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Abstract

The fundamental theory of plasma heating by the fast magnetosonic wave in toroidal
plasma configurations is reviewed and extended. The particular wave damping processes
considered include cyclotron damping at the fundamental ion cyclotron frequency and its

harmonics, and electron Landau damping and transit time magnetic pumping (TTMP).
The latter processes heat electrons and may also be exploited to drive toroidal plasma
currents. The wave absorption and damping decrements are obtained by using Stix's

approach, namely by computing the dissipated power, Re(j. k) in terms of the hot plasma
dielectric constant (where J is the wave induced current). This approach is compared with
power absorption calculations from quasi-linear theory, and exact agreement is found for
a Maxwellian distribution of particles. Wave absorption in the presence of a small group
of energetic particles is also examined for all three types of damping processes. The
limitations of theory owing to mode conversion phenomena are indicated. Finally, a brief
discussion of recent experimental results is given, verifying the reality of Landau damping
of magnetosonic waves by electrons.
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I. Introduction

The absorption of the fast magnetosonic wave by electrons in high temperature toka-
mak plasmas is of great practical importance because of the feasibility of heating to
ignition-like temperatures,(') as well as driving the toroidal plasma current.(2 ) An at-
tractive steady state reactor concept could be developed based on fast wave heating and
current drive if the bootstrap-current fraction were sufficiently high.(3 ) From a practical
point of view, of considerable importance is the single pass absorption of fast waves by
electrons in high temperature plasmas. A single pass absorption of 10% or more is thought
to be desirable to ensure unidirectional wave propagation and absorption. The earliest cor-
rect calculation of fast wave absorption by electrons was performed by Stix in 1975,(1) who
considered only the low frequency limit, vte Z w/k 1 where vte = (2Te/me) 1 /2 , w/27r is the
wave frequency, and kl = k -B/I.I is the parallel component of the wave-vector. In such
a limit the single pass absorption is rather weak, and the current drive efficiency is also
low. As a consequence, one may have to deal with eigen-mode excitation in the toroidal
plasma. The low frequency regime (w < we1) has the advantage of avoiding "parasitic"
ion absorption, including that by alpha particles. On the other hand, one may be faced
with partial mode conversion into shear Alfven waves(') where n' = S (njj = ckjj/w and
S is the perpendicular component of the dielectric constant). More recent calculations
emphasized the regime w/kjj P Vie, W > wci, so that the theoretically predicted stronger
absorption by electrons could be tested in present-day tokamak plasmas.( 5- 8 ) Here we
shall review the calculations of fast wave absorption on electrons for arbitrary parallel
phase velocities.

The dissipation of wave power by electrons is manifested through Landau-type wave-
particle resonances, w - kjjve1 , and the strongest interaction results when the wave res-
onates with the bulk-electrons, namely ve1 ~ vie. It will be shown below that Stix's
approach can be followed through even for the case of resonance with bulk electrons if one
considers the use of the plasma dispersion function (or Z-function). Similarly to Stix we
find(8) that three terms contribute to the damping of this wave: the electron Landau damp-
ing being proportional to ImK., (where ImK is the imaginary part of the hot plasma
dielectric tensor), the transit time magnetic pumping (or "TTMP") being proportional to
ImKyy, and the cross term, being proportional to ImKy.. Quasi-linear estimates have
shown that for w ;, 2kjvt,, in the presence of a fast magnetosonic wave the electron distri-
bution remains nearly a Maxwellian.0) We shall find that in this case for low frequencies
the Landau damping term dominates while the other two terms cancel. However, at finite
frequencies (w > wd) an additional term survives from the cross-term and increases wave
damping. We shall also find that significant absorption will result only at finite values of
the electron beta, typically &3 Z 0.01.
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The present calculations were motivated by testing experimentally this kind of heat-
ing and current drive concept in the General Atomics DIII-D tokamak.10 0) The initial

calculations by the author using the Stix-formalismO5 6 ) was followed by S.C. Chiu et al.(7)

who calculated the damping decrement from the determinant of the hot plasma dielectric
tensor. These calculations are more direct, however, they do not display the physical im-

portance of the various absorption and wave polarization terms. Therefore, here we shall
follow the physically more transparent derivation of taking the ratio of the absorbed power

to the power flux which yields the spatial damping rate. For electromagnetic waves, to a
good approximation, the power flux is simply given by the Poynting flux. We note that
for w > 2k11vte, the absorption is generally too weak to be of practical interest.

We shall also generalize these results to the case of two-component plasma, for example
when a small fraction of energetic electron component is present. Such a situation may

be produced in "synergistic" experiments where in addition to the magnetosonic wave, a
lower-hybrid wave may also be present in the plasma. The question of direct fast wave
absorption by the energetic electron tail has been raised as an important issue in connection
with recent experiments on JET where an enhanced current drive effect was noted.(")

We shall also consider the case of competing wave absorption process by ions. This is
detremental to current drive or direct heating by electrons, and must be carefully consid-
ered. We shall make simple estimates of ion absorption by harmonic ion cyclotron damping,
minority absorption and absorption by energetic ions (due to neutral beam injection or
alpha particles). Finally, a brief summary of recent experimental results will be presented,
supporting evidence of direct absorption of fast waves by electrons in tokamak plasmas. It
should be noted that the absorption of fast waves by ions has been tested experimentally

over the past decade and a half, and these results are summarized in a companion lecture
by J. Hosea.

