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Abstract

The bootstrap current produced by fusion born alpha particles is obtained retaining

effects of slowing down drag, pitch angle scattering, and arbitrary aspect ratio. The

result is presented both as a summation of a rapidly converging series and a simple Pade

approximation good for arbitrary aspect ratio. Quantitative results are derived using

International Thermonuclear Experimental Reactor (ITER)' parameters.
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I. INTRODUCTION

In toroidal plasma systems, the parallel friction force will attempt to equilibrate the

parallel flows of different species by generating a relative poloidal flow in response to the

relative parallel diamagnetic flow. A finite parallel relative flow remains due to existence

of magnetically trapped orbits since they cannot contribute to the poloidal flows. This

effect leads to a current, usually referred to as the bootstrap current which is proportional

to the relative parallel diamagnetic return flow times the fraction of trapped particles.

The neoclassical bootstrap current is of great importance for future tokamak fusion

devices because at sufficient poloidal beta it can provide a substantial fraction of the

total current. Typically, the fusion produced fast a particles can produce a beta gradient

comparable to that of the background plasma. This implies that fast a particles may result

in a bootstrap current contribution comparable with the background bootstrap current.

Previously, the a particle induced bootstrap current had been calculated 2 3 by keeping

only the drag term in the collision operator and was found to be small because it arose

only due to "banana collapsing" during the slowing down process, which scales as oc 3/2

(f is the inverse aspect ratio). However, in recent work,4 it has been found that pitch angle

scattering can be very important in the neoclassical transport process of fast a particles

and leads to transport fluxes oc e1/2. In this work, the bootstrap current will be calculated

based on the work of Ref. 4 in which both drag and pitch angle scattering collisional effects

are included for the a particle kinetics.

By imposing the quasineutrality condition, the plasma current can be written as

J =-, e[neVie + %lZctVcf + Z njZ1Vjj (1)

where the subscript i refers to the main ion, and I refers to impurities and Vij = Vi - Vj

is the difference of flows between species i and j. Hence, the current can be obtained upon

determining the relative flow velocities Vi, Vai, and Vji.

It will be shown that the dynamics of all bulk plasma ion species (i.e., i, I) are hardly

influenced by a particles, and thus can be treated as known quantities which can be found
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in the existing literature. Thus in the next two sections, only the a particle parallel

flow and electron parallel flow will be calculated. In Section IV, the bootstrap current

will be calculated and the quantitative results will be given based on ITER parameters.

Conclusions are given in Section V.

II. CALCULATION OF Vi

In Ref. 4, the a particle response was calculated by including the effects of finite aspect

ratio and both the drag and pitch angle scattering. Nonetheless, ion flow and E x B drift

was neglected. Although this can be justified due to the fact that

Vi T
Va Ea

it is still interesting to include them (i) for completeness and (ii) to demonstrate that the

a transport flux is independent of E,.

By considering also the fact that the fusion source term is isotropic in the ion rest

frame instead of the lab frame, one finds that it is appropriate to treat the a particle kinetic

equation in the ion rest frame. In Appendix A, the a drift kinetic equation in the ion rest

frame is obtained. The resulting drift kinetic equation (A8) is then solved by following the

same procedure as in Ref. 4 (also cf. Appendix A) which yields the first order distribution

function

fa - foo + v11  fao + P(Aw,') (2)

with

P(A, w,O)=E An (A, ?) V,,i(w,,O) A (W,"o). (3)
j=1,3 n=1

Here, v is the a particle velocity in the ion rest frame, w 2; 2 h;h B ;
ZjeB I B .R 2 VO. V* L9~
m c = B - ;*i + KiB is the ion parallel flow less the E x B

drift induced return flow; Ki A corresponds to the ion poloidal flow; pi is the ion

pressure; An is the eigenfunction of the pitch angle scattering operator as given in Ref. 4;

and

fo(V,) = S. 3 H(vo - v) (4)
47r(v3 + V3)
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is the lowest order (slowing down) distribution function driven by the fusion source S.

