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SPATIOTEMPORAL CHAOS IN THREE WAVE INTERACTIONS

C. C. CHOW, A. BERS AND A. K. RAM

Plasma Fusion Center and Research Laboratory of Electronics

Massachusetts Institute of Technology, Cambridge, MA 02139 USA

ABSTRACT

It is shown that the saturated state of an unstable wave nonlinearly coupled to two lower frequency

damped waves exhibits spatiotemporal chaos. The results can be understood by perturbation anal-

ysis on the conservative nonlinear three-wave interaction which is integrable.
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INTRODUCTION

The nonlinear three wave interaction (3WI) in spacetime has numerous applications to plasma

physics (Bers, 1975; Kaup et al., 1979). The linear evolution of this interaction describes parametric

instabilities, both absolute and convective, as well as the stable coupling of waves. We consider the

case of the nonlinear saturation of a linearly unstable parent wave by coupling to two damped daugh-

ter waves (Chow, 1991; Chow et al., 1992a; Chow et al., 1992b) This system exhibits spatiotemporal

chaos (STC). The term STC specifically refers to the chaotic dynamics of coherent structures or

spatial patterns (Hohenberg and Shraiman, 1989; Coullet et al., 1987; Arrechi et al., 1990; Ciliberto

and Caponeri, 1990). This is contrasted with fully developed turbulence where there is a cascade

to small scales, and is different from low dimensional chaos where spatial degrees of freedom are

not involved. The conservative form of the 3WI is integrable by inverse scattering transforms (IST)

and may have soliton solutions (Kaup et al., 1979; Kaup, 1976a; Zakharov and Manakov, 1973).

We consider the nearly integrable limit of the 3WI and use numerical simulations and perturbation

theory about the IST solutions to gain some understanding of the dynamics.

The 3WI is a ubiquitous interaction that can occur whenever three linear waves are in resonance in

a weakly nonlinear medium (Benney and Newell, 1967; Bers, 1975; Kaup, 1979; Chow, 1991). We

studied the dynamics of a nonconservative 3WI in one spatial dimension z and time t. For weakly

growing and damped waves this 3WI has the form (Chow, 1991; Chow et al., 1992a)

8tai - D,..ai - yai = -ajak (1)

Oea + v,8.aj + yjaj = aA (2)

Otak+vh8 .ah+yka = aja, (3)

where the a's are complex wave envelopes, the -y's are growth or damping coefficients, v's are group

velocities (the interaction is described in the frame of the wave packets), the nonlinear coupling is

taken as unity and D is a diffusion coefficient. The diffusion term is usually not included in the 3WI.
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This term arises if we assume that the growth of the linear wave has a slow spatial variation. It is

then the lowest order reflection invariant term that provides a cutoff in wave number of the growth.

Without this term the problem is not well posed. It will become apparent later that this term is
essential for nonlinear saturation and is very important in determining the long time behavior.' The
subscript i denotes the high frequency unstable parent wave. The other two waves are referred to
as the daughters. We will consider the case where the daughter waves have equal damping (i.e.
yj = -). The length and time can then be rescaled so that the damping coefficient is unity.

The order of the group velocities determines the behavior of the conservative (-y = D = 0) nonlinear
interactions (Kaup et al., 1979). If the high frequency wave has the middle group velocity then
solitons are transferred from the parent to the daughter waves. This case is known as the soliton
decay interaction (SDI). As an example, this situation may occur in the decay of lower hybrid waves.
This also corresponds to the nonlinear saturation of an absolute parametric instability in the parent
wave frame. If the parent wave has the highest or lowest group velocity then soliton exchange is no

longer possible and the collisions between wave packets become important. This case is physically
most common. It is the nonlinear saturation of a convective parametric instability in the parent
frame. This situation applies for example to the Langmuir decay interaction (LDI) and may have
implications in the saturation of stimulated Raman scattering (SRS) observed in intense laser-plasma
interactions (Batha et al., 1991). In the nonconservative nonlinear interaction described by (1)-(3)
both SDI and LDI exhibit STC. The first is described in Section 2 and the second in Section 3.