II. Absorption of Magnetosonic Waves by Electrons

The dispersion relationship of fast waves in the ion cyclotron frequency range may be
written in the following form:(1 ,1 2 )

2 (n2 - R)(n2 - L)
nw= 2 th (1)S - n2

where in the cold plasma limit the following approximate expressions hold:
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R =1+I
wed(w + w)

L =1 -
wei(w - w)

2

S =1 -: U I2>

where S = (R + L)/2. Here wi = (47rnie2 Z?/m) 1 / 2 is the angular ion plasma frequency
and wei = eZiB/mic is the angular ion cyclotron frequency. Equation (1) predicts a
rather complex behavior for fast wave propagation, especially in the case of multi-ion
species plasmas. In addition to Refs.(1,12) an excellent summary of such phenomena can
be found in Ref.(13). Here we simply want to point out a few of the salient features of
Eq.(1).

The region of n' = R corresponds to the right hand cut-off layer (n' = 0), and the fast
wave is evanescent at densities lower than this critical density, nR. The right hand cut-off
layer always exists in the plasma, regardless of the relative value of w/wcd. Consequently,
the wave has to "tunnel through" an evanscent layer in the plasma periphery and the
reflected rf power must be prevented from getting back into the rf source (usually a high
power tetrode) by an external tuning (matching) network. The n j = L layer is also a cut-
off layer. In a single ion species plasma, this layer occurs only for W < wed, and typically
it occurs at densities nL such that nL < ns < nR, where ns is the critical density at the
resonance layer where nj = S and nI -+ oo. At the resonance layer finite temperature
effects must be included and mode conversion into the kinetic shear Alfven wave will take
place. The inhomogeneous magnetic field of a tokamak will only quantitatively change this
picture. The presence of the cut-off-resonance-cut-off "triplet" complicates the prediction
of rf power flow into the fast magnetosonic wave. If w > wd everywhere in the plasma,
such a complication does not arise and one only need to be concerned with the right hand
cut-off layer. If a minority ion species (or a second majority ion species) is present in the
plasma, the mode conversion layer (n' = S) will be affected by the second ion species,
and the cyclotron frequency of the lighter ion species (wcm) will dominate. For example,
if W ~ wcm near the center of the plasma column, the n2 = L and n2 = S layers will be
located on the high field side of the minority species cyclotron resonance layer. The nf = R
layer will remain near the plasma periphery, maintaining the presence of the evanescent
layer.

If W > wcm everywhere in the plasma column, and if we consider regions of fast wave
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propagation well away from any cut-off or resonance layer, the fast wave dispersion can be
approximated fairly well by the following simple relationship:

w ~ kLVA(1 + c2 k 2/w2) 1 2 , (2)

where VA - Cci/Wpi is the Alfven speed, and where usually n2 < nI so that w ~ kIvA.
In the discussions below, we shall use only Eq.(2) for the real part of the dispersion
relationship when we calculate power absorption.

As shown by Stix, the absorbed power in the plasma can be determined by calculating
the dissipated wave power, Re(f -E) which can be written in the form

Pab, = E* - ( K - *I) -E + c.c. (3)
modes

where the summation is over different modes, K is the hot plasma dielectric tensor, I
is the unit diadic, and c.c. represents the complex conjugate. Thus, the contribution will
come from the anti-Hermitian part of KO, and the Hermitian part will cancel. Now we
will be interested in Landau-type of resonance of electrons, namely w ~ kij vel. Examining
the hot plasma dielectric tensor,(1 2) we find that the following terms may contribute:

Landau Damping:
1r

K z = 1+ k 1+ (eZ((e); (4a)k2 A2 Li
11 De

Transit Time Magnetic Pumping:

w2
KY= 1 + 2kr 2  ( eZ(Ce); (4b)

Cross-Terms:

Kyz = -Kzy = -i [+ Z();(4c)
WWce k1l

Here the cyclotron (harmonic) resonance terms have been neglected. In Eq.(3) we de-
fined AD = VteL/Vwpe, rce = Vie/Vwce, v2 = 2Te/me, W2 = 4,rnee2 lme, W =

eB/mec, Ce = w/kllvt, and Z(Ce) is the Fried-Conte plasma dispersion function. We note
that while Landau damping is the result of the force on a charge due to the parallel wave
electric field, (eE 1 ), transit time magnetic pumping results from the force associated with
the magnetic moment and the wave magnetic field,(1 2) (-V 11 (AB)).
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The spatial damping decrement is given by the ratio of the absorbed power, Pnb and
the Poynting flux, S-

2kiim = Pb/SI (5a)

where we take S ~ S_ ~ cn.IE 1
2/87r, we assumed k2 < kI, and k1 = k.. Evaluating

Eq.(3), the contributions from 4(a-c) are given by

W 2w 2 w 1E1 i EI I+W 2  E1 -CPabs = 4/clkrkeIE| 2 - |IEzIE|+ ki 2 |EzJ (ee~~ . (5b)

III. Wave Polarization

To proceed, we need to evaluate E. in terms of Ey, and then substitute for E, in
Eq.(5). This can be carried out with the help of the dielectric matrix equation,(1 2 )

K, - nz K.y Kxz + nxnz E,
Ky Kyy - n Ky. 0E= (6)

Kzz + nz nz Kz y Kz z - n 2 Ez

which results in three equations relating E, Ey, Ez. Here n 2 = n + n., and n. = ni1 =
ck /w, n, = n_ = ck/w are the parallel and perpendicular components of the index of
refraction. Eliminating E. in favor of Ey and Ez, the following result can be deduced:

Ey = nnz - (Kx, - n)(K 5 5 - n )
Ez -nnzKy + (Kx - n2)Kz (

We now consider the relative magnitudes of various terms in Eq.(7) for wj - w < w,1 , i.e.
the ion-cyclotron frequency range. The other important approximation is that n2 < IKzI.
This usually implies that w2 < - w%~j, the lower-hybrid (ion-plasma) frequency. This
follows from the scaling nX ~%/w 2 , K (W,2/W 2) or ~ 1/(kADe). Thus in the
numerator, n2n2 is negligible for nx ~ c/VA ~ wpi/wci, nz = ck./w ~ c/vte, and IK.x~
wf/w,24. The next simplification occurs if we neglect the first term in the denominator,
namely n.nzKy. As will be shown later, this corresponds to the low frequency, hot
plasma limit, namely