P(A,w, ,) represents the localized distribution function which vanishes in the trapped

region.

Denoting the flux surface average by ( ), the three driving forces for P(A, w, i) are

Al IV - 9 faO (5)

1 8
A2 57- foaO (6)

A3  ea ) 2 9 fao, (7)

and the corresponding V,, are (cf. Appendix A)

(K, - 1)V3 VO (v3(V3 +U3) ) OfCO(U)
Vni = On - b du 3 c (8)

(n 1)V3 VO 3(v ~ s 3 3 Qpr-)
Vn2= On 1 - du (n- bV(+U 3'C U)(9)

VO ++ V 3)v +) 3 Qu-

= -4n du v 3 (u3 + ) U 2 afo(u). (10)
(v3+vi)9 Jv U3(v 3 + V3) OU

Here, Qp, Kn and on are given in Ref. 4; in particular, Q=, v /V3 - 0(1) for D-T fusion.

E E= l - ZF (11)
nie

is the effective parallel electric field; F, is the electron-ion parallel friction and

In = nSr +- In v) f'o. (12)

V

It is now apparent that fai is independent of the E x B drift. In addition, all the terms

involving ion flow are - smaller than the a particle diamagnetic drift terms. This justifies

the adequacy of the results in Ref. 4 and rigorously proves that the neoclassical a particle

radial fluxes do not explicitly depend on E,.

4



Now, Vj can be calculated from

ncV, 1 =J dvvllf 1 = 0, vadj dA fci

which yields

n= 1
KnJ (U 1 - no

U2n - N2n

+ N 3 Za erS E\
Ma h

Here, a = vil /1vl 1 , -yn is defined in Eq. (17) of Ref. 4,

U1 3 dV [ fc1] 1 a =2 L

Tdv- ?j-fo= - P SrvoE~LjXt

is the a diamagnetic flow,

U2n JdV H(v) ( fo)

H,(v) 4 du
u3(ui~})Qp-n

N2n = dv [Hn(v) + Hn(v)] fo0,

00
N 3 =E nJ

1 jU
Gn(v) 1 du

Lga33(1-1)

dv Gn(v) + v Gn(v)) fao,

u3 (V 3 + va 3 3

3(U3 + V3)

f dx ( x3 -

U3

U3 + v3,'

X, f -5 (In Sr,),

X2 (ln v),
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(13)

(14)

(15)

(16a)

(16b)

(17)

(18a)

(18b)

(19)

(20a)

(20b)

= 1 -n, 1

T2 [-Yn (1 - 1 )
n=1 -Kn

n h ))



and X0 = ! is the ratio of a birth to critical velocity.

Here, it is important to note some properties of -y, it, and fe, the effective fraction

of circulating particles, 5 ie,

S- A dA- =( 2 (21)

which corresponds to the "pitch angle scattering" dominant solution of the a drift kinetic

equation.

7n = -d (h 2 ) (22)n=1

corresponds to the "drag" dominant case. = a is a pitch angle variable.

In addition, Hn(v) and Gn(v) have the following properties:

< 1 for QPs > 0
Hn(v), Gn(v) = 1 for Qpia = 0 (23)

~ 0 ( Q ) for Q-n > 1.

Also, using the fact that Kn > 2n 2 - n and typically Q - 1, one expects a rapid con-

vergence of Hn(v) and Gn(v) with n. This implies that one needs only the first few

eigenfunctions (e.g. n = 1 -+ 5) to accurately evaluate the second and third terms in

Eq. (14).

Furthermore, when (i) Q > 1, (i.e. pitch angle scattering dominant), only the first

term in Eq. (14) survives; and when (ii) Q, < 1, Eq. (14) reduces to

K ~>( '>n) (Ui-nc
njVail') (- 1 **n=1~

+ ( -n n Zer
n=1

as is expected (also cf. Eq. (22)).

