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ANOMALOUS ELECTRON STREAMING DUE TO WAVES
IN TOKAMAK PLASMAS

S.D. Schultz, A. Bers, and A.K. Ram
Plasma Fusion Center, MIT, Cambridge, MA 02139

1. Abstract
The motion of circulating electrons in a tokamak interacting with electro-

static (lower hybrid) waves is given by a guiding center Hamiltonian and studied
by numerical integration. On surfaces with rational safety factor q, superposi-
tion of modes with degenerate values of the parallel mode number n + (m/q) is
shown to result in electron streaming perpendicular to the magnetic field.

2. Introduction
Recent work by Kupfer [1,2] on the chaotic electron dynamics induced by

waves demonstrated that in the presence of four waves wherein two are of
identical parallel phase velocity, an electron in resonance with the waves will
have a drift in the radial direction. The work we present expands upon these
results, with the intent of formulating a theory explaining the existence and
properties of this "streaming". The problem is complicated by the necessity of
visualizing dynamics in a four-dimensional phase space including both parallel
and radial motion.

3. Hamiltonian Guiding Center Theory
We use a Hamiltonian description of the electron guiding center motion that

was derived in detail in [2), which makes use of several previous guiding center
theories [3,4,5]. The model is based on a tokamak with an MHD equilibrium
in the low-beta limit, and a low inverse-aspect ratio e = r/R. The electron is
circulating, with an orbit which remains near its initial flux surface. Although
magnetic field shear can be included in the derivation, it is neglected for pur-
poses of this work. The phase space for the guiding center motion is reduced
to four dimensions by gyroaveraging and assuming the magnetic moment it
to be a constant: this requires that our study be restricted to waves in the
low-frequency, long-wavelength limit.

The derivation gives two sets of canonical coordinates for the guiding center,
(z 1 ,p 1 ) and (z2,P 2 ). In terms of the familiar guiding center position (.0,6, )
and parallel velocity v11, and omitting correction terms of order E, one finds

Z1 Pi ~t mRovj1

Z2 T - 06 P2 eV,#(1

Here q is the safety factor. The Hamiltonian in the absence of wave perturba-
tions is

H 0 = 2 2 + pB0 . (2)
R2R
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This is simply the form of a free particle Hamiltonian in one dimension; drifts
are accounted for in the order-E corrections of (z 1 ,pi, z 2 ,P2), which are too
complicated to give in the limited space here.

To this Hamiltonian we add a small electrostatic field perturbation, -e4, in
the form of a few discrete plane waves with identical frequency.

f) = E mcos (no + m + k00 - wt) (3)
n,m

n and m are mode numbers, and kk is found using the dispersion relation of
lower-hybrid waves. Using the approximate relations given in (1), we obtain

P = Y nm cos (ki zi + k2z2 + kvp2 - Wt) (4)
n,m

with ki = n + (m/q.) and k2 = -(m/q). The dynamics of interest occur when
the safety factor q, is a rational number, which makes the perturbation periodic
in z, and z2, and allows us to choose different integers n,m giving the same
value of the parallel mode number ki but different values of k2 and kv. The
electron is in resonance with a wave when d(kizi + k2z 2 + kVp 2 - wt)/dt = 0.
The unperturbed Hamiltonian gives i1 = (mR2)- 1 pi and the other three co-
ordinates constant, so resonance occurs for pi = (mR,)(w/ki).

4. Numerical Integration
The equations of motion derived from the perturbed Hamiltonian were used

to evolve the coordinates zi(t),p 1 (t), z2(t),p2(t) in time. We select units so that
me, e, R0 , and w are all unity. The safety factor is chosen to be q, = 2. To
reproduce the radial streaming observed by Kupfer [2], we choose four electro-
static modes with mode numbers (n,m) = (1,1)(1,2)(2,0)(2,2); in the new
coordinates (ki,k 2) = (3/2,-1/2)(2,-1)(2,0)(3,-1). This case is degenerate:
two modes have the same parallel mode number k, = 2 with different values of
k2 and kg,. The resonance condition in simplified units is pi = 1/k,, so that the
resonance surfaces in phase space are at pi = 2/3,1/2, and 1/3. The amplitude
of each wave is the same and was chosen so that the separatrix layers for these
three waves barely overlap, which creates a stochastic layer around all three
of the resonance surfaces in (zi,pi) phase space. The initial condition of the
coordinates is chosen to lie in this resonance region.

The figures describe the motion observed for two cases with different initial
conditions in (z 2,p 2). The two points are started on the same flux surface

(P2o = 0) but at different poloidal angles (z 2, = 0,7r) separated by AO = 7r/2.
Figures 1(a) and 1(b) show the time series pi(t) (which corresponds to paral-

lel velocity) for these two cases. In the z2, = 0 case, pi is observed to fluctuate
rapidly throughout the resonance region, spending a roughly equal amount of
time near each of the three resonances. However, in the z2 , = 7r case, the
electron quickly moves into an orbit close to the pi = 1/2 resonance, which is
degenerate, and stays there.

Figures 2(a) and 2(b) show the time series p2(t) (corresponding to the flux
coordinate) in the two cases. In the first case, motion in the p2 direction is
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wildly fluctuating, but with occasional periods of directed, non-chaotic motion.
Over long times, these periods of streaming add up to a slow drift in the radial
direction. In the second case, this streaming motion is nearly continuous, and
the rapid fluctuations are no longer visible on this scale, which is an order of
magnitude larger than on the previous figure.

5. Interpretation of Results
The electron streaming appears to be related to the patterns of constructive

and destructive interference of the two degenerate waves. Let us explicitly add
two such waves:

o cos (k 1z1 + k 2 aZ 2 + kpaP2 - t) + Io cos (klz1 + k2bz 2 + kpbP2 - t)

= 2$ cos (Ak 2z 2 + Akp 2) cos (kizi + k 2 z2 + kbP2 -t), (5)

where k2 = (k2a + k2b)/2, Ak 2 = (k2a - k2b)/2, A, = (kopa + kvb)/ 2, and Ak, =
(kga - keb)/2.

We would like to see how this interference pattern affects the phase space
of the guiding center motion. Unfortunately, a surface of section in this phase
space is given by a four-dimensional mapping, which is impossible to visualize.
But if a canonical transformation can be found so that two of the four phase
space variables are nearly constants of the motion, a plot of this mapping in the
phase plane of the other two coordinates is an approximate surface of section.
From these numerical integration experiments, it was discovered that a plot of
pi versus (kiz1+ k 2 z2 + kVP2) taken as a surface of section contains what appear
to be KAM surfaces and islands on the three resonance lines. Figures 3(a) and
3(b) show these surfaces for the two cases described above.

We observe that, in the z2o = 7r case, a set of invariant tori appear near the
degenerate resonance on this "surface of section". It is easy to show with (5)
that z2o = 7,P2, = 0 is a point where the degenerate waves interfere destruc-
tively. Thus the extra KAM surfaces appear because the electron perceives no
waves to interact with at this resonance.

The details of the canonical transformation giving this approximate surface
of section are under investigation. This is expected to reveal that there are
quantities which are very nearly conserved by the streaming motion.

Work supported by DoE Grant No. DE-FG02-91ER-54109, NSF Grant No.
ECS-88-22475, and in part by the Magnetic Fusion Science Fellowship Program.
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Figure 1: p1 vs. t (in 071). (a z2o = 0; (b) 2 = rr
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Figure 2: p1 vs. t (in w-1). (a) z2o = 0; (b) z2o = i
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Figure 3. Plot of P1 VS. kiz 2 + k2z2 + k p2-
(a) z20 = 0, (b) z2 = I(
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