W 2 Te
2- < 2 (8)

wi mc

in which case Ey/EZ ~ -K 5 5 /K5 y, or as shown by Stix, ()
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E, ik 2kv-- = - .lvt (9)Ey 2WWce

This result is valid for arbitrary values of w/kjVte, (as long as the unity term in K,, can
be ignored). This results from the fact that [1 + (eZ((e)] cancels in the ratio of KZ,/Ky.
Note that for w ~ kjjvte, IE,/Ey ~ kirce / 2 ~ 10-3 and therefore the electron absorption
will be relatively weak. Using Eq.(9) in (5b) results in a cancellation of the first and second
terms (i.e., TTMP and the cross term cancel) and only the third term, namely Landau
damping survives. As noted by Stix,(') its magnitude is 1/2 that of TTMP. Thus, the
damping of the fast magnetosonic wave in a Maxwellian plasma at low frequencies and
high temperatures is entirely due to Landau damping for arbitrary values of the wave
phase velocity.

IV. Damping Rate

Dividing the last term of Eq.(5) with S and using Eq.(9), we obtain for the spatial
damping rate

1/2
2ki..im = k, 712 ye eexp(2) (10)

where 83e = 87rneTe/B 2 is the electron beta. Replacing k_1 & - WIVA, we get

7r 1/2 W Wpi
2kim = 2 8eeexp(-() (11)2 we, c

so that for Ce ~ 1, single pass absorption is proportional to w, n3/2, T and B 3 . We
also note that the maximum absorption occurs for C. ~ 0.7. For example, for present day
machines, T ~ 6.0 keV, B0 ~ 2.0 T, n0 ~ 5 x 10 19 m-3, Pe ~ 0.03, f = 76 MHz in
D plasma, Ce 0.7, Az a/2 - 0.50 m, 2kLAx ~ 0.62, and the single pass absorption
is [1 - exp(-2kimAx)] ~ 0.47. This may be a typical achievable value in the DIII-D
tokamak. The required parallel wavelength at the antenna would be All ~ 60 cm which is
very reasonable (toroidal wave propagation effects would reduce this to All ~ 44 cm near
the center of the plasma where C, ~ 0.7).

Now we consider the more general result in Eq.(7), namely retain the first term in the
denominator (i.e. do not assume Eq.(8)). Taking the inverse of Eq.(7), we obtain
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= ~~ -- kki K n2) K. (12)
E 2ww, (Kxx -- 2z

Now we find that as before, in Eq.(5) the TTMP term cancels with the cross term for the

first term of Eq.(12). However, the second term of Eq.(12) survives with the cross-term
and adds to the Landau damping term, increasing its effectiveness at higher frequencies.

The net damping decrement is obtained by combining Eqs.(5) and (12), and upon dividing

by the Poynting flux we obtain

2k"i. = kLp.( ) 1 2  (e- [1 + -1 (13)2a

where the surviving cross-term gives

T w2 2
wj 2 2 )(S - nI)jKz (14)

Pi

where

S = 1 - w,(w 2  W2)

is the cold plasma limit of K2:. Note that in Eq.(14) the absolute value of Kz is to be

taken which requires special attention if Ce 2 0(1). For IS >> n2, and ISI > 1, Eq.(14) can
be written in the following form:

1. = (mc22 W4 1 (15)
2 T, 4w C.41+ CZ(()12

In the cold plasma limit (( > 1), Eq.(15) reduces to

(Mec-) W(16a)

whereas in the hot plasma limit (C2 < 1), Eq.(15) becomes

- (MC2)2 -4 n (16b)
2 Te 4wpji C,4(1 - 0.86(,) w; |
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The result Eq.(16a) has been noted 6
previously by Moreau et al.0) For
example, for C ~ 0.7 and the pre- 5
viously listed plasma parameters
1/a 2 ~ 0.31. However, lowering the
electron temperature from T, ~ 6.0 4
keV to T. ~ 3.0 keV increases 1/a 2  3

N

to unity. At higher phase velocities 4

(Ce 2 1), 1/a 2 is less significant for E 3E
T,, 3.0 keV. In Fig. 1 we give a

Fy4
numerically evaluated plot of Eq.(15). 2
Note the dramatic increase of 1/a 2 for

C _<1, reflecting the C;4 dependence
of 1/a 2 in this limit.

0
0 0.5 1.0 1.5 2.0 2.5

Fig. 1 The normalized value

of 1/a 2 as a function of Ce.

V. Two Component Plasma with a High Energy Electron Tail

In recent experiments in JET a synergism between high phase velocity fast waves
and a pre-formed electron tail, driven by lower-hybrid waves, has been discovered.(1 1)
Similar phenomena might be expected to occur if fast waves were launched into a run-
away dominated discharge. Here of interest is a range of phase velocities such that

v, < w/kjj - Vhj (17)

where vhII = (2Thji/m,)'/2 is the effective mean velocity of the hot electrons, while vt is
that of the cold electrons. Such high phase velocity waves can be launched by a "monopole"
type phasing of the fast wave antenna current straps (i.e., 2 or more current straps fed
in phase from the transmitters). For example, in a typical lower-hybrid current driven
discharge, Tli ~ 100 - 500 keV, Th± ~ 70 keV, T. ~ 1-5 keV, and 0.005 G nh/ne S 0.01,
where nh is the density of hot electrons.(") Here we shall assume that the hot component
is also characterized by a Maxwellian:
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fe(ii) = e ( hnvh. (18)
7r3/2vh IVhjj

We can repeat the previous calculations for an anisotropic plasma. The polarization

will be mainly determined by the cold plasma, whereas the absorption will be on the hot

plasma component. In the limit where the effective 1/a 2 is negligible, the result of the

calculations is as follows:(8)

2k -l,., k1/2 T hL _2 T T h2ki1m = kine ( as-TIliyh [2(1 -. + -T]2 (19)

where the first term in the bracket corresponds to TTMP, the second term is the cross-term

and the third term is the Landau damping term. Here TL designates the temperature of the

cold plasma component. We have designated the beta of the hot perpendicular component

by

87rnlhThw 
20)

= B2  (0

and Ch = w/kjj vh1. Since in the present case T1 < TI, we see that the cross term and the

Landau damping terms are negligible as compared to TTMP (the first term in the bracket).