SOLITON DECAY INTERACTION

For SDI the group velocities satisfy the condition v, > 0 > v3 (i.e., the highest frequency parent wave

has the middle group velocity 2). In the absence of growth, damping and diffusion (-ye = D = 0) the

IST solutions for this group velocity ordering is described by soliton exchange between wavepackets
(Kaup et al., 1979; Kaup, 1976a; Bers et al., 1976).

We numerically simulated the system Eqs. (1)-(3) on the domain z E [0, L) with periodic boundary

conditions. We began with random real initial conditions and evolved until the transients died away

before the system was analyzed. It can be shown that for real valued intitial conditions the envelopes
remain real for all time (Kaup et al., 1979; Chow, 1991). We were interested in the large system,

long time limit. We considered the case with parameters D = 0.001, y4 = 0.1, yj = y,, = 1, and

L = 20. These parameters were chosen because they exhibit STC and fall into a regime where the

results can be understood by perturbation theory on the conservative solution. However, the system

is extremely rich and different parameters do lead to vastly different behavior. Aspects of these

different regimes will be touched upon later and details are given in (Chow, 1991). We measured

the correlation function, S1(m,t) =< a (z - z',t - t')ag(x',t') >, where the angled brackets denote

spacetime averages.

A sample of the spatiotemporal evolution profiles in the STC regime of the parent and daughter
envelopes is given in Fig. 1. The length shown is one half the system size and t = 0 is an arbitrary
time well after the transients have decayed. The profile of the parent wave is irregular but spatial
and temporal scales can be observed. There are coherent structures of a definite length scale that

can be seen to grow, deplete and collide with one another. The profile of the daughter wave shows
a sea of structures convecting to the left. We only show one daughter, the other will be similar
but with structures convecting to the right. Figure 2 shows the spectrum of static fluctuations
SI(t = 0, q). For the parent wave there is a cutoff near q : 10 and a range of modes show up as

'An equivalent set of 3WI equations can be written in two spatial dimensions (e.g. z and y) for nonlinear interactions
in the steady state (Kaup et al., 1979); the equations are of the same form where t is y and, in each equation, all
other terms are divided by the y-component of the group velocity of the wave. Thus the solutions we describe (z, t)
apply also to (x, y) with appropriate boundary conditions.

2jn the two-dimensional steady-state, see (Kaup et al., 1979) and (Benney and Newell, 1967), this condition
involves only the ratios of group velocity components.
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a prominent hump. The cutoff reflects the length scale seen in the spacetime profile. For q below

the hump the spectrum is flat. The daughter spectrum has a cutoff around q 2 6 again indicating

a length scale. Figure 3 shows the local power spectrum S1(w, x = 0). The spectrum for the parent

clearly shows two time scales. The spectrum bends over near w = 0.02 which gives a long time scale

and a shoulder at w = 0.3 gives a short time scale. The short time scale appears as the growth

and depletion cycle observed in the spatiotemporal profile. The daughter power spectrum has two

peaks at high w. One is where the shoulder of the parent spectrum is and the other is at twice this

frequency. The spectrum begins to bend over and flatten out at at w ! 0.007.

The main features of the behavior can be understood if we consider the growth and dissipation

as perturbations about the conservative 3WI. The IST solutions for the conservative case on the

infinite domain show that solitons exist but they do not necessarily belong uniquely to a particular

envelope. Solitons in the parent wave tend to deplete to solitons in the daughters which propagate

away. The simplest soliton solution for decay shows that a soliton of the form Jail = 2i7sech2iax,

will decay into solitons in the daughters of the form JaI = v2igsechi(x + vat), where 17 is the IST

spectral parameter for the Zakharov-Manakov (Zakharov and Manakov, 1973) scattering problem.

