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Abstract

The bootstrap current produced by fusion born alpha particles is obtained retaining
effects of slowing down drag, pitch angle scattering, and arbitrary aspect ratio. The
result is presented both as a summation of a rapidly converging series and a simple Padé
approximation good for arbitrary aspect ratio. Quantitative results are derived using

International Thermonuclear Experimental Reactor (ITER)! parameters.



I. INTRODUCTION

In toroidal plasma systems, the parallel friction force will attempt to equilibrate the
parallel flows of different species by generating a relative poloidal flow in response to the
relative parallel diamagnetic flow. Ai finite parallel relative flow remains due to existence
of magnetically trapped orbits since they cannot contribute to the poloidal flows. This
effect leads to a current, usually.referred to as the bootstrap current which is proportional

to the relative paralle] diamagnetic return flow times the fraction of trapped particles.

The neoclassical bootstrap current is of great importance for future tokamak fusion
devices because at sufficient poloidal beta it can provide a substantial fraction of the
total current. Typically, the fusion produced fast o particles can produce a beta gradient
comparable to that of the background plasma. This implies that fast a particles may result

in a bootstrap current contribution comparable with the background bootstrap current.

Previously, the a particle induced bootstrap current had been calculated®® by keeping
only the drag term in the collision operator and was found to be small because it arose
only due to “banana collapsing” during the slowing down process, which scales as o €3/2
(€ is the inverse aspect ratio). However, in recent work,? it has been found that pitch angle
scattering can be very important in the neoclassical transport process of fast a particles
and leads to transport fluxes o €!/2. In this work, the bootstrap current will be calculated

based on the work of Ref. 4 in which both drag and pitch angle scattering collisional effects

are included for the o particle kinetics.

By imposing the quasineutrality condition, the plasma current can be written as
J=¢eneVie +naZaVai + Z n1Z1Vri (1)
I =
where the subscript i refers to the main ion, and I refers to impurities and V;; = V; - V;

is the difference of flows between species ¢ and j. Hence, the current can be obtained upon

determining the relative flow velocities V¢, V44, and V.

It will be shown that the dynamics of all bulk plasma ion species (i.e., 7, I) are hardly

influenced by o particles, and thus can be treated as known quantities which can be found
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in the existing literature. Thus in the next two sections, only the a particle parallel
flow and electron parallel flow will be calculated. In Section IV, the bootstrap current
will be calculated and the quantitative results will be given based on ITER parameters.

Conclusions are given in Section V.
II. CALCULATION OF V,;

In Ref. 4, the o particle response was calculated by including the effects of finite aspect
ratio and both the drag and pitch angle scattering. Nonetheless, ion flow and E x B drift
was neglected. Although this can be justified due to the fact that

L
Vo Ea ’

it is still interesting to include them (i) for completeness and (ii) to demonstrate that the

a transport flux is independent of E,.

By considering also the fact that the fusion source term is isotropic in the ion rest
frame instead of the lab frame, one finds that it is appropriate to treat the a particle kinetic
equation in the ion rest frame. In Appendix A, the a drift kinetic equation in the ion rest
frame is obtained. The resulting drift kinetic equation (A8) is then solved by following the
same procedure as in Ref. 4 (also cf. Appendix A) which yields the first order distribution

function
__ad e 2 P(\ 2
fa1 = —ﬁ:gw-fao + Vi 5 fao + (A, w, ) (2)
with

0o
PO w,g)= Y (Z Anu,w)vn,(w,w)) Aj(w,¥). (3)
j=1,3 \n=1
Here, v is the a particle velocity in the ion rest frame, w = 1’;; A= %;h;h = —%Q;Qj =
g";"—:?;l = B - R2V¢; V‘i: = m,’{:;‘,g%pi + K;B is the ion parallel low less the E x B
drift induced return flow; K; E‘y;fgg corresponds to the ion poloidal flow; p; is the ion
pressure; A, is the eigenfunction of the pitch angle scattering operator as given in Ref. 4;
and

fao0,9) = gmr3riog Hlwm =) @)

v3 +03)

3



is the lowest order (slowing down) distribution function driven by the fusion source S.
P(\,w,1) represents the localized distribution function which vanishes in the trapped

region.