Furthermore, if Th± < T j, as is often the case, for ChIl = 1, Oh± = I. 3bL, the absorption

is reduced as compared to the bulk absorption case when (b,1 ~ 1. Substituting in

typical numbers from the JET experiments we find that Eq.(19) predicts very weak single

pass absorption, of the order of one percent. Therefore, we expect a rather weak effect

on the overall current drive efficiency, in disagreement with experimental results. These
experiments were complicated by the fact that a minority component and ion cyclotron

resonance layer were also present. This would introduce an ion Bernstein wave (IBW)

mode-conversion layer and diffusion of fast electrons by these waves would have to be

invoked to explain the results.0 5)

Let us now introduce the finite frequency correction (1/a 2 term) into the wave po-
larization while maintaining absorption on the hot tail (i.e., Chli ~ 1, (e > 1, where

Ce = w/kj1vt 1 designates the bulk plasma). Then it is straightforward to show that the
polarization will be determined by the bulk plasma. Carrying out the algebra, Eq.(19) will
be modified by inclusion of two additional terms:

2k11 = kin 1/2 T e2 [2(l - TL)+ 2
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2 T T±\ 1 T2+ 2 T - -- + a _L(21)
a T-Lh Th ) 2 TJs hI

where we assumed that K,,Re/KzI ,,~ 1, and in particular, IKzRC = W,W 2 due to the
"fluid" approximation on the bulk plasma. Note that for T = Th, Eq.(21) will reduce to
Eq.(13) as expected. Furthermore, for a -+ oo, Eq.(21) reduces to Eq.(19). In the ICRF
regime, for Th > TL, the first term (TTMP) will remain dominant. However at higher
frequencies (we < w < WLH) the last term could dominate. We note that at W ~ WLH,
Eq.(21) is not strictly valid since some of the approximations may not hold (in particular,
as discussed earlier the approximation nX < K,, may not hold when w ~ WLH). We note
that a result similar to Eq.(21) has been derived recently by Moroz et al.(16)

VI. Absorption of Magnetosonic Waves on Ion Cyclotron Harmonics

One of the competing mechanisms for the absorption of fast magnetosonic waves is
absorption on ions near the fundamental, or the harmonics of the ion cyclotron frequency.(7 )
This may occur on bulk ions, or fast ions due to simultaneous neutral beam injection, or
even on alpha particles in a reactor grade plasma. From the current drive point of view this
must be regarded as "parasitic" absorption since it removes effective power from electrons
which drive the current. The ion absorption can occur by means of direct ion absorption,
or by means of mode conversion into an ion Bernstein wave (IBW). The latter process may
dominate if nil ~- 0. Here we shall assume that nil is finite (and in particular, w/klivt. ~ 1 or
nil ~ vt,/c), and that the fast wave power density is not high enough to distort the initial
Maxwellian distribution of ions. When this condition is violated the situation becomes
considerably more complex.()

Ion cyclotron harmonic absorption in the limit of near-perpendicular propagation may
be obtained from the general result Eq. (3). After a considerable amount of algebra, for
b1 < 1 and w ~ twei, Eq.(3) reduces to

, _ S w% bl I IE+ 12 expF-( v ] (22)
167r 1/ 2 kiivti (t - 1)!2 (1-1) [ - I2I (

where we retained hot plasma terms with Ex, Ey, K., Kyy, K2y and K... Here E+ =
E-+iEy is the left hand polarized component of the wave electric field, and bi = k2r6 is the
finite ion Larmor radius factor (rd = vti/21/2Wd). This formula is valid for bi < 1, which
is usually satisfied for not too high harmonics since kj. - wIvA so that kIr, 2 /
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In the simplest case, wave polarization is obtained from the cold plasma dielectric
tensor Eq.(6) where the following dielectric constant terms are used:( 12)

2
K.X = Kyy = S = 1 - (23)-

~ 2 P(0 2  
2 w 2 . (23)

22
Ej(,co 2)) (24)

where the last equality in each line is valid in the limit w qwt, and 12
We also ignore K,., and E_.. Then the polarization is obtained by combining the first two
rows of Eq. (6):

I (E. -2 1)2( CO. co )2

Lw +osaI =W(e-1) 2  (25)

where t = w ,i cos 0 L- k1 1/k, and the last limit is valid for cos 0 -. 0. Equation (25)
predicts the well known result that at w = wd, E+ -- 0 since the ions shield out the left-
hand polarized component of the electric field (i.e., the magnetosonic wave becomes purely
right-hand polarized for perpendicular propagation). As is well known,O) if strong ion
absorption is desired, this problem may be remedied by injecting a minority ion species
into the plasma, typically a few percent of hydrogen or helium-3 ions into a deuterium
majority plasma. Thus ion cyclotron absorption becomes effective again at w = W,,,
where the subscript m designates the minority species, since E+(w # WCm) # 0 (where M
designates the usually heavier ion species). For w = 2wCD = wCH, IE+/EyJ2 = 1, while
for a He-3 minority resonance in a deuterium plasma w = (4 /3)WCD, and JE+/Ey 12 = 1/9.
As a consequence, in a deuterium plasma He-3 minority absorption is weaker than that
due to H minority.

