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Abstract

A Fokker-Planck equation has been generalized to treat large-angle as well as small-

angle binary collisions in plasmas. For moderately coupled plasmas (2 ~ Coulomb log-

arithm (lnAb) ~ 10), calculations have been made of the relaxation rates and transport

coefficients. In general they differ from the standard (Braginskii) results by terms of

order 1/lnA6 . Using a modified collision operator, a new vector potential that has a

direct and practical connection to the Rosenbluth potentials is obtained. In addition, we

calculate a reduced electron-ion collision operator that, for the first time, manifests the

1/lnAb corrections.

PACS Nos. 51.10.+y, 52.25.Dg, 52.25.Fi
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The Fokker-Planck equation, which was originally derived to treat the Brownian mo-

tion of molecules[1,2], has been widely used to evaluate the collision term of the Boltz-

mann equation for describing small-angle binary collisions of the inverse-square type of

force. In stellar dynamics[3], Chandrasekhar first discussed this theory for stochastic

effects of gravity. The applications of this equation to classical plasma physics were first

treated by Landau[4], Spitzer[5], as well as Cohen, Spitzer, and Routly[6], and an elegant

mathematical treatment was completed by Rosenbluth, MacDonald, and Judd[7]. Their

treatments, as well as those of other workers[8-12], are based on the assumption that

the Coulomb logarithm (InAb), which is a measure of the importance of small-angle bi-

nary collisions relative to large-angle scattering, is of order 10 or greater. Terms smaller

by the factor of the Coulomb logarithm are neglected, i.e. large-angle scattering is ig-

nored. The conventional Fokker-Planck equation, applicable to weakly coupled plasmas

(InAb ~ 10), is therefore only accurate to within an order of the Coulomb logarithm[4-

12]. However, there is a large class of plasmas for which the approximation is invalid[13]:

strongly coupled plasmas at one extreme (lnAb ~ 1)[14-17], and moderately coupled

ones in the intermediate regime (2 ~< inAb ~' 10)[18-28]. It is to the moderately coupled

plasmas, as exemplified by short-pulse laser plasmas[19-22], inertial confinement fusion

plasmas[23], x-ray laser plasmas[26-27], and the solar core[28], to which our modifica-

tions of the Fokker-Planck equation are directed. As discussed in detail elsewhere[29],

our modifications consist in retaining the third-order term and parts of the second-order

term[30], both of which are usually discarded[3-12] in the Taylor expansion of the collision

2



operator. (Fourth, fifth, sixth, and higher order terms in the expansion will be ignored

since they are smaller than the third term by factors of 8, 80, 960 .... , respectively). After

presenting some basic properties of the collision operator, we use it to calculate a reduced

electron-ion collision operator, relaxation rates and first-order transport coefficients.

The Boltzmann equation for the rate-of-change of the test particle (sub or superscript

t) distribution is

aft aft aft ft
W7+ V - TX+ a - _5V 07)Cl

(aft/r),oll is the collision operator and represents the time-rate-of-change of ft due to

collisions with the field particles (sub or superscript f). Its Taylor expansion[8,11] is

written as

aft a 1 a2
)Col = -- (ft < Avi >t/f) + - (ft < AviZAv >t/f)

a7 avi 2 aviavj
1 - & ( ft < AViAVJAVk >t/f) , (2)
6 OViOVjaVk

where the vi, v3 , and Vk represent the components of the test-particle velocity in Carte-

sian coordinates. In our calculation, we follow the conventions of Rosenbluth et al.[7]

and Trubnikov[8]:
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< Avi >t/If = -L/f(mt + ) H(V) (3)
mf Ovi

02 Lt/f 02
< AviAv, >t/f = -2Lt/f a2 G(v) + LA [30 a2G(v) - ; v)] (4)

aviavi n~ aVia

< AViAV AVk >t/f = 4 Lt*_1 (m 2 (v) . (5)inAb mt + mf OjO(VJ

Lt/f = (47retef/mt)2lnAb, where inAb = ln(AD/p±), AD is the Debye length of the field

particles; p± = etef /mru 2 is the impact parameter for 900 scattering, with m, the reduced

mass, et (ef) the test (field) charges, u = Iv - v'l the relative velocity; mt (mf) is the

test (field) particle mass. In addition,

H(v) = - - dv', (6)

G(v) = -' fJuff (v')dv' , (7)

and

b(v) =- f uluff (v')dv'. (8)
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H and G, which appear in Eqs. 3 and 4, are potentials defined by Rosenbluth et al.[7,12].

0 is a new vector potential that derives from retaining the third term in Eq. 2. In Eqs.

4 and 5, the factors multiplied by 1/lnAb are a direct consequence of our third-order

expansion. In contrast to < Avi >t/f and < AviAov >'f which represent the effects of

small-angle collisions[8,11], < AviAvj >' and < AviAvjAvk >t/f mainly represent the

effects of large-angle scattering.

The vector potential 0 has the following useful properties:

V2 VV .D(v) = ff(v); (9)

V2V,4D(v) = 0; (10)

VSVv 4<(v) = V.G(v)

= H(v) . (11)

Eq. 11 is utilized to obtain the reduced electron - ion collision operator in the ap-

proximation where me/mion ~ 0:

A 5 a 1 4 V ij 0 Vijk a2
Ce-ion(fe,fin) = A-v 6lnAb )V InAb 3 v vj 6 VJVk)f

(12)

5



where A = 27rneZ2 e4lnAb/m', Vi, is the conventional diffusion tensor[8,11,29,31-32] in

velocity space,

V 2 6.. - viv, (13)

and the new terms, including the third-rank tensor

VV6jk + 6  lk + k6  ViVJV
ijk v v v -+ (14)

are also mainly associated with large-angle scattering. Once again the terms in Eq. 12

with coefficient 1/lnAb are a consequence of this new expansion.