Denoting the flux surface average by ( ), the three driving forces for P(\,w,) are

_ Iv 0
Al = _Eﬁar—'ﬂfao (5)
V.x
_(i\198
_ _Zac _E _s_a_

and the corresponding V},; are (cf. Appendix A)

V'”:a".:l (vc+v_ i [ <u3<z3133;)2%2%7w] Y

e 1o Co [ (S ]

Qpxn
v3(ug + v3) ) T 28fa0(u)

Vpz = ——2 " (
n3 = (v3 +v2)9£:—Q /v “ ud(v3 + v3) du

(10)

Here, Qp, kn and on, are given in Ref. 4; in particular, @, = vg/vg ~ O(1) for D-T fusion.

Za
Ej =B - Fei (11)

is the effective parallel electric field; F;) is the electron-ion parallel friction and

0 vg 0 ,
((—9—1/; InSr, — v3+v3 6¢ lnvc) fa0. (12)

9
H

It is now apparent that f,; is independent of the E x B drift. In addition, all the terms

o
Jao =

% faO v=

involving ion flow are g: smaller than the a particle diamagnetic drift terms. This justifies
the adequacy of the results in Ref. 4 and rigorously proves that the neoclassical a particle

radial fluxes do not explicitly depend on E,.



Now, V,; can be calculated from

s vo
NV = / dvv) fa1 = EZ / vidv [ d\ fu
-

which yields

Here, o = v)|/|v)||, 7n is defined in Eq. (17) of Ref. 4,

I @ 2

U= /dv— [_Q 6¢fa0] = _maQO %Pa = STJUOZLZ‘Xt

=1

is the a diamagnetic flow,

4 [ 3 [(u3(v3
Hn(v) 17‘/0' du u (vs(T—

Nop = /dv [Hn(v)+ gaﬁﬂn( )} fa0s

No=Y [ av (6n(6) + 3 556 (0)) foo

n=1
3.3, 3\ B2 3
G —l ud u (v +vc) 3 u
"(v)=v o AP 1)) ud + 03’
1 1 z?
LtE—————‘/ da:——_—,
3,2 Jo (23 +xg %)
_ 1w o
Xl = Q 6’¢ (ln ST,),
Ivg 0
Xzz—n—;)—(ln 3,

(13)

(14)

(15)

(20a)

(20b)



and xo = -:-g is the ratio of a birth to critical velocity.

Here, it is important to note some properties of vy, #n, and f., the effective fraction

of circulating particles,® i.e,

oo Ac P
Z_"=§ d)\—'%‘-——= fe (21)

which corresponds to the “pitch angle scattering” dominant solution of the a drift kinetic

Foned [0 (%0)"

n=1

equation.

d
= (22

corresponds to the “drag” dominant case. { = %L is a pitch angle variable.

In addition, Hn(v) and Gn(v) have the following properties:

<1 for Qprn >0
Hn(v),Gn(v) { =1 for Qprin = 0 (23)
~ 0 (Q,,lnn) for Qprn > 1.

Also, using the fact that x, > 2n? — n and typically Qp ~ 1, one expects a rapid con-
vergence of Hn(v) and Gpr(v) ‘with n. This implies that one needs only the first few

eigenfunctions (e.g. » = 1 — 5) to accurately evaluate the second and third terms in

Eq. (14).

Furthermore, when (i) @p > 1, (i.e. pitch angle scattering dominant), only the first
term in Eq. (14) survives; and when (ii) Qp <« 1, Eq. (14) reduces to

(retet) (l—<hz>,§;vn)(p— ()
()i (3)

as is expected (also cf. Eq. (22)).