The spectral parameter is also the eigenvalue for a bound state in the Zakharov-Shabat (Zakharov

and Shabat, 1971) scattering problem with the parent pulse as the potential function. In the WKB

limit 77 is related to the area of the parent pulse through the Bohr quantization condition

Ja3 - 77'11/2dx = 7r/2, (4)

where [a, b] are turning points for a local pulse. A collision between a daughter pulse and a parent

soliton is necessary to induce the decay of the parent (Bers et al., 1976; Kaup et al, 1979). For

arbitrary shaped parent pulses that exceed the area threshold, the soliton content will be transferred

to the daughters leaving the radiation behind in the parent pulse. Collisions between daughter

solitons are elastic.

With the addition of weak growth and dissipation, parent pulses deplete provided they satisfy the

WKB threshold condition (Chow et al., 1992a; Bers, 1983).

la? - ?1/2dx > 7r/2. (5)

The decay products in the daughters are quasi-solitons; they damp as they propagate away and do not

collide elastically. The soliton content of the parent is not completely transferred to the daughters.

The parent wave with some initial local eigenvalue 7 will deplete and be left with some remaining

area. This area is due to the conversion of soliton content into radiation by the perturbations. This

left over area can be represented by an effective 'eigenvalue' 7'. This remaining part of the parent

will then grow until it exceeds the threshold for decay. This time denoted by t, is given by

t := lin 77. (6)

The cycling time observed in the spacetime profiles is this time plus the time required to deplete.

The depletion time from IST theory is on the order 1/277 and for -y, < 277 this can be neglected and

t, gives the cycling time. By treating the damping and growth as a slow time scale perturbation

of the IST soliton decay solution described above and ignoring the effects of diffusion on this short

time scale, a multiple-time scale perturbation analysis about the IST soliton solution was used to

estimate 7'. In this calculation the ordering -y' < -yI < 27 was chosen. The small parameter is -j/27

but by simply rescaling in time and space either -y or 17 can be scaled to 0(1). To leading order this

yields (Chow, 1991) , yj. (7)

The derivation assumes that the depletion time for a soliton is very much faster than the growth and

damping time. Simulations for parent soliton initial conditions verify Eq. (7) (Chow, 1991). In order

to complete the calculation for the cycling time t,, it is necessary to estimate the threshold local 1

required for decay. By comparing the Bohr quantization condition (4) with the WKB condition for
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decay with damping (5) we know that 17 > -yj. Using the IST scattering space perturbation theory

developed by Kaup (Kaup et al., 1979; Kaup, 1976b; Kaup and Newell, 1978) and recently reviewed,
in Kivshar and Malomed (1989), we constructed the time dependence of the IST scattering data due

to the perturbation. The same ordering as the multiple scale calculation was chosen. From this we

were able to estimate 17 to leading order to be (Chow, 1991)

1q ~ 2-, + 44-s, (8)

where , is the parent correlation length and will be defined later. Equation (8) is sensitive to the

amplitudes of the colliding daughter waves that induce the decay. The calculation assumes the decay

is induced by collisions with quasi-solitons with the same phase from each daughter generated two

correlation lengths away. The relative phases of the colliding daughters is very important. Consider

real amplitudes for the moment, Eq. (1) shows that two daughter quasi-solitons with opposite signs

(phase) actually reinforce the parent rather than make it deplete. Because of other effects, expression

(8) should be considered more of a lower bound. In the simulation, radiation and diffusive effects'

will be relevant and may also further delay the decay of the parent. From 1 we are able to estimate

the daughter correlation length. This is given by the quasi-soliton width a = 2/17.

