kzo

Therefore, the point (fb, fb) = (rbo, 0) is a unique stable fixed point of T. As K is increased,

the beam radius expands due to the (defocusing) self-field effects. Indeed, the Brillouin

flow condition [1, 19], i.e., r20 = K/r.o, is recovered as c -+ 0, or equivalently the

normalized perveance parameter K -> o [see Eq. (45)]. Since both of the normalized

quantities K and rbO are inversely proportional to e, as defined in Eq. (45), the Brillouin

flow condition can be expressed in the familiar dimensional form [1]

2W2-pb (57)

where Wpb = (4q 2N/mr' )1/2 is the nonrelativistic plasma frequency of the beam particles

and w, = qB,/mc is the nonrelativistic cyclotron frequency.

For general focusing field, however, the beam envelope equation (46) describes a

Hamiltonian system with one and one-half degrees of freedom, and therefore is generally

nonintegrable. The Poincard map T is expected to generate a mixture of regular and

chaotic orbits in the phase plane (rb, r'). In practice, the fixed-point equation (54) must

be solved numerically.
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Unlike the beam envelope equation (38), the differential equation (30) for the ampli-

tude function w(s) (in the dimensional form),

d2w K K 1 (58)
- + (S) -- )w=

is integrable in the parameter regime where the radius of the matched (equilibrium) beam

is given by a periodic solution to Eq. (38). This is because the underlying equations (26)

and (27) for this case are linear ordinary differential equations, where K(s) = K(s + S) =

K,(s) - K/r2(s) is a prescribed periodic function.

The Poincar6 map T has the important property that for an even focusing field with

Kc(s) = ic(-s), the line r' = 0 (rb-axis) is an axis of symmetry of the map T; that

is, the phase plane (rb, r') is symmetric with respect to the rb-axis. This symmetry

follows from the fact that Eqs. (47) and (48) are invariant under the transformation

(s, rb, r) -+ (-s, r, -r'). Furthermore, it can be shown that for a focusing field with

small-amplitude oscillations about r.,(s) = K',o = const., the fixed point of the map

corresponds to the intersection of the rb-axis and its image, as shown in Fig. 1. This

fixed point originates from the value of rbo defined in Eq. (56).

B. Beam Matching into an Even Focusing Field

With regard to the construction of the K-V distribution function, we must answer the

questions of whether the map T has a unique fixed point, and if so, under what condition

is the fixed point stable. To find definitive answers to these important questions, we

consider a focusing field described by the even function

x,(s) = [ao + a1 cos(27rs)] 2 , (59)

which physically also corresponds to a rather general class of even periodic axial magnetic

field B,(s), truncated to leading order in the Fourier expansion. Figure 2 shows the phase

plane (rb,r) produced by successive applications of the Poincare map with 20 initial
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points on the rb-axis. The choice of system parameters in Fig. 2 corresponds to: K = 10

and ao = 1.07 for the cases (a) a, = 0, (b) a, = 1.07, and (c) a, = 2.85.

In Fig. 2(a), the phase plane is completely regular (integrable), as expected for a

uniform solenoidal magnetic field. The stable fixed point is located at rb = rbO = 3.0

on the rb-axis, which is in agreement with Eq. (56). The elliptical orbits surrounding

the fixed point represent stable (nonequilibrium) beam envelope oscillations about the

matched (equilibrium) beam envelope rb(s) = rbo.

As the parameter a1 is increased from a, = 0 to a, = 1.07, the stable fixed point

moves slightly towards the origin, as shown in Fig. 2(b). The location of the fixed

point corresponds to the intersection of the r6-axis and its image shown in Fig. 1. In

the vicinity of the fixed point, a pair of stable and unstable period-three orbits appear.

Because the phase advance without space-charge is uO = aIK=o = 750, the appearance of

the period-three resonance is well correlated with the third-order instability [10] for the

K-V equilibrium, which occurs over a wide range of K when 0o > 60*.

While the area occupied by the chaotic orbits is hardly visible in Fig. 2(b), transition

to a high degree of chaos in the phase plane is inevitable as a1 is increased. Such a

transition is accompanied by the shrinkage of the regular region surrounding the stable

fixed point. This is illustrated in Fig. 2(c), where the stable fixed point is located at

rb =- 1.7 on the rb-axis. This fixed point is completely enveloped by chaotic orbits as a,

is further increased.

In addition to apparent correlations between the nonlinear resonances in nonequi-

librium beam envelope oscillations and the well-known instabilities [10] for the K-V

equilibrium, the nonlinear resonances and chaotic behavior are expected to play an im-

portant role in the transport of mismatched or multiple beams, where large-amplitude,

nonequilibrium beam envelope oscillations occur and can become chaotic. An intriguing

phenomenon in mismatched or multiple beam transport is the formation and growth of
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a beam halo.