Thus, the a dynamics has been solved by including the effects of ion flow and the
effective parallel electric field. However, these additional effects are insignificant quantita-

tively because (i) they are O (%:) smaller than the a diamagnetic terms, and (ii) they
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2
contribute only O (%TZ“) corrections to the conventional bootstrap current (as will be

shown in the next section). One can thus simplify Eq. (14) by omitting these effects, and

we obtain
Vail| 1\ = 1
— §P
(remsl) =201 = (32} 3 (1 (1- ) an). (24)
n=1
where ff = 1 — fF corresponds to the fraction of trapped particles where p denotes the

pitch angle dominated solution, see Eq. (21).

Furthermore, although the second term of Eq. (24) can be evaluated using a few
numerical eigenfunctions, it is highly desirable to write it in a simpler analytic form.
Using the asymptotic behavior of Uy, at Qp — 0, Qp>1, x0 — 0, xo > 1, a Padé form
is obtained in Eq. (B6) of Appendix B. Equation (24) can thus be written as

n“Vai||> _ % ([ pa QpLe P _ ¢d ) -
("= = st} (18 + gy Pt V- 1) ke 29

The first term in the bracket is clearly due to the drag and the second term is due to the
pitch angle scattering effects. Note that for e <« 1, ftd ~ 1.6€3/2, and ftp ~ 1.46€!/2. Since
ftd/ fF ~ ¢, it does not require a very large Qp to make the pitch angle scattering effects

important.

Furthermore, the Padé approximations of f;’, fZ for arbitrary € are obtained in Eq. (B9).
Note that, as shown in Fig. (1), Eq. (B9) is in excellent agreement with the exact numer-
ical calculations. It is also worth mentioning that by using Eq. (BQ), the simple analytic
Padé form Eq. (25) has been compared with numerical results evaluated from Eq. (24).
Remarkably, over wide ranges of €, x9, and Qp, the difference is always within 10%. This
actually implies that the error of Eq. (25) is much less than 10% (cf. Appendix B).



III. CALCULATION OF Vg

First, using the facts that —-'1 > 1 and = - < 1, one can obtain an approximate

e — a collision operator in the ion rest frame as

vj zZ2 10 o 2V
w__\/‘ the Noala [—'U"Q‘fe'*'—"zg‘:;lfeMjl

Te melesf [0V OV vf,
That is,
3 v naZ2\ & © 8 naZ2 2Vgi-v
Cea + Cei = S /m-te | (1 °‘°‘>~—-U-—— coa T« . (26

ea t Cei 4\/7_" Te [( +neZeff v avfe+nezeff vtzhev3 feM ( )

— — 2
Here, U= ﬁ‘l’gﬂ s Leff = n,gl- and the equality —Z“— =1 - has been used.

v ff 1 Te Mo T

Note that the first term in Eq. (26) corresponds to pitch angle scattering and that
the second term is a momentum input to the electrons due to V,;. Also note that the
a contribution to pitch angle scattering is insignificant because it simply replaces ;_1: with

N Z2 naZ? . . .
( m) _Z_;'; < 1. On the other hand, the momentum input term involving
Vai is O (Zf—"‘ze—;) compared with the first term in Eq. (26), and thus can be significant.
Furthermore, since %: ~ 0 (%ﬁ), which can be at most of order one in a typical

fusion device, one can conclude that ion and impurity dynamics will hardly be modified

«—
by alphas because (B - V- II;) > (BF,;) < (BF,q) < (BFq)-

To solve the electron dynamics the moment approach as developed in Ref. 5 will be
adopted in order to retain generality with respect to the electron collisionality. In addition,
because the parallel flow viscosity and heat viscosity solely depend on the poloidal particle
flow, heat flow and collisionality of the individual species, both viscous forces do not change

~ their form in the presence of o particles, except for a trivial increaseof ve; (or Zgsy), i-e.,

2
Vei = u(o) 1+ &"-%")—) . Therefore, the viscous forces obtained in Ref. 5 can be used here

without modification.
The moment equations to be solved are the electron parallel momentum equation
L =g
(B -V. II.,) = —-nee(E”B) + <Fe||B) (27)
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and the electron parallel heat momentum equation

(B-V. 8,)=(F?p), (28)

efl
where

A m 5 ve o
6.= [avTee? - 2k ) - 2 D,

P = /dvl'%ei(v? _ gvfhe)Ce(fe).