We can obtain the damping by integrating the power absorbed across a cyclotron har-
monic resonance layer in a radially inhomogeneous magnetic field, and divide the absorbed
power by the Poynting flux, S1 = (c/87r)n± IEyI 2. The dominant factor in the integral
comes from the exponential factor,

W - twq (X) X
~ ---- (26)

where we wrote wes(x) ~ wes(1 + x/R), w ~ tw:i, R is the tokamak major radius and
A k 11vtiR/2 1/ 2w. Without loss of generality, the limits of integration may be extended
to infinity and we have
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00 I 0

2] kjm(x)dx oc f exp(-x 2 /2A 2 ) = 7r'/ 2 ,

so that the spatial damping decrement 2 f kim (x)dx = 2v becomes

2q = 7r wi R0-)e2(1-1) IE+12  (27a)
2 c (I - 1)!2 2(e- 1) IEY| 2

Here we assumed w ~ kLVA (neglecting k11) so that k± ~ twpi/c, and 3 = 87rniTi/B 2 is
the ion beta. This result can be evaluated easily for polarization in the cold plasma limit,
in particular, combining Eqs.(25) and (27) gives

277 = WpiR(i p)(t-) ~ 1 (27b)c 4 (f -12)!

where we rearranged some of the numerical factors. The transmission coefficient is given
by

T = e-2v , (28a)

and absorption is given by

A =1-T =1 e-2 . (28b)

In particular, we have the following results for f =1 to 4:
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Table I

2r;

1 0

2 R7rwpj1P/2c

3 R7rwpi3 2 (81/16c)

4 R7rwpi3 (48/c)

We recall once more that for the low harmonic numbers which are of practical interest we
assumed e2/3/2 < 1.

A comparison of Eqs.(13) and (27) give the single-pass electron to ion cyclotron har-
monic absorption ratio, r = 2ak"Im /2r7i,0 , or

r = ()1/2(.a g (t- 2)! #3,<O6> (29)
7r R (f - 1) (t21 3 /4)(V- ()

where a is the minor radius, and we assumed that the effective "average" absorption
distance is the hot core region of the plasma column, or < Ar >eff~ d/2 = a, with d
being the plasma diameter. In this region we take

< 0 >=< C, exp(-C2)(1 + f-2) >

where an optimized value of < 0 >~ 0.5 is assumed (i.e., (e 0 1.0). Thus, for a/R ~
1/3, e = 2 we get r ~ (Pe/43i) so that absorption on ions dominates for fi ~ #,,. However,
for t > 3, 8 ~ #i < 0.10, electron absorption dominates over ion cyclotron harmonic
absorption. Thus, for effective fast wave current drive we should use w Z 4wci or w < Wci.
Note that additional ion absorption mechanisms due to minority species (H or He-3),
neutral beam particles or alpha particles need to be considered.
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VII. Mode Conversion Regime

We can further improve on this theory by including the hot plasma contribution to

the polarization calculation. In particular, by retaining the hot plasma contribution to

K., and K_,y, we have

E. K- -iA - iBZim
A+BZ30)

where

A 2-w/(w 2 _ U),2)

_t 1 l2.e
b -2 p2

B = k 1  -

and

ZIm = I,/rex p(-(w - twe )2 /k v)

Thus, we can evaluate IE+/Ey12 and obtain the following result for the polarization:

IE+12  (e- _)2 (31a)
IEY12  1 + U1

where we assumed t52, and

l2 _1 g2- 1) Ct
U2 f 7r1/2 2! iF , (31b)

where Coi = w/kl1 vti and F ~ exp(-2( 2 ,). Thus, to correct for polarization effects,

including hot plasma corrections, we simply divide Eq. 27(b) by (1 + o), where for

simplicity we take F => 1 (more accurately, we should repeat the intergration over x but

the final result remains the same as taking F => 1).

Note that al corresponds to the ratio of 6, the separation between the cyclotron

resonance layer and the mode conversion layer, to A oc k 1 vtjR/w, the width of the cyclotron
resonance layer. The "cold plasma" result is obtained in the limit a12 < 1. For example,
for t = 2,6 ~ /3R/2 and 6/A ~ 8i~oi - a2. For a2 < 1 cyclotron harmonic absorption
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dominates, and if 271 > 1, we have effective absorption on ions. In the opposite limit,
at > 1, we have effective "depolarization," and we end up in the mode-conversion regime
(from the fast wave to ion Bernstein wave or IBW). It has been shown(1 8) that in the mode
conversion regime for low field side launch the transmission (T), reflection (R) and mode

conversion (M) coefficients are given by the Budden factors

T = exp(-2r7)

R= (1 - T)2

(32a)

(32b)

(32c)M = T(1 - T)

so that R + T + M = 1.

The results for high-field side launch are

T = e~277 (33a)

R = 0 (33b)

M = 1 - T (33c)

so that effective mode conversion takes place since waves arrive at this layer first. The fate
of the mode converted IBW is somewhat complicated. On the "midplane" it may simply
convect out of the plasma, while off the midplane it may be absorbed by electrons.