For the purpose of illustrating the effects of these modifications, we show in Tables 1

and 2 some physical quantities of interest. The column labeled Conventional (Modified)

denotes the results without (with) the modifications[5,8,9,12,24,29,31-34]. To calculate

the relaxation rates of Table 1, we used a delta function for the test particle velocity and

a Maxwellian distribution for the field particles. We find that even with the inclusion of

all higher terms, the slowing down rate is unmodified from the conventional form[8,12].

As best we can tell, this seems not to have been previously recognized since other workers

indicated InAb need be 10 or greater for its application. In contrast to this, the energy

loss rate and 900 deflection rate both manifest 1/lnAb corrections. To the best of our

knowledge, this is the first time these corrections have been calculated. For the energy
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loss rate, it is, in part, utilized in estimating the energy loss for 3.5 MeV a's, 1.01 MeV

Triton, 0.82 MeV 3He, and fast electrons in inertial confinement fusion plasmas[35]. In

calculating the 900 deflection rate, the vector potential (Eq. 8) is utilized. We find an

increase in this rate over the standard (Braginskii) form; this means that the mean-free-

path, used extensively in discussions of high-gradient scale-length plasmas[19-27,31-34],

will be decreased.

To calculate the electron thermal conductivity with the new collision operator (Eq.

12), the electron distribution function was expanded as a first-order Legendre polyno-

mial, i.e. f, = fo + ficosO, where 0 is the angle between v and the direction of the heat

flow, and a high-Z limit for the ion charge has been assumed (Lorentz-gas model). In

addition, the Boltzmann equation was also linearized. (A similar procedure was used in

the calculation of other transport coefficients listed in Table 2.) In this approximation,

1/GnAb corrections are, for the first time, evident. The fact that these corrections are

much smaller than the InA6 corrections of the energy loss and deflection rate, is, we con-

jecture, due to the linearization of the Boltzmann equation and retention of only the first

order correction in the electron distribution function. Therefore, in future work it will

be important to include higher-order terms of the electron distribution function as well

as retaining the non-linearities of the Boltzmann equation. Such transport coefficients

could be then applied to a variety of plasmas, such as short-pulse laser plasmas[19-22],

x-ray laser plasmas[26-27], inertial confinement fusion plasmas[23], and the solar core[28].
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In summary, we have modified the standard Fokker-Planck operator for Coulomb col-

lisions by including terms that are directly associated with large-angle scattering. The

procedure allows us to effectively treat plasmas for which inAb ~ 2, i.e. for moderately

coupled plasmas. Precise calculations of some relaxation rates, and approximate calcula-

tions of electron transport coefficients, were made, and, in most cases, they differed from

Braginskii's and Trubnikov's results by terms of order 1/lnAb. However, in the limit of

large lnAb (~ 10), these results reduce to the standard (Braginskii) form[5,8,9,12]. In

addition, we have calculated a reduced electron-ion collision operator that, for the first

time, manifests the 1/lnAb corrections.

We gratefully acknowledge useful conversations with Drs. S. I. Braginskii, P. Catto,

E. M. Epperlein, A. Ram, D. S. Sigmar, L. Wang, and K. W. Wenzel. This work is

supported by U. S. Department of Energy (DOE) Grant No. DEFG02-91ER54109.
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Table 1. The Lists of the Modified (Conventional) Relaxation Rates.

Relaxation Conventional lnAb ~ 10 Modified
Rates Restriction'

Slowing Down (1 + .,!1g)tVw Nod unchanged from

(u!I)*,! MfConventional

900 Defelection 2(p + V - xt/ Yes 2[1 + f (I )](p + p' - )+r **

Energy Loss 2( - p - p')v. Yes 2[ -/1 - p' + I(yp + p')]v.
(uf Mf)*,!

a This condition applies to the Conventional results only.

* v = V7ree2nf lnAb/V/n-Et3/2 - The "basic relaxation rate".

** v _j :s [< (Av±)2 > /v 2] [< (AV±)2Av > /v 3]

y = 2 fJt
/ e-C/d//Fr - The Maxwell integral, and p' is the first derivative of the

Maxwell integral.

d As best we can tell, this was not known since it is stated[12] that InAb~ 10.
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Table 2. The Lists of the Modified (Conventional) Transport Coefficients.

Transport Conventional InAb~ 10 Modified
Coefficients Restriction

Electron Electric 32n e
2  Yes 32ne 2

31rm~v,i 3irme(1+1/6InAb)Ve.

Conductivity(o11 )**

Electron Therm. 16yV2_rekre Yes 16v2-ine kT,
3mevej 3me(1+1/6lnAb)vei

Conductivity(K11 )**

w 2 8
Light Collision - Afo Yes ___ (1 + 1)Afo

Damping rate(v)t

a This condition applies to the Conventional results only.

** vej = 4v/ 2Z 2e'nelnA/3V/mf(kTe)3/2 - The "basic electron-ion collision rate", and

here v, = kTe/me is assumed[12].

t fo = - fo dvg(v)(afo/Ov), where g(v) = {1 + [2A/v 3 w]2 -1 ~ 1 due to vei/W < 1[24],

and w is frequency of the laser light wave.
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