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Abstract

Fast wave flow drive in a two-component plasma with low minority ion concentration

is investigated. It is found that strongly sheared poloidal flow can be generated in a

small region near the hybrid ion-ion resonance due to the rapid spatial variation of plasma

response. The flow drive depends strongly on local plasma parameters such as the plasma

temperature and density and is shown to be very effective in the edge region of a tokamak

where the plasma temperature is low. The result is applied to a discussion of shear flow

suppression of edge turbulence.

PACS Nos. 52.40.Db, 52.50.Gj, 52.35.Ra
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Sheared poloidal flow has been found to play a crucial rule in suppressing plasma

turbulence, thereby improving tokamak confinement' 3 . Finding practical means of gen-

erating and control of sheared poloidal flow thus becomes an important and challenging

task in current fusion research. Towards this end, several scenarios of flow drive using

externally launched radio frequency (RF) waves have been proposed4 . In these scenarios,

the externally launched RF waves are either the mode converted low frequency kinetic

Alfven wave or the high frequency ion Bernstein wave. The common features of these

scenarios are that the RF waves utilized have very short radial wavelengths comparable to

the ion Larmor radius, and the flow drive is determined mainly by the radial propagation

of the waves. In this letter, we will present a different scenario of flow drive using the

fast magnetosonic wave. For fast waves, the radial wavelength is much longer than the

ion Larmor radius. The flow drive is determined by the spatial variation of the plasma

response and depends strongly on local plasma parameters such as the plasma temperature

and density. In particular, the flow drive is shown to be very effective in the edge region

of a tokamak where the plasma temperature is low.

We consider a two-component plasma in the low minority ion concentration regime.

In such regime, the hybrid ion-ion resonance' falls into the minority ion resonance layer so

that the fast wave does not mode convert into the ion Bernstein wave. In the high minority

ion concentration regime, the fast wave will mode convert into the ion Bernstein wave7 '8

and the physics of flow drive will be similar to that described in Ref.5. For simplicity,

we consider a slab model of a tokamak plasma. The equilibrium magnetic field B0 is in z

(toroidal) direction. Its magnitude BO varies only in x (radial) direction and is inversely

proportional to the plasma major radius R. The fast wave is assumed to propagate in x

direction only. The allowed mode of propagation is determined by the dispersion relation 9 :
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and the electric field polarization:

-- =y -(2)
E y K.x - NZ2

where N. = k2tA/w, and N, = kvA/w are the radial and parallel component of the

Alfven refractive index, k. and k, are the radial and parallel wavenumber respectively,

VA = B 2 /47rp is the Alfven speed, w is the wave frequency, pTm = pM + pm is the

total plasma mass density, pm and pm are the majority and minority ion mass density

respectively, K,. and Ky are components of a normalized dielectric tensor. For a two-

component plasma with minority ion resonance, K., and K,, are given by'0 :

(O_)2 1 p. m nfl n_ _
K -X = 1 --- 1 1 - ' am Z(am )] (3a)( )2 2 pm +0 O On- n(-

K =+ ,, J ' n + wi aZ(m, )]
SW2 _ (M2 12 pM W W + On W - 11! (3b)

where f; is the ion cyclotron frequency, the superscript 'M' and 'm' refer to majority and

minority ions respectively, amr = "! , vl is the minority ion thermal speed, and Z(am )

is the plasma dispersion function.

The physics of RF flow drive is based on the following plasma poloidal momentum

balance equation:

Y) + (V Y)} = ( T ) + Y((Jx B),) - pp(v,) (4)

where (V,) is the mean poloidal flow velocity, V is the fluctuating velocity, E and . are

the fast wave electric and magnetic field, -T and Jare the total plasma charge and current

density, p is the neoclassical poloidal damping rate"1 , and the average (- ) is taken

over one fast wave oscillation period.
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In Eq.(4), the first two terms on the right hand side are the electric and JxB force

directly associated with the fast wave electromagnetic fields, while the second term on the

left hand side is the nonlinear inertial force called Reynolds stress. From V - E = 47r

and noting that E. < E. and k. ~ k,, the electric force can be expressed as:

To calculate the JxB force, we express f in terms of OT and in terms of a us-

ing the charge conservation and the Faraday's law respectively. Assuming {, B} Oc

exp{i fx kdx' + ikz - iwt}, and noting that J4 < J, and b, < i, we have: 4h ~ ;

and B, = (c/w)kEy. The JxB force can thus be written as:

1 . .-

-((J xB), ~ -( y5) (6)

Comparing Eqs.(5) and (6) shows that the JxB force has the same magnitude but opposite

sign as the electric force. The total electromagnetic force which is the sum of the two thus

tends to vanish and have little effect on the temporal evolution of the mean poloidal flow.