Using the two-moment approximation®® and Eq. (26), the frictional moments can be

written as
Fe = meneve; | Vi + 3 (29)
et Snele
(2 3 8 13
Ft(‘: ) = “EneTeVei (V* + 15 (Vce + ’é"Vei) n(:'}c) ) (30)

2
where V, = V;, + %Vci. The viscous forces® are

> N 2
(B-V. II.) = mene<Bz) (l-"l‘/p + 3#2Qp) (31)
— a 2 .
(B-V. ee) = neTe(Bz) (uz"p + gusq;,) . (32)
Here,
Ve =VpB + w1 R*V4 (33)
Qe =neTe (B +w2R*V9) (34)
B 0 0
wi = ——— [%pe - neeé—isz} (35a)
5 B 0
=2 —T., 5b
w2 2 ot a’/)T (35b)

and fitted Padé forms of uj,pu2,u3 for all collisionality regimes can be found in Ref. 5.
Note that in the banana regime

P
H1 jd %(Vei -+ 0.754Vee), (36a)
c
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P
po ~ -—;—;(1.51/“- +0.884vee), (36b)

c
It ~
p3 ~ }—5(3.25113,- + 1.94v,¢). (36¢)
c

, Er
Concerning V,;, it is now clear that the terms involving (Yﬂl) and (L) in Eq. (14)

are O (7—:—:3‘2?%) compared with (Y-'i-u) terms in Eqgs. (29) and (30), and (EB) terms in
Eq. (27) respectively. Equations (27)-(36) thus yield

. — (0) nazg - _ e naZczt .
Wi B) = 0B) (140 (2572 ) ) - (1- F) 272 (voy ), (30

where
p1 [p3 + 2(vee + Rvei)] — p2(p2 — 3ve:)
(/‘1 + Vei) [P’S + 2(Vee + ‘lgguei)] ~(p2 - %Vei)2

i

Fg (38)
. . . - Vai

is the effective fraction of trapped electrons; and (V,; B) = Bo(—h—u) can be evaluated
using Eqgs. (24) and (25). Note that the superscript (0) in Eq. (37) refers to the conventional
results without the contribution from a particles. Also, from the fact that ftp < fF at

large aspect ratio (€ <« 1), one has p; < ve;, and F; — 0. Consequently, for e < 1,

_B) = (v naZs \\ _ neZa
ViaB) = V3B) (140 (7)) - vy )

This can also be understood from the fact that for ¢ « 1, the poloidal flow V3 of the
electrons is solely driven by the ion poloidal flow via electron-ion friction; and the poloidal
heat flow g is solely determined by the electron diamagnetic heat flow. This implies that
the total electron friction is unchanged by the alphas. Therefore, (V; B) will be reduced
simply according to the momentum input from (1, B) via electron-e friction (see also
Eq. (29)). This also implies that, for € < 1, the electron radial flux is not changed by a
particles. However, for generality, Eq. (37) should be used to include the finite € effects.
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IV. BOOTSTRAP CURRENT

It is now straightforward to calculate the total parallel current from Egs. (1) and (37).
This yields

B = 0B) (1 +0 (n—’—‘i’z%)) +naZae (1 _ zf:f (1- F;)) (Vaiy By (39)

where (V,;B) is given in Eqs. (24) and (25). Egs. (24), (25) and (39) thus yield the

bootstrap current produced by alphas as

o« Za . of—cI O
Jgy = (1 - Zeff(l - Fﬂ)) . (B—o %Pa) : (40)

Here, the term involving 7%; in Eq. (40) corresponds to the well known electron screening

effects,>? and

- 2 QpL “od .
(A3 Yarim(l — 5x)on 4 . 2i=1 (@Eﬁ;ﬁm(ﬁ - ff )) LiX,

F} = ftp - ~ f -
# Ul Zgzl Lt‘Xl

(41)
is the effective fraction of trapped alphas.

