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The dynamics of Stimulated Brillouin Scattering (SBS) in a finite length, homo-

geneous medium with the effects of temporal dephasing but no external feedback is

examined numerically. The inclusion of dephasing leads to nonstationary behaviour

of the wave amplitudes including periodicity, quasi-periodicity and chaos. The results

may have applications to experiments with optical fibers and laser plasmas.
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I. INTRODUCTION

The dynamics of Stimulated Brillouin Scattering (SBS) in a homogeneous finite medium

has captured considerable interest both in laser-plasma interactions [1-4] and in optical

fibers [5-10]. SBS is a three wave interaction (3WI) that results from a parametric coupling

between electromagnetic (light) and acoustic waves. In an optical fiber, a laser impinges on

the fiber, excites an acoustic wave by electrostriction and scatters back (Stokes wave). In

the case of a plasma an ion-acoustic wave is excited.

Nonstationary and chaotic behaviour has been previously reported in SBS with external

feedback such as reflection at the boundaries [1,2,4] or with models involving more than one

pump [11,12]. Harrison et al. [9] have observed chaotic SBS experimentally in an optical fiber

without feedback. Gaeta and Boyd [10], have performed similar experiments and obtained

similar results. However, they propose that the experimentally observed aperiodic behaviour

is due to amplification of noise. They propose a stochastically driven model that agrees with

their experiments.

It is shown here that with the addition of temporal dephasing and without feedback the

spatiotemporal 3WI modelling SBS can be chaotic in a restricted parameter regime. It has

been demonstrated previously that unstable three wave interactions in time only (uniform

amplitudes) with temporal dephasing can have chaotic behaviour [17,18]. The model we

propose appears to be one of the simplest SBS models in spatially extended media that

exhibits chaos. The question remains as to how a frequency mismatch would occur in a

fiber. The experiments were done with narrow linewidth lasers, so the resonance conditions

should always be satisfied. An argument for how dephasing may arise has been proposed by

Rubenchik [19]. The wavelength of the acoustic wave is on the order of the fiber diameter.

Thus transverse modes will be set up in the fiber wave guide. The k spectrum will be discrete,

so exact resonance may be impossible. Future experiments could seed the Stokes wave at a

dephased frequency with a second laser, but at a low level so a three wave interaction still

applies.
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For SBS in a finite medium with temporal dephasing in one spatial dimension the equa-

tions are [13-15].

,9tai + vi69,a + -yjai = -Kajak exp(-i~t), (la)

eta3 + vja8,aj + -taj = K*aia* exp(i~t), (1b)

8 tak + vk8.ak + -ykak = K*aia* exp(iSt), (1c)

where power is fed in through the boundary with a;(0) = A,. Equations (1a) and (1b)

describe the evolution of light waves travelling in opposite directions so vi = -v = c/n

where c is the velocity of light and n is the index of refraction for the medium. Equation

(1c) describes the evolution of the acoustic wave (ion acoustic wave in a plasma), where

the group velocity is the sound velocity c,. It should be noted that with fixed boundary

conditions the dephasing cannot be transformed away in Eqs. (la)-(1c).

In a typical experiment with fused silica optical fibers and a single-mode argon-ion laser

operating at A = 514.5nm, the parameters are n = 1.46, c, = 5.96 x 10 3ms-', dy' ~ 270MHz,

K ~ 66ms-'V-', and i/-y ~ 10- [5,9,10,20].

Equation (1) can be simplified. For a relatively strong pump the interaction time scale for

the acoustic wave is given by T = 1/(KA,). This gives an interaction length of 1 r V Fcc/n.

The damping length for the acoustic wave is ld ~ c,/y,. For the case where the damping

length is much smaller than the interaction length (1d << 1) the convective term in Eq. (1c)

can be ignored. This condition is easily satisfied in optical fibers and can be satisfied in

a plasma for heavy ion acoustic wave damping. The damping on the EM waves are weak

and can be ignored. Length and time scales can be rescaled with -ykt --+ t, xa-k(n/c) -- x,

A = 6/-y, and the wave amplitudes can be rescaled with EO = a;K/Yk, E, = ajK/gt,

E.= (akK/yA) exp(-iAt). The SBS equations become

OtEo +8,.Eo = -EE., (2a)

OtE - iE, = EoE*, (2b)

OtE. + (1 + iA)Ea = EoE,*, (2c)
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with the boundary conditions Eo(x = 0, t) = A,,K/-k = A, E,(x = L, t) = C. The scattered

wave is assumed to grow from a small amplitude (noise) e at the right boundary. The laser

wave Eo is referred to as the pump, the scattered light wave E, is often called the Stokes

wave. In terms of a typical optical fiber experiment, L = 1 corresponds to 0.75m, A = 1

corresponds to 270MHz, and A = e = 1 corresponds to 4MVm 1 .