For the cases shown in Fig. 2, the fact that the Poincar6 map T possesses a unique

stable fixed point demonstrates that the beam envelope equation (46) has a unique stable

periodic solution with unit periodicity, and therefore there exists a unique K-V equilib-

rium distribution function. As a byproduct of determining the stable fixed point of the

map, the stable periodic solution is obtained and shown in Fig. 3 for the case correspond-

ing to Fig. 2(b). The phase advance defined in Eq. (39) is evaluated to be a = 100 with

space-charge, and uo = OIK=o = 75* without space-charge.

Is it true that the map T can have at most one fixed point as suggested from the results

shown in Fig. 2? A positive answer to this question is found by searching numerically all

of the fixed points of the map over an extensive domain in the parameter space (K, ao, ai).

As jail is increased, however, such a unique fixed point either destabilizes for ao = 0 or

disappears for ao 5 0. Figure 4 shows the boundary in the parameter plane (K, Jai 1 )

below which the map T has a unique stable fixed point.

It should be pointed out that the threshold for the destabilization or disappearance

of the fixed point, as measured by the phase advance without space-charge co, is found

to be greater than the threshold for the birth of a pair of stable and unstable period-two

orbits which occurs at ao ~ 90*. Because the phase advance without space charge ao is

a = rc(s)ds = a2 + (60)
Jo 2 (0

in the smooth-beam approximation, the threshold for the birth of the period-two orbits

is given approximately by

2 a2 r2
2 a = . (61)

The numerical results shown in Fig. 5 confirm this condition.

Finally, we note for ao > 90', that the Kapchinskij-Vladimirskij equilibrium distribu-

tion function is subject to the strong, second-order (envelope) instability [10] over a wide

range of K. Therefore, we conclude that in the parameter regime of practical interest
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[i.e., uo < 90' or a2 + (1/2)a2 < 7r2/4], there exists a uniquely matched beam whose

radius is given by the stable periodic solution rb(s) = rb(s + 1) to the beam envelope

equation (46).
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V. CONCLUSIONS

The basic properties of the Kapchinskij-Vladimirskij (K-V) equilibrium and beam

envelope equation have been explored for intense charged-particle beam propagation

through a periodic solenoidal focusing magnetic field including the effects of the self-

electric and self-magnetic fields associated with the beam space-charge and current. It

was found that the unnormalized beam emittance is proportional to the maximum canon-

ical angular momentum achieved by the particles in the K-V distribution. The Poincar6

mapping technique was used in the analysis of the dynamics described by the beam

envelope equation. This technique allowed us to determine systematically the axial de-

pendence of the radius of the matched (equilibrium) beam and to explore nonlinear

resonances in the nonequilibrium beam envelope oscillations. Certain correlations were

found between the nonlinear resonances and well-known instabilities for the K-V equi-

librium. It was shown, for the first time, that nonequilibrium beam envelope oscillations

exhibit chaotic behavior for a periodic focusing magnetic field and sufficiently high beam

density, and that there exists a uniquely matched beam in the parameter regime of prac-

tical interest, i.e., ao < 900, where uo is the vacuum phase advance over an axial period of

the focusing field neglecting beam self-field effects. Finally, effects of the nonlinear reso-

nances and chaotic beam envelope oscillations on mismatched or multiple beam transport

and the formation and evolution of beam halo are being studied by means of numerical

simulation, and will be the subject of a future report. The present analysis can extended

to the case of an alternating-gradient quadrupole magnetic field configuration.
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FIGURE CAPTIONS

Fig. 1. Plot of the rb-axis (straight line) and its image (dashed curve) showing a unique

intersection for the choice of the system parameters K = 10, and 1c(s) = (1.07) 2 x

[1 + cos(27rs)] 2 .

Fig. 2. Poincare surface-of-section plots showing the transition from regular orbits to

chaotic orbits in the phase plane (rb, r'). The choice of system parameters

corresponds to: K = 10 and ao = 1.07 for the cases (a) a, = 0, (b) a, = 1.07, and

(c) a, = 2.85. In each plot, 20 points, initially on the rb-axis, are iterated 250

times (i.e., 250 axial periods of the focusing field).

Fig. 3. Plot of the beam radius rb(s) versus axial coordinate s for the case of a matched

(equilibrium) beam and system parameters corresponding to Figs. 1 and 2(b).

Fig. 4. The threshold value of jaiI below which the map T has a unique stable fixed

point is plotted as a function of normalized perveance K. The solid line

connecting the open circles is obtained for ao = 0, and the solid line connecting

the open squares is obtained for ao = 1.07.

Fig. 5. The threshold curve for the birth a pair of stable and unstable period-two

orbits is plotted in the parameter space (ao,ai) for K = 10. The open circles are

numerical results, whereas the solid curve is given by Eq. (61).
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