Note that the second term in Eq. (41) involving Qp is due to the effects of pitch angle
scattering. When @, — 0 or vp/vc > 1 (in which case Ly/Lyyq > 1), this term becomes
negligible and the result reduces to the drag-only result ft‘i However, since Qp is always
~ 1, and ff /ff ~ ¢, it is not difficult to make the second term in Eq. (41) significant. In
Fig. (2), results for Fj are shown for different vo. The asymptotic case Eg = oo refers
to the drag-only result. It is seen that F}J' increases with decreasing vg. The reason all
expressions reduce to the drag-only result at »/a = 1 is that v = 0 at this point. This is

because the temperature profile is taken to be Tp(1 — r2/a?)T.

In order to evaluate the bootstrap current quantitatively, it is essential to self-consistently
solve for the equilibrium after incorporating Jp,(%) into the parallel Ampere’s law. In this
work, for simplicity, we assume circular geometry, i.e,
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The parallel Ampere’s law thus becomes

10 4r 0 o
;'a—rer = (JOH + J( ) + Jbs) . (42)
Here, ‘
Jor = Fj;505pitzer(E| /h) (43)
is the ohinic current;
() _(—cl 0 l 0 0

is the background bootstrap current;

ad (P’l + Vei)[l‘S + 2(vee + %Vei)] —(p2 — %Vei)z’

describes the neoclassical correction to Spitzer conductivity,® and

-2 - 1.5
FST — 12 (Vee + Vez) H3Veq 5 - (46)
(K1 + Vei) (3 + 2(vee + 8 Vei)] ~ (p2 — §Vei)

F tT is obtained by letting ve; — 0 and replacing vee — v4; in Egs. (46) and (36). For ions
in the banana regime with € < 1, F:;T ~ 1.17. Note that terms involving F#T are due to

the thermal friction force.

Equations (40)-(46) are solved numerically by adopting ITER parameters! at the
steady state phase: (n.) = 0.64 x 102° m~3, (T.) = 20 KeV, Iy, =19MA,k=2,06;, = 1.1,
a = 2.15m, Ryp = 6m. Also, the radial profile is assumed to l;e ne o (1 —r2/a?)¥n,

o« (1 — r?/a?)¥T with v, = 0.5,up = 0.75, and the inductive parallel electric field
(Ej|/h) is chosen so that the total plasma current including the bootstrap currents reaches
Ip ~ 19MA. For F7, ff, and f7, the Padé forms given in Eqs. (41) and (B9) are used.
Also, both electron and ion species are assumed to be in the banana regime throughout

the plasma. The effect of elongation is considered by replacing the plasma minor radius
by ay/k.

First, with Z.fs = 1.5, the resulting poloidal magnetic field and bootstrap current
densities are shown in Figs. (3)-(5). One notices the slightly decreased By due to Ji,.
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The alpha induced bootstrap current amounts to ~ 0.385MA, which is >~ 7.2% of the

background bootstrap current.

Varying Z.s¢, one finds a strong dependence of J{, on Z.fs. In fact, the effects of
Zess on Jp, are threefold:

(i) The electron screening effect decreases with increasing Z.¢s. Indeed, for Zef¢ < Za,

at € < 1, F; becomes negligible and Jp, becomes negative.

(i) Alpha pitch angle scattering effects increase with Z.¢; (because Qp ox Z.s¢). That

is, Fj' increases with Z..

(iii) However, the a pressure decreases with Z.¢¢ due to fuel dilution. Actually, when
Zg¢(r) is highly peaked near the axis, both Py,(r) and Pa(r) can become flat or even

hollow; and the bootstrap current density Jy, can be significantly reduced.