II. THE DYNAMICS

Equations (2a)-(2c) were numerically simulated. The details of the numerical integration

are in Ref. [21]. For each run the spatiotemporal series was recorded. Diagnostics included

monitoring the output time dependence of the waves: Eo(x = L, t), E.(x = 0, t), E.(x =

0, t). The phase portrait of E.(0, t) vs. E.(0, t) was constructed from this information. As a

substitute for a Poincar6 surface of section the phase portrait was strobed at the dephasing

rate, i.e. E.(0, t,) vs. E,(0, t,) where t, = 27rn/A, n is an integer. The system has four free

parameters A, A, e, and L. However a numerical survey of the parameter space indicated

that a two dimensional surface in the parameter space could capture the unfolding behaviour.

The A-A parameter plane for fixed L and e was chosen.

Figure 1 shows the numerically determined unfolding diagram in the A-A plane for

L = 40 and e = 0.0025. Parameters L and e were chosen so that the bifurcation diagram

in the A-A plane contained all the observed dynamics. For small A and A there is a stable

fixed state. It becomes unstable through a Hopf bifurcation to a periodic state. Then there

is a transition to quasi-periodicity and to chaos. Each region will be discussed in detail.

A. The Fixed State

The system has one fixed state. This is best examined by transforming the complex

amplitudes to modulus-phase form. Substituting the following

Eo = Aoet10, (3a)
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E, = Aaet'O, (3b)

E. = Ame'-, (3c)

into Eqs. (2a)-(2c) yields the equations

Ao,t + Ao,. = -AA. cos 4, (4a)

A,, - A,, = AA. cos 4, (4b)

Aat + A. = AoA, cos 4, (4c)

AA 0
0o,t + 40,. = - sin 4, (5a)

AoA
- , = A sin 4, (5b)

A.

Ao A
A.A + A = . sin 4, (5c)

where 4 = O.+ 4, - 0o. The fixed state is obtained by setting the time derivatives to zero.

From Eqs. (4a)-(4c) this yields the equations

Ao,= -AOA2 cos2 4, (6)

A,,= -A2A, COS 2 4. (7)

Combining Eqs. (4c) and (5c) yields tan 4 = -A. The amplitudes must be positive so from

(4c) it can be concluded that

1 -A
Cos 0= , sino= .(8)

V1+A2 V/1+A 2

Equations (6) and (7) can then be integrated to yield

= 1- A2 (1 - R)
1 - Rexp(-2(1 - R)A2x), (9a)

A2R(1 - R) (9b)
exp(2(1 - R)A2rx) - R,

A. = P1/2 AoA,, r = (1 + A2 )-', (9c)

subject to
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A,(x = L) = e. (10)

The reflectivity R is determined by the boundary condition at x = L. Its value must be

obtained numerically.

Substituting for A. and sin q in Eqs. (5b) and (5c) yields

dz- AAJ2 (1
1-i-A 2 "'

1+A 2  (12)

Using Eqs. (9a) and (9b), the phases in Eqs. (11) and (12) can be integrated to yield

A 1 - R exp(-2A(1 - R)rx) (13)2o=gi 1 - R ,(3

A I exp(2A2 (1 - R)Px) - R(= -- n (142 1exp(2A 2(1 - R)LL) - R '

where the boundary conditions

0o(x = 0) = 0, 0,(x = L) = 0, (15)

have been applied. The phases are fixed by the boundary conditions and increase as

they travel towards the opposite end. The pump phase has an upper bound of qo(L) <

-(A/2) ln(1 - R) while the Stokes phase is unbounded for large A.

The spatial profile of the fixed state for the envelope moduli for parameters A = 1.6,

A = 0, L = 40, e = 0.0025 is shown in Fig. 2. In this particular example the reflectivity R

for the Stokes wave is close to unity. The Stokes wave has a definite decay length in space

given by

l ~ (1 + A 2)/(2(1 - R)A 2 ). (16)

For distances beyond x ~ 1, the Stokes wave has negligible amplitude and the pump no longer

couples to the other two waves. Thus l, gives an effective interaction length. Although the

system box may be larger, the dynamics take place in the interaction region 0 < x < 1,.