The long time behavior is governed by the diffusion. The trivial fixed point of Eq. (1) is given by

8oai + qoai = 0, a, = aI= 0, (9)

where qo = Ff/D. Modes with q > go will damp and those with q < qo will grow. Thus the

fixed point is always unstable to long wave length fluctuations. However, when a local area between

two turning points of the parent wave contains a bound state with eigenvalue 17 it will deplete. In

the depletion process broad parent pulses will be decimated. The growth in the q < qo modes are.

thus saturated nonlinearly. This results in long wavelength distortions beyond lengths 27r/qo. The

principal mode qo was observed as the cutoff in the spectrum of static fluctuations (Fig. 2a). The

mode qo defines the correlation length for the parent, , ~ 2r/qo. If D = 0 there will not be any

nonlinear saturation of the instability because qO would become infinite and so would the amplitude

required to fulfill the area threshold (5).

The long time scale for the parent r, is given by the diffusion time across a length (, giving ,
(2v) 2 /t 1 . This is the time scale in which the local parent structures will shift position, collide with

other structures or diffuse away. The long correlation time observed in the daughters is associated

with the interaction of the daughter quasi-solitons with the parent structures. Whenever quasi-

solitons collide with the parent structures they may induce a decay and create a new quasi-soliton

where the collision occurred. This would lead to a long correlation time for the daughters. As the

parent structures drift so would the creation location of new quasi-solitons. However because the

quasi-solitons have a larger width than the parent structures, the long time scale for the daughters

would be given by the diffusion time across a quasi-soliton width yielding 7a ~ 4/( 7
2D). The newly

created quasi-soliton damps while it continues to propagate along the characteristic. However when

it collides with another parent structure it could induce a decay and repeat the process. The parent

structures act as amplifiers regenerating damped quasi-solitons that collide with them.

Using the above analysis for the parameters of the simulation we obtain the following estimates:

r, ~ 400, qO = 10, , ~ 0.6, ' ~ 1, 7 :: 2.2, t, ~ 8, ta ~ 0.9, rj ~ 800. These estimates

corroborate fairly well with the simulation. The estimate for t, is a bit low compared to the shoulder

in the parent power spectra at w ~ 0.3 corresponding to t ~ 20. This is because many effects due

to radiation, diffusion and strong overlap of the envelopes were not accounted for. However the

spacetime profiles in Fig. 1 do show some of the parent structures cycling near the predicted time

scale, so the calculation does predict a lower bound.

A word should be said about the system size. It is clear with the very long correlation times for the

daughters that they cycle the box many times before correlations decay away. Thus for long times,

the temporal correlation function along the characteristic or at a single spatial location would be

the same. This was born out in the simulation. It is unknown what the precise boundary effects
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are since it would be impossible to numerically test a system large compared to this long time scale.
However with other runs of varying length, it was found that the above time scales seem to be
unaffected by the box size as long as the box is much larger than &p. The power law rise for the
parent power spectrum below 27r/-r,, seems to decrease in exponent as the system increases.

We chose parameters where perturbation theory about the IST solutions could be applied to try to
understand the dynamics. However the behavior does dramatically change for different parameter
regimes (Chow, 1991). For growth rates not small compared to the damping rates, the long time
scales observed tend to disappear and only the growth and depletion cycling time is evident. The
parent grows strongly and depletes violently preventing the structures to become established. The
larger the growth rate the larger the amplitudes of the quasi-solitons (Chow, 1991). Another regime
is when the diffusion is comparable to the damping so the parent structures are much broader than
the damping length of the daughters. In this situation the daughters grow and damp within the
confines of a parent pulse. Spatial exchange of information between these pulses is very slow. These
and other regimes are reported in Chow (1991).

LANGMUIR DECAY INTERACTION

In LDI the group velocities satisfy, without loss of generality, vk < v, < 0. For the simulation the
values v3 = -1,vA, = -2 were chosen. Using laser plasma terminology, wave aj is referred to as
the pump wave (PW), wave a3 is the acoustic wave (AW) and wave ak is the backscattered wave
(BW). The Eqs. (1)-(3) were simulated on the domain x E [0, L) with periodic boundary conditions.