To calculate the Reynolds stress, we express the velocity response in terms of a mobility

tensor M: V = (c/B) M -. For a two-component plasma with one minority component,

M=Mm +(pm/pm) Mm, where MM and Mm are the mobility tensor for the majority and

minority ions respectively. Since the ion's motion are primarily in the plane perpendicular

to the equilibrium magnetic field, the mobility tensor has the form:

4- im" M.
M= (iM: (7)MXY iAMI

where M_, and My are given by1 O:
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Since IMXXI~ 1, and IM.,I~ 1, the magnitude of the Reynolds stress can be estimated:

(i fi) (9 V) > (_ )2 (EV E)

where the' >' sign applies when the spatial variation of M is faster than that of the E field.

The ratio between the Reynolds stress and the electric force is: pm(V - Y)/(jA,) ;>

c2/vA > 1. Therefore, the Reynolds stress is larger than either the electric or the J x B

force (much larger than the two combined) and is the dominant force for flow drive! In

the following, we will concentrate only on the Reynolds stress.

Using Eq.(2), we can express V in terms of E, only: V, = (c/B)St5,, and V, =

i(c/B)Sty, where SX and Sy are the ion velocity responses:

- N2) + M (Ka. , = MyK-., - N ,K. (9a)
S - M.,(KX - NZ +M2 K

K- 2

MX(K - N) + M (9b)

Carrying out the temporal average, we have:

(V -VYj) = -Re{VP* } (10)

The spatial derivative of Vy in the above equation has two contributions:

0 - c a
V = i-[(F 3) + ikxSy]Ey (11)

where the first term is due to the radial variation of the ion response S,, and the second

term is due to the radial propagation of the fast wave. We note that S. changes rapidly

5



near K,, ~ N', the hybrid ion-ion resonance. In the low minority ion concentration

regime, this hybrid ion-ion resonance falls into the minority ion resonance layer, and we can

approximate OS,/O9x S,/6x where bx = R(k 1v!"/w) is the minority ion resonance layer

width. If we take kl ~ 1/R, the ratio between the two terms in Eq.(11) is: (k.3S)/(L,

kpi < 1. Therefore, the fast wave flow drive is determined by the spatial variation of

the plasma response rather than the radial propagation of the waves. As a result, the flow

drive depends strongly on local plasma parameters such as temperature and density. In

particular, the flow drive is expected to be more effective at lower plasma temperatures

because at lower plasma temperatures, the minority ion resonance layer is narrower and

the plasma response varies faster.

To proceed, we substitute Eq.(11) into Eq.(10) and have:

(~. -T = (1 *

2VB-) = - ( ){Im(Sw* ) + [k Re(S*Sy) - kIIm(S*S,)]}|5 ,| 2 (X) (12)

where kR and k. are the real and imaginary part of k, respectively, and the spatial variation

of the fast wave E field amplitude is taken into account through:

IE5I 2 (x) = IEI 2(Xi) exp{-2 k (z')dx'} (13)

where x1 is some initial spatial position. To simplify the algebra, we define:

A = M.y(K. - N2) +M.Ky (14a)

B = K, - N (14b)

C = M,(K., - N) + MVK (14c)

so that S. = A/B, and S. = C/B. The last two terms in Eq.(12) are given by:

Re(S*S.) = 1 B {Re(A)Re(C) + Im(A)Im(C)} (15a)

Im(S*S,) = 1 {Re(A)Im(C) - Im(A)Re(C)} (15b)
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After lengthy but straight forward calculation, the first term in Eq.(12) is:

I(* ) "e(~ )2(B-
I -x R pm kv" 1B14

x{[Re(A)Re(B) - Im(A)Im(B)][a"\ImZ(am I)]

-[Re(A)Im(B) + Im(A)Re(B)][1 + amiReZ(am )]} (16)

with

B - K =" N (17a)
z PM W I

B - nM = (n - 1) t N2 (17b)w w W2-(n4)2 pM W W+ 2

The Reynolds stress is completely determined by Eqs.(12)-(17). From Eq.(4), the steady

state mean poloidal flow is obtained by setting 8(V,)/Ot = 0:

(V) = - (18)Pneo

To illustrate the results, we solve Eqs.(12)-(18) numerically. To be specific, we assume

a-two-component plasma with tritium majority and deuterium minority. The following

parameters relevant to edge plasma are used: R=150cm, a=50cm, BO=2T, Ti=100eV,

nT = 1013 cm-3, nD/nT = 0.005, w=96.13MHz, and the parallel wavelength A = 130cm.