Table 1 shows the final currents for two cases where the Z ¢ profile is flat; one
where Z. ¢ = 1.5; the other where Z.¢f = 2.2. The ohmic seed current is kept fixed at
13MA. For Z.¢¢ = 1.5, the background bootstrap current>~ 30% of the total current. The
calculated alpha induced bootstrap current reaches ~ 7.2% of the conventional bootstrap
current. When Z.s¢ is increased to Z¢sy = 2.2, the total current decreases slightly by
about 2%. On the other hand, the conventional bootstrap current decreases by 5% while
the alpha bootstrap current decreases by 21%. Although a larger Z.¢s has the effect of
diminishing the temperature screening term in the alpha bootstrap current (see Eq. (40)),
and increasing the alpha pitch angle scattering, increased fuel dilution has a dominant
effect. Specifically, when Z s is increased, causing more fuel dilution, the alpha and
thermal pressure decreases resulting in less bootstrap current. Since the dilution effect is
équared in the Aalpha. pressure while occurring only linearly in the thermal pressure, the

effect on the alpha bootstrap current is pronounced.

The effect of having a peaked Z, ¢ profile was also investigated. Here we let Z.f¢(r) =
0.7 exp[—16r2 /a?]+ 1.5 making Zefs = 2.2 at the the center and 1.5 near the edge. Again,
the dominant Z,s; effect is fuel dilution. The resulting currents for this case are listed in
Table 1 and can be seen to be quite similar to the flat Z.ss = 1.5 case. This is because,

in the peaked case, Z sy rises significantly above 1.5 only near the center where there is
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little bootstrap current anyway. Note that both the background and the alpha induced
bootstrap current densities become slightly negative near the center. The reason is that
the fuel dilution gradient (specifically d(Z,s)/dr)) has a diminishing effect on the negative
thermal and alpha pressure gradients, and at some small value of r/a causes the bootstrap

current to change direction.

On the other hand, with the fuel dilution effects switched off, the ratio of alpha to
background bootstrap current density is given in Fig. (6), for both the flat Z¢¢¢ = 1.5 and
the centrally peaked Z,s¢(r). It is shown that the alpha induced bootstrap current density
increases with Z.¢¢ due to the increasing alpha pitch angle scattering and decreasing

electron current screening.

Furthermore, with Z.7¢ = 1.5, by artificially switching off the effects of fuel dilution
and pitch angle scattering individually, as shown in Table 2, the significance of these effects
can be clearly observed. It is found that the effects of pitch angle scattering enhance I,
only by 30% while the fuel dilution can reduce Ij} by 20%. The reason is that the pitch
angle scattering is most important near the center where the bootstrap current density is

small.

Equation (40) is good for arbitrary vg/vc and € and is valid for evaluating the bootstrap
current induced by any hot species containing sufficient isotropic pressure. One concludes
that the enhancement of the bootstrap current contribution from energetic ions including

pitch angle scattering will drastically increase with smaller vg.

V. CONCLUSION

The bootstrap current induced by fusion born a particles has been calculated for
general electron collisionality. Our result retains the effects of both a pitch angle scattering
and slowing down drag for arbitrary aspect ratio. The results are presented in Egs. (40)
and (41), in both forms: a summation over a rapidly converging series 3 > ; yn(1— é )Uzn
and a simple Padé approximation good for arbitrary :}—’S and e. Convenient Padé forms of

the effective fraction of circulating particles f¢ and fF are presented in Eq. (B9). It has
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also been shown that the radial electric field E, does not play a role in « particle transport

[cf. Eq. (A5)].

The effects of Z.s¢ on J§, are significant because when Z.s; increases the electron
screening effect decreases and the o pitch angle scattering effect increases but the a pressure
decreases due to fuel dilution which has been found to be a strong effect. Actually, the
reason that a pitch angle scattering enhances I only by 30% is due to the effects of
electron screening and strong fuel dilution. When Zg¢f(1 — Fg) < Za, Jg,/ JIES) can

become negative.

The theoretical results are evaluated quantitatively by using the ITER parameters
and numerically solving the parallel Ampere’s law including the bootstrap current terms
o« By ! for the self-consistent Bp(r). It is found that the bootstrap current produced
by alpha particles reaches ~ 0.385MA and is about 7.2% of the conventional bootstrap

current.