6



The stability of the fixed state can be examined by substituting E, = A, exp(i$) + 8E

into Eqs. (2a)-(2c), where SE, are small perturbations. If the perturbations are assumed

to have a time dependence of exp(st), the linearized equations form an inhomogeneous

fourth order boundary value problem for the real and imaginary parts of SEo and SE,.

These equations must be solved numerically. This has not yet been done. For no temporal

dephasing (A = 0), Blaha et aL [3] showed that this fourth order system reduces to two

second order equations, one each for the real and imaginary parts. These second order

equations can then each be transformed into Legendre equations and the time evolution of

perturbations can be found in terms of associated Legendre functions. They showed that

the fixed state is unstable in a semi-infinite medium. Applying boundary conditions for a

finite medium to their solutions, the fixed state can be shown to always be stable for no

dephasing.

Numerically it was found that the fixed state Hopf bifurcates to a periodic state along

an 'L' shaped curve in the parameter plane (see Fig. 1). Although an analytic condition for

the stability of the fixed state has not been found, this particular shape can be understood

qualitatively. Consider a nonzero value of A. The fixed state is stable for A = 0. The

only difference in the fixed state between A = 0 and A # 0 is the 'phase twist' given in

Eqs. (13) and (14). The criterion for stability is then postulated to be determined by the

amount of 'phase twisting'. For example when 0,(x = 0) exceeds a critical threshold, the

fixed state becomes unstable. A contour portrait of 0,(x = 0) in the A-A plane for L = 40

and e = 0.0025 is shown in Fig. 3. Notice that the 0,(x = 0) ~ 5 contour matches very

closely to the numerically determined stability boundary in Fig. 1.

From Eq. (14) it appears that the phase 0,(0) depends on A2 and L in the same way. This

is not entirely true because the reflection coefficient depends nontrivially on the parameters.

However it has a relatively weak dependence and numerical simulations do show that the

bifurcation point responds similarly to A2 and L. In the parameter plane (Fig. 1), L was

set large enough so that all the bifurcations were included.
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B. Periodic Orbits

When the stability line is crossed in parameter space the fixed state Hopf bifurcates to

a periodic state. Points in the parameter plane will be denoted by the ordered pair (A, A).

An example of the spatial profile of a periodic state at (1,1) is shown in Fig. 4. The three

profiles have the form of the fixed state profiles shown in Fig. 2 but with modulations. In

this and the following spatial profile figures, the pump is the solid line, the Stokes wave is

the dashed line and the acoustic wave is the dotted line. The pump consists of a periodic

pattern that propagates across the box. The interaction between the waves is confined to a

small region given roughly by the decay length of the Stokes wave Eq. (16). The time series

of the output pump amplitude will be indentical to the spatial profile of the pump outside

of the interaction region with the other two waves. The output time series of the pump and

Stokes waves are both periodic. The power spectrum of the pump is shown in Fig. 5 and

shows the frequency is very near A. The power spectra of the other two waves are similar.

The phase portrait of E, vs. E. is shown in Fig. 6 (a). A closed curve is seen confirming

periodic behaviour. The phase portrait strobed at the dephasing rate A = 1 is shown in

Fig. 6 (b). In this case the frequency is locked to the dephasing rate with a period of 38. In

all cases the frequency will be near A but not necessarily locked to it.

One small section of the periodic regime, indicated by a line of x's in Fig. 1, has a

phase coexistence between a periodic state and a quasi-periodic state. Depending on the

initial conditions, the result could be a periodic state similar to that seen in Fig. 6 or a

completely different quasi-periodic orbit can appear. Figure 7 shows the phase portrait of

the quasi-periodic state. One sees a double looped figure that does not close. The two

different runs were continued for very long times to test their robustness. However even

after many hundreds of thousands of periods, the quasi-periodic state did not fall into the

periodic attractor. It is unknown what the basin of attraction is for each phase. This

coexistence regime was discovered by chance. It is unknown whether more regimes exist in

the periodic regime. In many of the runs made in the periodic regime, the relaxation times
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were extremely long. Often it was difficult to distinguish between periodic and nonperiodic

states because the transients were so long lived.