Thus, the a dynamics has been solved by including the effects of ion flow and the

effective parallel electric field. However, these additional effects are insignificant quantita-

tively because (i) they are 0 ( ) smaller than the a diamagnetic terms, and (ii) they
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contribute only 0 (v" corrections to the conventional bootstrap current (as will be

shown in the next section). One can thus simplify Eq. (14) by omitting these effects, and

we obtain

nc, = ftp U1 -' (Yn (1 - U2n ,(24)
n=1

where f = 1 - flP corresponds to the fraction of trapped particles where p denotes the

pitch angle dominated solution, see Eq. (21).

Furthermore, although the second term of Eq. (24) can be evaluated using a few

numerical eigenfunctions, it is highly desirable to write it in a simpler analytic form.

Using the asymptotic behavior of U2n at Q -- 0, Q >> 1, xo -- 0, Xo >> 1, a Pad6 form

is obtained in Eq. (B6) of Appendix B. Equation (24) can thus be written as

2: 
fh = Srvo d + Q L L t - f/d) LtXt. (25)

Qp=t + 4fc'L-j

The first term in the bracket is clearly due to the drag and the second term is due to the

pitch angle scattering effects. Note that for c < 1, ftd ~ 1.6E3/2, and fP ~ 1.46e1/2. Since

f/ ~lf , it does not require a very large Q, to make the pitch angle scattering effects

important.

Furthermore, the Padi approximations of fd, f4 for arbitrary E are obtained in Eq. (B9).

Note that, as shown in Fig. (1), Eq. (B9) is in excellent agreement with the exact numer-

ical calculations. It is also worth mentioning that by using Eq. (B9), the simple analytic

Pads form Eq. (25) has been compared with numerical results evaluated from Eq. (24).

Remarkably, over wide ranges of E, xo, and Q,, the difference is always within 10%. This

actually implies that the error of Eq. (25) is much less than 10% (cf. Appendix B).
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III. CALCULATION OF Vej

First, using the facts that I > 1 and V1- < 1, one can obtain an approximateme Vthe

e - a collision operator in the ion rest frame as

3ea VtflaZ3 8 he 2V .i -v
Cea = - U -- f, + 2  3fem .4 7 neZeff &v U Vfe the V

That is,

3 vlh 3aZ + a f, nZ, 2Vi-
Cea + Cei = -o-- t + -- U -- +ci fe] (26)

4 re ne 8v nZZe 2 V3he VOvf theleef

Here, U= ---- , Zeff = Ej ni and the equality m = y has been used.n. vMv ,r Yef2  T

Note that the first term in Eq. (26) corresponds to pitch angle scattering and that

the second term is a momentum input to the electrons due to Vi. Also note that the

a contribution to pitch angle scattering is insignificant because it simply replaces with

+ne, Z 2  n.Z.y + ) and < 1. On the other hand, the momentum input term involving

Vai is 0 _z__) compared with the first term in Eq. (26), and thus can be significant.

Furthermore, since F , which can be at most of order one in a typical

fusion device, one can conclude that ion and impurity dynamics will hardly be modified

by alphas because (B - V - Hi) > (BFeiii) (BFec,1) (BFaii).

To solve the electron dynamics the moment approach as developed in Ref. 5 will be

adopted in order to retain generality with respect to the electron collisionality. In addition,

because the parallel flow viscosity and heat viscosity solely depend on the poloidal particle

flow, heat flow and collisionality of the individual species, both viscous forces do not change

their form in the presence of a particles, except for a trivial increase-of vi (or Zff), i.e.,

vei = v + n, . Therefore, the viscous forces obtained in Ref. 5 can be used here
eff/

without modification.

The moment equations to be solved are the electron parallel momentum equation

(B - V - He) = -nee(E 1 B) + (Fe 1 B) (27)
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and the electron parallel heat momentum equation

(28)

where

++ = dv (v2 _ 5V2 )(vv -
V 2

- I )fe,
3

dV mV (v 2

2
- V2he)Ce(fe).