The long time, large system limit was of interest. Simulations were started with random real initial

conditions. As in the SDI case the envelopes remain real for all time. The spacetime history

was recorded for all the envelopes. In the saturated regime the correlation functions Si(x, t) =<
ai(x - z', t - t')al(z', t') were computed. As in SDI the parameter set is given by (D,-y).

Several different parameter sets were used in the simulations. In the first example the parameters

were: -y; = 0.1, D = 0.004 and L = 20. As will be seen later the length plays an important

role in the dynamics. The spatiotemporal profile of the PW is shown in Fig. 4a. Again furrowed,

ridgelike 'coherent' structures are observed, as in the SDI but with a definite drift towards the

right. There appear to be length and time scales where things are correlated, but beyond which the

dynamics becomes chaotic. The correlation function for the PW is shown in Fig. 4b. The function

approaches zero in space and time indicating STC but a nonlinearly induced mode with a definite

phase velocity is clearly observed. This effect was observed in the spacetime profiles as the drifting

coherent structures. The correlation function shows that these structures are very long lived.

The local power spectrum Si(x = 0, w) is shown in Fig. 5a. A definite peak at w ~ .1 is observed;

the spectrum then flattens out at around w ~ 0.007 defining a correlation time. The spectrum of

static fluctuations S;(q,t = 0) is shown in Fig. 5b. A box-like function, as expected, is observed

with a cutoff at approximately q ~ 5, translating to a correlation length of , ~ 1.3.

The spacetime profile of the AW is shown in Fig. 6a. Ridgelike coherent structures are seen to drift

towards the left. For large scales the dynamics are chaotic. The correlation function measured along

the characteristic z = -t is given in Fig. 6b. There is strong decay in space and time confirming

STC. However there is a hump located at S(z ~ 10,t ~ 10), and another at S(X ~ 1, t ~ 20).

The latter is due to the collision of the AW coherent structure after one transit around the box.

Because the PW is drifting the bump is located away from x = 0. The former bump comes from

the interaction of the BW with the PW generating the AW. Since the BW travels at twice the

AW velocity this event occurs at half the time the AW requires to traverse the box. Note that the

correlation function shown is over the entire length of the system, and the periodicity of the system

is seen for t = 0. The power spectrum is shown in Fig. 7a. The correlation time corresponds to a

frequency of w ~ 0.3. The spectrum of static fluctuations is shown in Fig. 7b. There is a cutoff at

q ~ 9 corresponding to a correlation length of . ~ 0.7.
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The spacetime profile of the BW is shown in Fig. 8a. Again irregular yet distinct structures are

seen to drift towards the left. The correlation function measured along the characteristic x = -2t is

shown in Fig. 8b. Correlations approach zero in space and time indicating STC. A nonlinear mode
similar to the parent is also observed. The propagating mode implies that the structures found in

Fig. 8a are not aligned along the characteristic curve but are actually moving faster. The measured
phase velocity in the moving frame v ~ 0.1 indicates that the shift away from the characteristic

velocity is not very great. Correlations in the direction of the coherent structures are fairly long
compared to the damping times. The power spectrum along the characteristic in Fig. 9a shows a

cutoff around w ~ 0.4. The spectrum of static fluctuations in Fig. 9b shows a cutoff around q ~ 5
giving a correlation length of 4 ~ 1.3.

The simulation results can be understood with the aid of linear analysis and the IST solutions. The

linearized equation for the PW is exactly the same as that for the parent wave in SDI. The trivial

fixed point Eq. (9) gives a principal mode for the PW at go = J/D. Higher modes are damped
and lower modes are growing. As in SDI there is a competition between linear growth and nonlinear
saturation. Instead of depletion to quasi-solitons seen in SDI, the saturation mechanism is due to
the collisions between the envelopes. The balance between the competing effects is also responsible
for the propagating mode as will be shown.