VIII. Minority Absorption Regime

It is straightforward to include absorption by minority ion species in the previous
theory. The absorbed power is

P WM IE+ 2[(W _ WM)
PM = 16-7rl/2 kllvt k 2 

(34)
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where m is the minority species. Integrating across the resonance layer as before, the
damping decrement is given by

217 = ir wpm nm Z RIE+ 12 /1EY1
2  (35)2 c nm Zm

where R is the major radius, M designates the majority species, wpm is the majority
angular ion plasma frequency, Z is the ion charge, and nm/nm is the minority to majority
density ratio. We can again carry out the hot plasma polarization calculations and obtain

JE+ 12 1
E 12 = 1 a2 (36)

where

2 2U2 nm mM ZW (37)

again separates the ion absorption regime (a < 1) to the mode-conversion regime (o >
1). Here M/m is the majority to minority ion mass ratio, and WcM is the majority ion

cyclotron frequency (here 6 - Rnm/nm and A ~ kjivtmR/w and the ratio gives o). We
note that for H+ minority, D+ majority ions ki - 2wpm/c, and

2 r7 = 7r WPM nm R (38)
2 c nm

Thus, the role of 8i (second harmonic deuterium absorption) has been replaced by nm/nm,

the fraction of minority ions. If Om < nm/nm, minority absorption dominates. Note that

minority absorption is very effective even in a relatively cold plasma when 3 m may be low.

IX. Absorption of Magnetosonic Waves at the Fundamental Majority

Ion Cyclotron Resonance (f = 1)

Although in the cold plasma limit for perpendicular propagation we found no absorp-
tion, by introducing finite values of k1i, E+ # 0 if the ion temperature is sufficiently high.

It is a simple matter to show that by including Doppler-shifts due to finite klivti, the left
hand polarized component of the fast wave is finite and Eq.(31a) would be replaced with

IE+12/EY1 2 = k2. (39)
7r l S(9
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where re1 is the ion gyro-radius (b, 2/k 1 ). Combining this with the power absorption
formula at w = wei we obtain

21= Rkl re . (40)
C

Noting that kjfrcm = kgo 2;/2w2 
- n Ti/mic2 for w = wCM, the finite absorption depends

on Doppler shift. We note that majority ion cyclotron resonance absorption is weaker than
harmonic ion cyclotron absorption by the ratio (2/ir)k rCM/3m , (n 1 /wPir) < 1.
Similar results apply in comparison with minority absorption or with electron absorption.
It should be noted, however, that this treatment ignores potential difficulties with mode
conversion into shear Alfven waves on the high field side of the resonance.(4 )

X. Harmonic Ion Cyclotron Absorption by High Energy Ions

Absorption of magnetosonic waves by hot ions may be of importance when simulta-
neous neutral beam injection is taking place, or when the rf power is strong enough to
form an energetic ion tail by quasi-linear diffusion.0) The ions have a slowing-down energy
distribution which is best modelled by Monte-Carlo techniques in the case of neutral beam
injection. As shown by simulations, a typical distribution function may be characterized
in an approximate way by a Maxwellian with energies Tl, ebmax/ 3 , Thi ~ Cbmaz/4, and
an ion population of a few percent of the bulk ions. If a harmonic cyclotron resonance layer
is present in the plasma, significant wave power loss to the beam ions may result, while
the beam ions would be accelerated to higher energies. This may be beneficial to beam
penetration near the center of the plasma while detrimental near the edge (depending on
the location of the cyclotron harmonic layer). In any case, it would be detrimental to
driving plasma currents with the wave. It should be noted that such beam acceleration
has been found in recent 3rd harmonic resonance experiments.( 19)

We can easily repeat the previous calculations, with special care given to absorption
by the hot ions while using the bulk plasma parameters for dispersion and polarization.
The result of the calculation is

2 7= r WpbR 20 )(1-1)(.!b)(t-2) V - 1)41
2 c 4 n (t - 2)!

where sub-b designates the bulk (background) ions, sub-h designates the hot ions, 6hL =
87rnhTh±/B2 is the hot ion beta perpendicular component, and I is the harmonic number
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(t = w/wej). Note again, that this result is valid only for kIVr 2/2)(n/n)flh < 1 and
I > 2. We see that formula (41) has some interesting dependence on harmonic numbers.
Comparing Eqs.(27b) and (41), we find for the ratio of cyclotron harmonic absorption on
hot (beam) ions versus that on bulk ions is

( ).Lf1(nb)-2 (42)
A6 nh

It is interesting to note that for t = 2, r = 8h/ 3 b and absorption on hot ions may be
comparable to, or less than that on the bulk ions. However, for I > 3, even if Ph/b < 1,
absorption on the hot ions may well dominate if nb > nh

XI. Quasi-Linear Theory

Another way to consider absorption of waves in the plasma is by means of quasi-
linear theory. This formalism has the advantage of easy generalization to non-Maxwellian
distributions, including that created by the incident rf waves themselves. Although the
waves may be coherent, the particles transiting them lose phase memory as they pass
around the torus hundreds of times and experience rare collisions.(1) To obtain the true
distribution function of a species of charged particles, one must solve a Fokker-Planck
equation, including quasi-linear diffusion and collisional drag and diffusion of the form(1)

af Of 1
t |Q - Vi(< Ai > f) 2 2 VY - [Vir (< V > (43a)

where the 2nd and 3rd terms on the RHS correspond to collisional tems and

af _QL = - D QL - (43b)at 5,V7 av
is the quasi-linear term. In general this is a difficult problem which has been solved only
in a few instances. For example the case of a minority species distribution function in
the presence of ICRF heating and collisional drag has been determined by Stix.(') The
experimental verification of this theory has been one of the triumphs of ICRF experiments
on tokamaks during the past decade, and it will be discussed by other authors in these
Proceedings. In the steady state the result is the characterization of a high energy minority
tail by an effective temperature(1)

T(1 1[+ Rj(Te-Tj+(Te) (44)
Tef f ~- T (1 + () I Tj(1 + Rj + () 1+ (E/E)3/2
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where

= i 2 (Vte

ne Vtj

m(P)vte
87r1/ 2nenZ2edfnA

and (P) is the average power per unit volume deposited. Here the majority ion species is
characterized by density nj, temperature T, charge eZj, thermal speed vt, = (2Tj/m 3 )1/ 2;
electrons are characterized by density ne, and thermal speed vte; the minority species being
accelerated by cyclotron resonance are designated by n, m, v, Z and E = mv 2/2. We
note that for C ~ 0 the minority ion species is characterized by a temperature close to
that of the majority ion temperature, whereas for E > Ej(C), Tf1 : Te(1 + () and ion
acceleration is entirely balanced by electron drag.