Using the two-moment approximation 5,6 and Eq. (26), the frictional moments can be

written as

Fe = menevei (VI

F - neTeveri

+ 3 q,
5 ~neTe

(V +
8

(v'ee

where V, = Vie + nZ2 Vi. The viscous forces 5 arenfle~a-

+-+4

(B - V - I[e)

(B -V - 9e)

2'\
+ 5 p2qpI

= neTe(B 2 ) (A2 IP
2 \

+ 5 /13 p .

Ve = VB + wi R2V5

qe = neTe (qpB + W2 R2VO)

B
[ pe - ne e <,

(33)

(34)

(35a)

(35b)
5 B 8

W2 - 2m 4Te,

and fitted Pad4 forms of 14, 42, 13 for all collisionality regimes can be found in Ref. 5.

Note that in the banana regime

isi - f(vi + 0.754vee), (36a)

9

F(2)

+ V e )

(29)

(30)

Here,

(31)

(32)

(B - V - 0,) =_ (F(' B),

= men, (B 2) (Li V,



SP
pA2 ~N- -- 7- (1. 51vi + 0. 884v,,), (36b)

f 'I

A3 ~ (3.25vi + 1.94ve,). (36c)
fcp

Concerning Vai, it is now clear that the terms involving (T) and () in Eq. (14)

are 0 (nZ ) compared with (T) terms in Eqs. (29) and (30), and (E1IB) terms in

Eq. (27) respectively. Equations (27)-(36) thus yield

(VicIIB) = (V0 B) 1 + 0 n( Z) - (1 - FZ) n Vi f II B), (37)
tellne Zeff ne Zeff

where

A" [=Z3 + 2(vee + 1vei)] - A2(A2 - 2vei)

(Al + Vei) [/3 + 2(vee + Vei)] - (A2 - Svei)2

is the effective fraction of trapped electrons; and (V ilB) = Bo([) can be evaluated

using Eqs. (24) and (25). Note that the superscript (0) in Eq. (37) refers to the conventional

results without the contribution from a particles. Also, from the fact that ftp < f' at

large aspect ratio (E < 1), one has pj < vei, and F. -+ 0. Consequently, for E < 1,

(ViIIB) =(V.(OB) 1 + 0 " _(aZ (Vai IIB).
elnze neZeff

This can also be understood from the fact that for E < 1, the poloidal flow V, of the

electrons is solely driven by the ion poloidal flow via electron-ion friction; and the poloidal

heat flow qp is solely determined by the electron diamagnetic heat flow. This implies that

the total electron friction is unchanged by the alphas. Therefore, (V,11B) will be reduced

simply according to the momentum input from U B) via electron-a friction (see also

Eq. (29)). This also implies that, for E < 1, the electron radial flux is not changed by a

particles. However, for generality, Eq. (37) should be used to include the finite e effects.
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IV. BOOTSTRAP CURRENT

It is now straightforward to calculate the total parallel current from Eqs. (1) and (37).

This yields

(J11B) = (J(9)B) 1 + 0 (lZ ) + nZee (1 - Z (1 - F)) (V1 1B), (39)
11 n, Zeff Zef cl ), (9

where (V,, 11B) is given in Eqs. (24) and (25). Eqs. (24), (25) and (39) thus yield the

bootstrap current produced by alphas as

J,'= 1 - Z (1 -F) Fa c P. (40)

Here, the term involving in Eq. (40) corresponds to the well known electron screening

effects,5, 7 and

. (h 2 ) Z yn(1 - L)U 2 n EZ=1 , L4 _1 (ff-)) LdXtfU - ~ fF2+
U1 1=1 LtXt

(41)

is the effective fraction of trapped alphas.