The IST solutions which apply to the conservative form of LDI show solitons are not involved (Kaup
et al., 1979). The interesting dynamics are due to collisional radiation effects. A collision between
the AW and the PW generates the BW and decimates all the waves (Kaup et al., 1979; Chow, 1991).
Similar behavior occurs when the BW collides with the PW. The decimation of the parent wave is
always on the side opposite to that of the collision. This is seen in the IST solutions and can be
understood from the nonlinear saturation of the corresponding parametric instability. When the AW
collides with the PW, the BW and AW grow from the colliding edge as a convective instability. This
is because both of their group velocities are in the same direction. When the two envelopes attain
a significant amplitude the PW begins to saturate. However the two daughter waves will continue
to grow and continue to take energy from the PW. The energy of the PW will be reduced. The
depleting pump cuts off the growth of the two daughter waves and they saturate and begin to damp
as well. If the original amplitude of the PW is large enough or the growth rate -yi high enough, the
reduction in area continues until the PW becomes negative. The negative part of the PW can again
be a source for a convective instability and the same process ensues. In this way the envelopes are
spatially decimated into the oscillatory structures seen in the simulation. The decimation is always
on the side of the PW away from the colliding edge. The low q's are converted to high q's by this
process. Modes higher than qo get damped, so the PW will settle into structures of size 4, ~ 27r/qo.

The values qO = 5 and 4, ~ 1.3, obtained for the simulation parameter set, agree well with the
simulation.

The PW equation Eq. (1) has the form of a growing diffusion equation. Thus any localized pulse
will spread and grow. The propagating PW mode is a result of the combination of this spreading
effect and the decimation effect. The wavepackets decimate nonlinearly on one side and they spread
and grow linearly on the other side. A pulse moves like a sandbar near an ocean shore, building
on one side and receding on the other. A parabolic equation does not have a well defined phase
velocity, but a 'spreading' velocity can be defined by considering the trajectory of a point of constant
amplitude on a localized pulse. The phase velocity of the sandbar mode, as it will be referred to,
will then be given by this velocity which can be shown to be proportional to V/Dy (Chow, 1991).
From the simulations of several different cases it was discovered that the phase velocity behaves as

The peak in the PW power spectrum is given by the frequency of the sandbar mode. Using the

relation w = vpqo the frequency is found to be w = - = .1. This is precisely what was observed
in Fig. 5a. As seen in the correlation function in Fig. 4b, the structures remain coherent for very
long times. The power spectrum in Fig. 5a was taken along the time axis. The long time scale
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observed was actually given by the transit time of the sandbar mode around the box rp ~ L/v,.
It is unknown what the decorrelation mechanism for the PW coherent structures actually is. They
persist much longer than the diffusion time across a correlation length.

The saturation energy of the PW can be understood as follows. The competition between the
nonlinear and linear effects leads to coherent structures of size 27r/qo. The IST solutions show for
the conservative case that structures of this size are generated in collisions when the PW has a
height of aG ~ go. For taller structures, the collisions with the BW and AW will generate structures
with smaller wavelengths. The simulations seemed to indicate that these results of the integrable
case carry over to the nonintegrable regime. Then as the PW grows, it gets depleted as it constantly
collides with the other waves. If it grows higher than a; ~ q0 the generated structures damp away.
Thus a ~ q0 will be an upper bound to the height of the PW. For these parameters qo ~ 5 and
the tallest structures in the spacetime profile are of this order. Given the upper bound for the PW
height, the saturated energy density can be estimated by considering the PW to be composed of
coherent structures locally resembling a sine wave with average amplitude of qo/2. This then gives
an average energy density of S;(0,0) ~ q2/4 ~ 6. The simulation shows a value of S1(0,0) ~ 5.
Considering the assumptions used in the estimate this is remarkably good.