The results given in Eqgs. (40) and (41) are valid for evaluating the bootstrap current
induced by any hot isotropic species. For an anisotropic hot species generated by neutral
beam injection or rf heafing, the induced bootstrap current can be calculated by straight-
forwardly extending the present approach to also include the eigenfunctions even in v

(work in progress).
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Appendix A

Derivation of f4

Since the source term of fusion born alpha particles is isotropic in the ion rest frame,
we treat the alpha kinetic equation in this frame. Starting from the kinetic equation,
changing variable v — v — V; and then performing the gyro-average® the o drift kinetic

equation to first order in gyroradius becomes
_ ( ) — 3‘Uﬁ - v2
vV fa+Va- (Vfao +Fo— faO) +y 7 g fao - (b° W; 'b> —a

+2LV V] ifao=ca(7a)+ 5 6(v — vo). (A1)

472

3

Here, fo = fa(A,w,%,0); V is performed at constant (A, w);

= (MiZe Ov. .v.. vV Za
F=(maZ¢—1) (atv‘+v‘ vv,) o (vp,+v I, m) (A2)

vq = v b x V%l is the drift velocity in the ion rest frame; and
w; = 5((VV,-) + (Vvi)T) -3V V) I (A3)

is the ion velocity strain.

Note that Eq. (A1) agrees with the results by Hazeltine and Ware? except for the
definition of the F force term. This is because the results in Ref. 9 are for the drift kinetic
equation for a given species in its own rest frame. Furthermore, Eq. (A1) also agrees with
Eq.(5.45) of Hinton and Hazeltine!® which is the electron drift kinetic equation in the ion

rest frame.

From Eq. (A2) and V; = K;B + w; R2V ¢ one finds

Fo = —22_yp, Flfl) = g"—eE,,,V-v,- =0,b-W; b=K;b-VB.  (A4)
Madiny
Equations (A1) and (A4) thus yield
I Zae
V) fa+—"'ézfa0 U“V“‘a fao| + qu” faO (A5)

17



S
42 5(v — vo).

=Calfa) +

Let us now turn to the a collision operator in the ion rest frame. By using ;‘-:‘;': < 1,

me £ 1, and Eq. (26), one finds

1 8 Te 0 '
Cae— _"g ( fa _fa> mFez'gfaO- (AG)

Here, F,; is the electron-ion friction. Similarly, Co; can be written as

3 3
%0 o, w9 v
Con - 2 av U avfa + av 'U3 fa' (A7)
Equations (A5) — (A7) thus lead to
_ Iv” o . 0 Za€ . 0
V) [fa + Q—a@fao - v||"||ia—wfao] + ;;-UHE” 5o Jo0
1|08 v3 vp 8 = 8- S
- [a( ) Vat 350U 'afa} gt (48)

Then, by following the same procedure as in Ref. 4, one obtains Egs. (2) and (3) with the

governing equations for V,;:

( ¢fa0>( Va1) = 62 [(v +3) (%ﬁm) (on — an)] ; (A9)
0
dv

2 (L fao)(,,,, b= 2[00 (2 - ia)] . a0

3 ('6%f00) KnVn3 +v° (%%Q) on = % [(v +v7) (b%fao) VnS] o (AL1)

which leads to the solutions given in Egs. (8)-(10).
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Appendix B

Padé Approximation

The right hand side of Eq. (24) is rigorously expressed by summing over a rapidly

converging series yp (1 — %) Usy and can be evaluated quite accurately by using only a

few eigenfunctions. However, it is highly desirable to get a simpler analytic form good for

all xo, Qp, and . Let’s start with Usay,, which can be written as

2
Uzn = ST"UO Z .DntAX' ’
=1

where

23

Dy = ———/ dz —————— Hp(voz).
3Xg(t—1) o (2% +xg°) n

From the asymptotic behaviors of Hy,

1, if knQp K 1or xo > 1;

' 4(1+23x3 .
H,(voz) = —(ﬁ—:‘-ﬂ), if knQp > 1;
m, if x0 K 1;

one finds .
Ly, if knQp K< 1 or xo > 1;
4L, .
Dne={ 7oy frnQp>1;

ﬂ%ﬁl_j,l@;’ if xo K 1;

(B1)

(B2)

(B3)

(B4)

Numerical calculations show that D, is a reasonably smooth function of Qp and xo.