Note that the second term in Eq. (41) involving Q, is due to the effects of pitch angle

scattering. When Q, -+ 0 or vo/vc > 1 (in which case Lt/Lt+ > 1), this term becomes

negligible and the result reduces to the drag-only result ft. However, since Qp is always

~ 1, and ft/ftp - e, it is not difficult to make the second term in Eq. (41) significant. In

Fig. (2), results for F," are shown for different vo. The asymptotic case E0 = oo refers

to the drag-only result. It is seen that F increases with decreasing vo. The reason all

expressions reduce to the drag-only result at r/a = 1 is that yc = 0 at this point. This is

because the temperature profile is taken to be To(1 - r 2 /a 2 )V,.

In order to evaluate the bootstrap current quantitatively, it is essential to self-consistently

solve for the equilibrium after incorporating Jbs,(/) into the parallel Ampere's law. In this

work, for simplicity, we assume circular geometry, i.e,

I a , 1 a
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The parallel Ampere's law thus becomes

1 8 4tr (rBp = - JOH + J() + ) (42)
r or c

Here,

JOH = F,&O'Spitzer (EIl /h) (43)

is the ohmic current;

j(O) -c F Pe + Pi) - Fe Fi a Ti - FTne aTe (44)ba -\B0 )al 19rj

is the background bootstrap current;

(13 + 2(ve + 1-vei))vei

(iL1 + Vei)[A3 + 2(vee + 8 vei)] - (P2 - vu)2

describes the neoclassical correction to Spitzer conductivity,8 and

FT - -2/12(vee + vL'ei) - 1.5I3vei 46)
(1 + vei)[IL3 + 2(vee + L3-vei)] - (P2 - Ivei)

FZT is obtained by letting vi -- 0 and replacing vee -+ vi in Eqs. (46) and (36). For ions

in the banana regime with e < 1, F~ y~ 1.17. Note that terms involving F are due to

the thermal friction force.

Equations (40)-(46) are solved numerically by adopting ITER parametersi at the

steady state phase: (ne) = 0.64 x 10 20 m- 3 , (T,) = 20 KeV, Ip =19 MA, K = 2,,3p = 1.1,

a = 2.15m, Ro = 6m. Also, the radial profile is assumed to be n. oc (1 - r2/a2),,

Te oc (1 - r 2 /a 2 )"T with vn = 0.5,vT = 0.75, and the inductive parallel electric field

(Ell /h) is chosen so that the total plasma current including the bootstrap currents reaches

Ip ~ 19MA. For F,, ff, and f', the Pad4 forms given in Eqs. (41) and (B9) are used.

Also, both electron and ion species are assumed to be in the banana regime throughout

the plasma. The effect of elongation is considered by replacing the plasma minor radius

by av4r.

First, with Zeff = 1.5, the resulting poloidal magnetic field and bootstrap current

densities are shown in Figs. (3)-(5). One notices the slightly decreased Bp due to J,.
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The alpha induced bootstrap current amounts to ~ 0.385MA, which is ~ 7.2% of the

background bootstrap current.

Varying Zeff, one finds a strong dependence of Jb, on Zeff. In fact, the effects of

Zeff on J, are threefold:

(i) The electron screening effect decreases with increasing Zeff. Indeed, for Zeff < ZC,

at e < 1, F. becomes negligible and J. becomes negative.

(ii) Alpha pitch angle scattering effects increase with Zeff (because Qp oc Zeff). That

is, F, increases with Zeff.

(iii) However, the a pressure decreases with Zeff due to fuel dilution. Actually, when

Zeff (r) is highly peaked near the axis, both Pth(r) and Pa(r) can become flat or even

hollow; and the bootstrap current density Jb, can be significantly reduced.