The minority ion resonance position is chosen at R = 190cm. In figure 1, we show

the spatial profile of the flow velocity (V)(x). More preciously, what we show in Fig.1

is the spatially varying part of (V,)(x): F(xxi), which is defined through (V,)(x) =

(1/2pneo)(c/B)2ItyI2 (xi)F(x, x1 ). The rapid spatial variation of (V,)(x) occurs in a small

region near the hybrid ion-ion resonance, which, in this case, is a little inside the minority

ion resonance position RO. The strong spatial variation of the flow is due to the strong

spatial variation of the plasma response S.. The width of the variation (shear layer width)
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is approximately 2.5cm. Outside this region, the small and constant (shearless) flow is due

to the radial propagation of the wave. In Figure 2, we show the spatial profile of the flow

shear d(V)/dx. The localization of the flow shear near the hybrid ion-ion resonance is

evident. This figure also shows that the mean poloidal flow is not only strongly sheared,

but also strongly curved (large d2 (V,)/dX2 ).

As an application, we consider turbulence suppression by fast wave induced shear

flow. The physics of shear flow suppression of turbulence has been discussed extensively in

Ref.3. The criterion is that the shearing rate of the poloidal flow exceeds the turbulence

decorrelation rate Awg: ke(Axkd(Vy,)/Ox) > Awg, where ke is the spectral averaged

poloidal wavenumber and Axk is the radial correlation length of the turbulence. For the

particular example given above, the flow shear can be inferred from Fig.2: d(Vy)/dx ~

6.0 x 106 I,1 2 (xl)s-1. Assuming drift wave characteristic of edge turbulence, namely,

kep, ~ 0.2, koAx ~ 1, Awg ~ w,* = 2.3 x 10 4 /s, and the plateau collisional regime for

the ions11 uneo = Iwti = 8.3 x 103/s, where p, is the ion Larmor radius at electron

temperature, w,* = (kop,)(c 8 /L.) is the electron diamagnetic drift frequency, c. is the ion

sound speed, L = a is the plasma density scale length, and wti = v/JR is the ion transient

frequency, we obtain Ey 2.0kV/m for turbulence suppression. At this magnitude of the

electric field, we can estimate the total heating power absorbed by the plasma (RF power

threshold). The total heating power Pt absorbed by the plasma (assuming minority ion

resonance only) is given by9 : P", = 7r2aR2 (pm n)(c/B)2jI+j2, where E+ = E, + it, is

the left-hand component of fast wave electric field. Using Eq. (2) and the parameters given

above, we obtain Pt 7.5kW, a number substantially smaller than those currently used in

plasma heating experiments. The negligible heating effect at lower plasma temperatures

is an important feature of the fast wave flow drive. Such feature can be utilized to drive a
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strongly sheared poloidal flow in the edge region of a tokamak, where less plasma heating is

desirable because it leads to less wall sputtering and thus less impurity influx. The physical

reason for the decoupling between the flow drive and power absorption at lower plasma

temperatures is that the fast wave flow drive is determined by the spatial variation of the

plasma response across the minority ion resonance layer. At lower plasma temperatures,

the minority ion resonance layer is narrower, the plasma response varies faster, the flow

drive is stronger, and thus less RF power is needed.

In summary, we have shown that strongly sheared poloidal flow can be generated in

a small region near the minority ion resonance using externally launched fast waves. The

flow drive is due to the spatial variation of the plasma response and depends strongly on

local plasma parameters such as temperature and density. In particular, the flow drive is

stronger at lower plasma temperatures (as in the edge region of a tokamak).
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Figure Captions

1. Figure 1. Spatial profile of the flow velocity (VY,)(x). The minority ion resonance

location is chosen at R0=190cm. Note the rapid spatial variation of the flow velocity

(flow shear) near the hybrid ion-ion resonance, which is a little inside &b.

2. Figure 2. Spatial profile of the flow shear d(V)(x), localized near the hybrid ion-ion

resonance where the rapid spatial variation of plasma response occurs.
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