C. Quasi-periodicity and Chaos

By changing the parameters the periodic state can make a transition to a quasi-periodic

state. As the bifurcation boundary to quasi-periodicity is approached from the periodic side,

a second frequency corresponding to the round trip transit time across the box begins to

make an appearance as a transient oscillation. Its decay time becomes longer and longer

as the boundary is approached until it no longer decays away at the boundary between

periodicity and quasi-periodicity. Very long computation times were required to resolve this

boundary.

The power spectrum for the pump for the quasi-periodic state at (1, 2) is in Fig. 8. The

other waves have similar power spectra. There are many peaks in the spectrum confirming

quasi-periodic behaviour. The peak at w ~ 1 is the fast frequency from the periodic orbit.

The broader peak near w ~ 0.07 corresponds to a time scale of twice the transit time across

the box. The phase portrait will have a width and be clearly nonperiodic.

The quasi-periodic state makes a subcritical bifurcation to chaos. At the boundary

between the two phases there is a region of hysteresis. However, this region is very narrow.

For instance at (1, 2) there is another attractor. The phase portrait shows that the orbit has

a double loop structure similar to that for the quasi-periodic phase at (1.1,1) seen in Fig. 7.

The orbit alternates between one loop and the other. The output time series seem to manifest

intermittency. The time-only equations were observed to exhibit Type I intermittency [18].

The power spectrum for the pump shows broad band behaviour indicative of chaos. A

measurement of the largest Lyapunov exponent A was made by linearizing about a fiducial

orbit (see Ref. [22]). It was found to be very small but positive (A - 0.001).

As the chaotic regime is entered further the orbits become more aperiodic. The laminar

regions in the time series reduce in size and the general structure of the time series begins
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to look different. A third loop in the phase portrait begins to form. Well into the chaotic

region at (1,5), the time series of the pump is clearly chaotic in Fig. 9. The phase portrait

in Fig. 10 has no real structure. The power spectrum in Fig. 11 flattens out below w ~ 1

defining a coherence or correlation time where the spectrum bends over. The spatial profile

is in Fig. 12. The waves appear chaotic yet the interaction length where the Stokes wave has

substantial amplitude remains small. From the plot it appears that the coherence length

of the pump structures is on the order of the decay length of the Stokes wave. Thus the

resulting chaos is expected to be low dimensional.

III. CONCLUSIONS

Given that temporal dephasing is present in SBS, a sequence of transitions from steady

state to chaos is possible. For the chaotic regime to occur, the reflectivity must be high

and the medium must be larger than the decay length (growth length) for the Stokes wave.

The parameter unfolding of the system is complicated and difficult to understand. Even the

linear stability analysis is unwieldy. However the phase twist hypothesis for instability of

the fixed state seems to capture qualitatively what is happening. This fact along with the

existence of a relatively well defined bifurcation sequence to chaos is an indication that there

may be a reduced ODE description for the dynamics. This is in contrast to other models of

nonlinear three wave interactions where spatiotemporal chaos with many degrees of freedom

is observed [231. The difficulty of the model considered here is that the boundary conditions

impose an inhomogeneous fixed state. The linear equations must be solved numerically to

obtain the eigenvalues. Simple expansions in a harmonic series do not satisfy the boundary

conditions. Thus, some nontrivial mode expansion is likely to be required.

The addition of dephasing appears to provide the simplest SBS model thus far that has

chaotic solutions. Gaeta and Boyd [10] have strong evidence that the aperiodicity observed

thus far in experiments with optical fibers is due to amplification of noise. This is not to say

that chaotic SBS due to dephasing may not exist in other experiments. For high reflectivity
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in a large medium the effect of the noise need not be as great [16]. Future experiments using

a second laser at very low powers to seed the Stokes wave may be employed to reduce the

effects of noise. The temperature of the optical fiber could also be lowered to reduce the

noise. The frequencies could be scanned to search for acoustic modes that would lead to

dephased SBS. The power of the lasers and length of the fiber could then be varied to search

for chaotic behavior.
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FIG. 1. Bifurcation diagram in the A-A plane for L = 40 and e = 0.0025. There are four

different phases: F denotes the fixed state, P denotes the periodic orbit, Q denotes quasi-periodicity

and C denotes chaos. The line of x's indicate a region of phase coexistence between a periodic and

a quasi-periodic orbit.
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FIG. 4. Periodic state: Spatial profile of the amplitudes at a fixed time at (1,1).
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