Table 1 shows the final currents for two cases where the Zeff profile is flat; one

where Zff = 1.5; the other where Zeff = 2.2. The ohmic seed current is kept fixed at

13MA. For Zeff = 1.5, the background bootstrap current:: 30% of the total current. The

calculated alpha induced bootstrap current reaches ~ 7.2% of the conventional bootstrap

current. When Zff is increased to Zeff = 2.2, the total current decreases slightly by

about 2%. On the other hand, the conventional bootstrap current decreases by 5% while

the alpha bootstrap current decreases by 21%. Although a larger Zeff has the effect of

diminishing the temperature screening term in the alpha bootstrap current (see Eq. (40)),

and increasing the alpha pitch angle scattering, increased fuel dilution has a dominant

effect. Specifically, when Zeff is increased, causing more fuel dilution, the alpha and

thermal pressure decreases resulting in less bootstrap current. Since the dilution effect is

squared in the alpha pressure while occurring only linearly in the thermal pressure, the

effect on the alpha bootstrap current is pronounced.

The effect of having a peaked Zeff profile was also investigated. Here we let Zeff (r)

0.7exp[-16r2 /a 2] + 1.5 making Zeff = 2.2 at the the center and 1.5 near the edge. Again,

the dominant Zeff effect is fuel dilution. The resulting currents for this case are listed in

Table 1 and can be seen to be quite similar to the flat Zeff = 1.5 case. This is because,

in the peaked case, Zff rises significantly above 1.5 only near the center where there is
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little bootstrap current anyway. Note that both the background and the alpha induced

bootstrap current densities become slightly negative near the center. The reason is that

the fuel dilution gradient (specifically d(Zeff)/dr)) has a diminishing effect on the negative

thermal and alpha pressure gradients, and at some small value of r/a causes the bootstrap

current to change direction.

On the other hand, with the fuel dilution effects switched off, the ratio of alpha to

background bootstrap current density is given in Fig. (6), for both the flat Zeff = 1.5 and

the centrally peaked Zeff(r). It is shown that the alpha induced bootstrap current density

increases with Zeff due to the increasing alpha pitch angle scattering and decreasing

electron current screening.

Furthermore, with Zeff = 1.5, by artificially switching off the effects of fuel dilution

and pitch angle scattering individually, as shown in Table 2, the significance of these effects

can be clearly observed. It is found that the effects of pitch angle scattering enhance Iba,

only by 30% while the fuel dilution can reduce Ib by 20%. The reason is that the pitch

angle scattering is most important near the center where the bootstrap current density is

small.

Equation (40) is good for arbitrary vo /vc and E and is valid for evaluating the bootstrap

current induced by any hot species containing sufficient isotropic pressure. One concludes

that the enhancement of the bootstrap current contribution from energetic ions including

pitch angle scattering will drastically increase with smaller vo.

V. CONCLUSION

The bootstrap current induced by fusion born a particles has been calculated for

general electron collisionality. Our result retains the effects of both a pitch angle scattering

and slowing down drag for arbitrary aspect ratio. The results are presented in Eqs. (40)

and (41), in both forms: a summation over a rapidly converging series E' I yn(l - - )U2n

and a simple Pad6 approximation good for arbitrary PQ and c. Convenient Pad6 forms of

the effective fraction of circulating particles fg and fe' are presented in Eq. (B9). It has
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also been shown that the radial electric field E, does not play a role in a particle transport

[cf. Eq. (A5)].

The effects of Zeff on Ja are significant because when Zeff increases the electron

screening effect decreases and the a pitch angle scattering effect increases but the a pressure

decreases due to fuel dilution which has been found to be a strong effect. Actually, the

reason that a pitch angle scattering enhances Ib only by 30% is due to the effects of

electron screening and strong fuel dilution. When Zeff(1 - F") < Za, JU/JE, can

become negative.

The theoretical results are evaluated quantitatively by using the ITER parameters

and numerically solving the parallel Ampere's law including the bootstrap current terms

oc B'~1 for the self-consistent Bp(r). It is found that the bootstrap current produced

by alpha particles reaches ~ 0.385MA and is about 7.2% of the conventional bootstrap

current.