Let us now ignore collisions and discuss the quasi-linear diffusion term in the presence
of rf waves. In particular, the power absorbed by charged particles can be calculated as
follows:

P =Jdv M. (o) QL (45)

The quasi-linear evolution of the distribution function in a magnetized plasma has
been given by Kennel and Engelmann nearly three decades ago(' 7) and it may be written
in the following form:

(Of _ ,rZ 2 e2  d3 k
t QL -V ~ m2  (2,r ) yvv (w - M - k11v11)IE|,kt 2v±_f (46)

where

k v1, 1 + k( 8

1 = 1 - +

1,k =-e+it(E, - iEy)kJ+l( k-v
2Q
1 (

+ eio (E. + iE,)kJt-_1 k1

+!EzkJe (ki v)
VL Q
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where k = k-L cos i + ki. sin 5 + k11 i. Here V is the plasma volume, 4k are the Fourier
amplitudes of the electric field and V) is the angle between the 1 direction and k-, the wave
vector in the plane perpendicular to B, the ambient dc magnetic field. The absorption
of fast waves by ion cyclotron resonance can be deduced from terms being proportional
to E+ = E, + iEy, e > 1. Carrying out the integration over k, we readily deduce the
following relevant expression for ion cyclotron resonance absorption:

Of,(-) 7rZ 2e2  2 1 2 k1v ( w - tw ± 1 f 4
=M2 ( +v It6V11 (47)at 8m2 k _ W V ±J.1 1 i k vj Ov.±

where the summation is over ion cyclotron harmonics. Using cylindrical coordinates and
azimuthal symmetry, we may readily proceed with the integration in Eq.(45):

W 2 2 e 2  12 0 0 VjjkLL
P = fo j(VjjRe0)\E+| 2  f- [vI Jk±V) dv1  (48)

where we integrated by parts twice for convenience. For a Maxwellian, Eq.(48) can be
readily integrated for small arguments of the Bessel function and we obtain

W 2 JE+12 (11) t _ t,2

167r1 / 2 k1 vti i (t - 1)!2(1-1) k 2

which is exactly the same result as Eq.(22). Thus, quasi-linear theory gives the same
result as Eq. (3) for a Maxwellian distribution. We can now use Eq. (48) to integrate over a
Maxwellian distribution to all orders of the finite ion Larmor radius. In particular, taking
the derivative in Eq.(48) and integrating by parts, Eq.(48) can be integrated exactly and
we obtain

16r 1/2 k1 2t [It. 1 (bi) + I((bi) - It.-1 (b1 ) e-b exp - wk,( (50)167r/2klvj k2 2

where II(bi) is the modified Bessel function of order t and argument bi. The small Larmor
radius limit of Eq.(50) results from the first term of the square bracket (expand I- 1 (bj))
and it agrees with Eq.(49). It is easy to generalize Eq.(50) to include absorption on an
energetic minority ion species (compare Eq.(50) with (41)). These examples show the
power of using quasi-linear theory for calculating power absorption to all orders of the
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Larmor radius, and for arbitrary distribution functions. In particular, larger values of bi
lead to stronger absorption, and the result is that cyclotron harmonic resonances in the
plasma lead to energetic ion tail production due to quasi-linear diffusion.

We can also use Eqs.(45) and (46) to calculate power absorption due to electron
Landau damping and electron transit time magnetic pumping. In this case we take the
e = 0 terms and expand the Bessel functions for small arguments (i.e., small electron
Larmor radius expansion) before integrating over v±. In particular, we use J0 (kivi/we) ze
1, Jikiv/we.) = ±kyv±/2wee, and we obtain in Eq.(46)

2 2
2 1 2 EU12 2 2iw,, w (51)

4 E V k k 2y (51)

For a Maxwellian plasma, we can use the results of Eq.(12) to express the ratio of E,/Ey
in terms of the dielectric constants. Integrating over the energy (Eq. 45) we obtain a
result for the power absorbed which is identical to Eq.(5b), and the damping rates are
identical to those obtained previously. We can also examine the case of high perpendicular
energies and in this case the first term (TTMP) would dominate in Eq.(51). We see that
in general, Eq.(51) includes TTMP (the first term) electron Landau damping (the second
term) and the cross term (the product of the first and second terms). Equation (51)
has been used in Fokker-Planck code calculations in connection with fast wave current
drive in anisotropic plasmas which cannot be described by a Maxwellian.( 20) In general,
using the fast magnetosonic wave it is difficult to distort the distribution function from
a Maxwellian for w/kj1 Vie < 2, which is the usual region of interest for reasonable single
pass damping (i.e., several percent per pass)(9 ). Thus, for most cases of practical interest
the results obtained earlier (Eqs. 13, 21) usually suffice. We shall now discuss some recent
experimental results regarding direct electron heating by the fast magnetosonic wave, and
point out possible consequences such as fast wave current drive.