It is significant that the correlation length for the AW is one half the correlation length of the
BW. This is due to the fact that its group velocity is half of the BW. As discussed above the PW
settles into coherent structures of size 4, and this fixes the size of the BW structures. The AW
gets generated wherever the BW collides with the PW. In the time direction, along a PW coherent
structure, the BW and AW will tend to have the same number of coherent structures. This can
be seen by comparing Fig. 6a with Fig. 8a. However since the AW has a group velocity half that
of the BW, if it has the same number of structures in the time direction, it must have twice as
many in the spatial direction. In other words the coherent structures of the AW are half the size
of the BW. This was observed in the simulation. In the saturated state, a lattice-like structure will
become established. Of course it is only for special cases that a regular lattice can be formed. In
most cases the lattice will be frustrated. This leads to the lack of regularity and STC observed. It
would be very useful in the future to measure the cross correlation function between the waves to
better understand these effects.

The propagating mode of the BW seen in the correlation function can also be inferred from the IST
solution. The correlation function showed that the propagation velocity of the coherent structures
was slightly slower than the characteristic velocity. During a collision between the BW with the
PW, the two waves will interact nonlinearly and this process retards the transmission of the BW,
slowing the velocity.

The AW spacetime profile in Fig. 6a shows a furrowed structure moving to the left like the BW, but
the correlation function in Fig. 8a does not show the long correlations and evidence of a nonlinear
mode like the BW and PW. Correlations are quickly damped out compared to the other waves. This
is likely due in part to the fact that since the group velocity is half that of the BW, it experiences
twice as much damping between collisions. It may also be that the wave collisions affect the AW
more than the other waves. The humps observed in the AW correlation function are due to collisions
of the AW with the PW and BW waves. The one at (m 2 1, t t 20), is due to repeated collisions of
the AW with a particular PW structure. The correlation times of the PW structures are very long.
Each time the AW circles the simulation box it will collide with the PW structure. The hump is
slightly off from the characteristic. This is due to the fact that the PW structure is drifting. The
hump at (z = 10, t = 10) is due to collisions between a given BW structure and the PW structure.
Whenever these two waves collide they generate the AW in the process. The BW has group velocity
twice that of the AW and so transits the box in a time t = 10. In the frame of the AW the hump
gets shifted in a as well.
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It would seem that the behavior observed for LDI should persist as the PW growth rate increases

or the diffusion decreases. The PW structures would reduce in width and this would lead to an

increase in their amplitude. The ratio of the PW energy to the daughters would approach unity.

However in the weak growth limit the ratio of the PW energy to the daughter energies would be

.large. The PW structures would become wider and their amplitudes smaller. The daughter waves

would damp more between collisions. The coherence times would likely become longer as in the SDI

case. The energies of the daughter waves would also get smaller in comparison to the PW's and the

nonlinearity would become less important. Differences in the ratios of the velocity would change

the ratio of the sizes of the AW and BW. Differences in the damping rates on the daughters would

change the saturation energies. If the disparity were large than the wave with the lower damping

would dominate the nonlinear collision processes. These effects were seen in preliminary simulations.

A detailed analysis remains to be done.

The spectral broadening and amplitude saturation of the unstable wave occurs for almost all pa-

rameters. As an application we have considered the saturation of SRS due to decay of the electron

plasma wave (epw) (Chow, 1991). The unstable epw in SRS can decay rapidly to another epw and

ion-acoustic wave. The ensuing STC broadens the spectrum and saturates this epw which, for a

fixed input laser power, leads to the saturation of the scattered wave in SRS. Further details will be

given in an upcoming publication.
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Fig. 1. Spatiotemporal profiles of the parent wave

a) and daughter wave b) for SDI.
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Fig. 2. Spectrum of static fluctuations S(q, t
= 0) of the parent wave a) and daughter wave

b) for SDI.
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Fig. 3. Local power spectrum S(x = 0, w) of the parent wave a) and daughter wave b) for SDI.
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Fig. 9. Local power spectrum a) and spectrum of static fluctuations b) for the BW for LDI.
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