The results given in Eqs. (40) and (41) are valid for evaluating the bootstrap current

induced by any hot isotropic species. For an anisotropic hot species generated by neutral

beam injection or rf heating, the induced bootstrap current can be calculated by straight-

forwardly extending the present approach to also include the eigenfunctions even in v11

(work in progress).
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Appendix A

Derivation of ft ,

Since the source term of fusion born alpha particles is isotropic in the ion rest frame,

we treat the alpha kinetic equation in this frame. Starting from the kinetic equation,

changing variable v -+ v - Vi and then performing the gyro-average 9 the a drift kinetic

equation to first order in gyroradius becomes

a9 (I ) 9 / b - _ -_.
VofVIf, +vd. iVfao+Fo+ b.W .b) 2

+ 2V -V fO = Ca(ya) + 4 2(V - vO). (Al)

Here, fa = fa(A, w, ,0);V is performed at constant (A, w);

F ( miZa _ ( Vi+V xVV; + Z Vp;+V - fii-Ri) (A2)
F maZi ± (at maZinik 

vd = vilb x Vv is the drift velocity in the ion rest frame; and

1' 1_v I(M((Vvi) + (VVi)T) 3 V. V) 3)Wi 2 3

is the ion velocity strain.

Note that Eq. (Al) agrees with the results by Hazeltine and Ware9 except for the

definition of the F force term. This is because the results in Ref. 9 are for the drift kinetic

equation for a given species in its own rest frame. Furthermore, Eq. (Al) also agrees with

Eq.(5.45) of Hinton and Hazeltine10 which is the electron drift kinetic equation in the ion

rest frame.

From Eq. (A2) and Vi = KiB + wiR 2 V. one finds

Fo= Z Vp;FlI, ZaE,V-Vi=O,b-Wi-b=Kib-VB. (A4)
maZini \= ma

Equations (Al) and (A4) thus yield

I, - af± O + Zfev 11 Elv (M)VI Vil fa + 5fao - VI1* -- fW + C, E ; -fO ()
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S
= C J fc)+ 4irv2 5(v - vo).

Let us now turn to the a collision operator in the ion rest frame. By using a < 1,

< 1, and Eq. (26), one finds

18
Cae - Vfa +

T, 8v ~
T 8 N
mc a ffa )
ma &V

(A6)+ T.nFei - - fco.
r.9mene av

Here, Fei is the electron-ion friction. Similarly, Ci can be written as

3
Vb 8CcQt - U v
2-r, av

8----fa +
V3 8 v

C - . - .
,, 9V V3 f

Equations (A5) - (A7) thus lead to

fy1  5 8
+ IV -v,,V af~ faO J I I* f'

vj -cVf C+
2 8v U

ZCe 18
+ ~vEifcro

- a ]
S

+ 4r 2 5(v -vo).

Then, by following the same procedure as in Ref. 4, one obtains Eqs. (2) and (3) with the

governing equations for Va3 :

3 f.O) (0n - nVai) =r

3 ' fO) (0n - KnVn2) =v 6b/a

(~v3

a
19V

+ v)v (ofaO) (on - Vn1)]

(3 + )

3 f.0 X.V3 + V3 ( o) = [(v3

which leads to the solutions given in Eqs. (8)-(10).

faO I (On - Vn2) ,19V I

a
7f'O) Vn3]78vI
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v1 |V1 V 1 7ci

(A7)

(A8)

(A9)

(A10)

(All)

= - . (1+



Appendix B

Pad6 Approximation

The right hand side of Eq. (24) is rigorously expressed by summing over a rapidly

converging series -yn (1 - U2. and can be evaluated quite accurately by using only a

few eigenfunctions. However, it is highly desirable to get a simpler analytic form good for

all xo, Qp, and e. Let's start with U2n, which can be written as

2

U2n = S-rvo ZDnI X, (B1)
e=1

where

D 1 dx 3  Hn(vox). (B2)

3X 1 (X + x0 3)1

From the asymptotic behaviors of Hn,

1, if KnQp < 1 or xo > 1;

Hn(vox) = Xn , if KnQp > 1; (B3)

4 X0if xo « 1;

one finds
LI, if KnQp < 1 or xo > 1;

D~= 4LI- 1 , ifK QP (>4Dnj = -nq KnP (B4)

ifX0<1

Numerical calculations show that Dnj is a reasonably smooth function of Qp and Xto.