XII. Recent Experiments on Direct Electron Heating

by Magnetosonic Waves

Magnetosonic waves have been used for nearly two decades in tokamaks to heat ions,
and indirectly electrons, by cyclotron (harmonic) resonance (commonly called "ICRF heat-
ing"). The earlier experimental results which emphasize minority heating and cyclotron
harmonic heating have been summarized by P.L. Colestock,( 21) and more recent references
can be found in the AIP Conference Proceedings on RF heating.( 22 ) In this section we
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wish to mention the very recent results obtained on the DIII-D tokamak on direct electron
heating by magnetosonic waves,(23-26 and its potential use for current drive in tokamaks.
In addition, we should mention the early experiments in this area on JFT-2M(27) and
JET(28 ,) where a small fraction of the RF power (-20%) was absorbed directly by elec-
trons. In the case of JET, the direct electron heating was limited to less than single pass
absorption since a strong ion cyclotron resonance layer was present near the plasma cen-
ter. In JFT-2M the single pass absorption was very weak owing to the high parallel phase
velocity of the injected waves (w/k 11vt Z; 1.7).

In DIII-D, a four-strap antenna was used to launch fast waves at 60 MHz.(23,2 5) The
magnetic field is varied in the range BT = 1 to 2 Tesla, so that in the deuterium plasma
f/lcD = 8 - 4 for this range of fields. The n11 spectra of the waves launched peaks at
nl ~ ±9 for (o, -r, 0, 7r) phasing of adjacent antenna elements (with secondary peaks at
ng = ±2.5) and for (7r/2) phasing between adjacent current straps the spectrum peaks at
ng ~ 5 with high directionality. The spectral width is typically An 1 c ±2 about the central
value. The evanescent region between the n' = R cut-off layer and the antenna surface
preferentially couples the lower-n11 components while toroidal effects upshift the coupled
nu spectra approximately by the inverse aspect ratio (1/2.7). The Landau absorption
condition (w/k11vte ~ 1) is satisfied for

Te(keV) ~ (250/n2)

or for ngi ~ 9, Teo ~ 3 keV, and for nl ~ 5, Tea ~ 10 keV. Thus, for the heating phasing
we have ideal absorption conditions, while for the current drive phasing, additional heating
(for example, with ECH power) is desirable. It should be recognized, however, that for
the heating case the effective nl spectrum may be lowered by evanescence, while toroidal
effects would upshift it back to near its original value. On the other hand, for current drive
phasing n11 ~ 5 couples well and toroidal upshifts would result in an effective spectrum of
n1l - 7. Thus, we expect that for Tea ~ 5 keV the absorption of the current drive spectra
should be satisfactory.

In Fig. 2 we display heating results with symmetric phasing (A0 = 7r) of the antenna
straps. This figure shows good heating of electrons, as well as increase of the stored energy
in the plasma. In Fig. 3 the calculated effective energy confinement time, normalized
to ITER-P-89 scaling, is shown, as well as the calculated single pass absorption. Note
that multiple pass absorption must be effective since nearly all power must be absorbed
to account for the observed confinement time. There is no apparent dependence on the
magnetic field, which indicates very effective multiple pass absorption. On the other hand,
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the exponential Landau factor is very important, as may be seen in Fig. 4. There is
essentially no heating below a threshold electron temperature, while above this threshold
there is rapid increase in the heating effectiveness. Finally, in Fig. 5, evidence of H-mode
confinement is indicated by pure electron absorption of the fast magnetosonic wave. The
threshold power is comparable to that of neutral injection or ECH power. Thus, the
pure electron heating regime with the fast magnetosonic wave has been clearly verified in
these seminal experiments. Very recently these experiments have been extended to (7r/2)
phasing, and the existence of fast wave current drive has been demonstrated.( 25 ,26)

XIII. Summary and Conclusions

In this treatise we summarized some aspects of plasma heating by magnetosonic waves
in the ion cyclotron range of frequencies. We have considered wave propagation in the
simplest possible way, namely that of slab geometry, to estimate the power absorption
by electron Landau damping, transmit time magnetic pumping, and cyclotron (harmonic)
damping. For simplicity, we have used the local approximation of both the real and the
imaginary parts of the wave disperions relationship. It should be pointed out that toroidal
wave propagation codes have recently verified these results.(3 0 ) We have shown that the sim-
ple approach outlined by Stix in 1961, namely calculating the Re(J -5) contribution, gives
the same result as quasi-linear theory derived by Kennel and Engelman in 1966. While we
have concentrated on the relatively "new" concept of electron absorption of magnetosonic
waves (advocated by Stix in his 1975 paper), a brief summary of cyclotron harmonic and
minority species absorption was also presented. No attempt was made at mathematical
rigor (for this see, for example, the book by Swanson( 31 )). In fact, the approach taken was
that of an "experimentalist," who needs relatively simple absorption formulae which can
be used for practical estimates. The limitation of this approach was pointed out wherever
applicable, in particular, power "loss" by mode-conversion in the presence of dissipation
is hard to estimate without a more rigorous approach. The conditions for efficient single
pass absorption were obtained. While in present day experiments mainly minority heat-
ing is employed, for future applications the importance of absorption by electron Landau
damping must be emphasized. A natural by-product of such absorption is the possibility of
noninductive current drive by fast waves. In this context, cyclotron (harmonic) abosrption
must be regarded as perhaps and undesirable and "parasitic" loss mechanism since it will
reduce the already marginal current drive efficiency. Thus, it is clear that efficient boot-

strap current generation must be part of any kind of future steady-state tokamak reactor
scenario.

Finally, a very recent experiments on JFT-2M, JET, and in particular on DIII-D
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have clearly verified the practicality of direct electron absorption of the fast magnetosonic
wave in the ICRF regime. In addition, initial results on fast wave current drive have been
obtained. In the high temperature reactor regime single pass absorption of fast waves by
electrons will be sufficient (of the order -50% or greater). One of the issues still to be
resolved is the competing mechanism of absorption of the fast wave by alpha particles for
frequencies w Z wca. Clearly, optimizing the choice of wave frequency will be important
for good current drive efficiency.
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