The simplest Padé form of D,,y satisfying Eq. (B4) is thus

4L¢-y

D, =
" AL +anQple t

(BS)

This simple approximation is found in excellent agreement with the numerical results. For

a wide range of k,Qp and X, the errors are within 5%.

One can then obtain

n=1

P
<h2>z%(l-—-)uz,,_smoz(H -t )wa
4.f Ltl

19
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In order to make the usage of Eq. (B6) straightforward, good Padé approximations of
f,‘f and f? are also desirable. Using the asymptotic behaviors at € < 1,

-1
{ 3 an () > 1 -6/ (B7)

3 JocdAgdy ~1- 14663

and at e — 1

{ ~§ J5< dx (Q%?))‘l ~ 1.5(1 —¢); (B8)
%f0°dAa%‘T; ~ 3(1-€¢)%

Egs. (21)-(22) yield the Padé approximations for f&and f?

£~ (1-€2)"1/2(1-¢?)

€ — 14+1.6¢3/2-1.25¢2" B
P (1_62)—1/2(1_6)2 ( 9)
€~ 1+1.46€1/240.2¢ °

Here, (1 — €2)"1/2 comes from (h™2) in a concentric circular equilibrium. The results
of f& and f?, calculated using both the Padé form Eq. (B9) and the exact numerical
integration of Egs. (21)-(22), are given in Fig. (1). It shows the excellent accuracy of this

Padé approximation.

Furthermore, by using Eq. (B9), Eq. (B6) is evaluated and compared with the nu-
merical evaluations (using the eigenfunctions A, for n = 1,2,3,4,5 obtained in Ref. 4).
For a wide range of Qp, X0, and ¢, the d‘ifferences are always within 10%, and the ana-
lytic approximate results are always larger than the numerical results (which is expected
owing to the fact that only eigenfunctions with n < 5 have been included in the numeri-
cal calculations). This shows that the Padé forms given in Egs. (B6) and (B9) are quite

accurate.
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Zeff = 1.5 Zeff = 2.2 Zeff (r)

(flat) (flat) peaked

Trot (MA) 19.03 18.64 118.90
I(o) (MA) 5.34 5.05 5.23
I(a) (MA) 0.385 0.303 0.372

Table 1. Induced bootstrap currents for three different
choices of Zeff. Input parameters are for the
steady state ITER machine. Ohmic seed current
is fixed at 13 MA.
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pitch
angle Fuel
scattering dilution
switched off | switched off
Itot (MA) 18.96 19.33
I(o) (MA) 5.36 5.54
I(o) (MA) 0.294 0.471
Table 2. Induced bootstrap currents (for Zeff = 1.5) pro-

duced after the effects of pitch angle scattering
and fuel dilution are individually switched
off.Input parameters are for the steady state
ITER machine. Ohmic seed current is fixed at 13

MA.
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Figure Captions

Fig. 1: Circulating particle fraction f. in the “pitch angle scattering” dominant and
“drag” dominant cases. Padé approximations are in excellent agreement with

the exact solution.
Fig. 2: Effective fraction of trapped alphas, assuming four different birth energies Ey.

Fig. 1: Poloidal magnetic field profile, with and without the effects of alpha bootstrap
current. Zegy = 1.5.

Fig. 4: Alpha particle induced bootstrap current density as a function of r/a. Z.¢¢ = 1.5.
Fig. 5: Background bootstrap current density as a function of r/a. Z¢f = 1.5.

Fig. 6: Fraction of alpha bootstrap current density over background bootstrap current
density, for flat Z, s = 1.5 and centrally peaked Z.f¢(r) = 0.7 exp(—16r2/a?)+
1.5.
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