The simplest Padi form of Dnj satisfying Eq. (B4) is thus

D = 4Lt LI. (B5)
4LI_1 + KnQpLt

This simple approximation is found in excellent agreement with the numerical results. For

a wide range of ,nQ, and xo, the errors are within 5%.

One can then obtain

cn 1-- U2n ~Sr.,vo ± L e+ L&Xt. (B6)
n=1 =1 4 _

19



In order to make the usage of Eq. (B6) straightforward, good Pad4 approximations of

fg and fCP are also desirable. Using the asymptotic behaviors at e < 1,

{- f dA 4 1 1.6c3/2 (B7)

-A.dA 1 - 1.46Ji/2

and at c -- 1
3 Ac dA ( 1.5(1 - (B8)

3f A i

Eqs. (21)-(22) yield the Pad4 approximations for fg and f1'

(Cd (1-e 2 )-1/ 2 (1_c2 )
-1+1.60/f2-1.25C2 (9

1p (1-e2)-1/2(j_f)2 

( 9

c- 1+1.46E1/ 2 +0.2e

Here, (1 - C2)-1/2 comes from (h- 2 ) in a concentric circular equilibrium. The results

of fg and ft', calculated using both the Pad4 form Eq. (B9) and the exact numerical

integration of Eqs. (21)-(22), are given in Fig. (1). It shows the excellent accuracy of this

Pad6 approximation.

Furthermore, by using Eq. (B9), Eq. (B6) is evaluated and compared with the nu-

merical evaluations (using the eigenfunctions A, for n = 1,2,3,4,5 obtained in Ref. 4).

For a wide range of Qp, Xo, and e, the differences are always within 10%, and the ana-

lytic approximate results are always larger than the numerical results (which is expected

owing to the fact that only eigenfunctions with n < 5 have been included in the numeri-

cal calculations). This shows that the Pad forms given in Eqs. (B6) and (B9) are quite

accurate.
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Table 1. Induced bootstrap currents for three different

choices of Zeff. Input parameters are for the

steady state ITER machine. Ohmic seed current

is fixed at 13 MA.

22

Zeff = 1.5 Zeff = 2.2 Zeff(r)
(flat) (flat) peaked

Itot (MA) 19.03 18.64 18.90

1(0) (MA) 5.34 5.05 5.23

I(a) (MA) 0.385 0.303 0.372



Induced bootstrap currents (for Zeff = 1.5) pro-
duced after the effects of pitch angle scattering

and fuel dilution are individually switched

off.Input parameters are for the steady state
ITER machine. Ohmic seed current is fixed at 13
MA.

23

pitch
angle Fuel

scattering dilution
switched of f switched off

Itot (MA) 18.96 19.33

1 (o) (MA) 5.36 5.54

I(a) (MA) 0.294 0.471

Table 2.



Figure Captions

Fig. 1: Circulating particle fraction fc in the "pitch angle scattering" dominant and

"drag" dominant cases. Pad6 approximations are in excellent agreement with

the exact solution.

Fig. 2: Effective fraction of trapped alphas, assuming four different birth energies Eo.

Fig. 1: Poloidal magnetic field profile, with and without the effects of alpha bootstrap

current. Zeff = 1.5.

Fig. 4: Alpha particle induced bootstrap current density as a function of r/a. Zff = 1.5.

Fig. 5: Background bootstrap current density as a function of r/a. Zeff = 1.5.

Fig. 6: Fraction of alpha bootstrap current density over background bootstrap current

density, for flat Zeff = 1.5 and centrally peaked Zqff (r) = 0.7 exp(-16r 2 /a 2 )+

1.5.
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