
PFC/JA-92-1

The Three Wave Interaction and
Spatiotemporal Chaos

C. C. Chow, A. Bers, and A. K. Ram

January 1992

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

This work was supported in part by National Science Foundation Grant No. ECS-88-
22475 and NASA Grant No. NAGW-2048. Reproduction and disposal, in whole or part,
by or for the United States government is permitted.

To appear in: Physics of Space Plasmas (1991), SPI Conference Proceedings and
Reprint Series, Number 11, T. Chang, G. B. Crew, and J. R. Jasperse, eds. (Scientific
Publishers, Cambridge, Mass., 1992).

i



THE THREE WAVE INTERACTION AND

SPATIOTEMPORAL CHAOS

C. C. Chow, A. Bers, and A. K. Ram

Abstract . . . . . . . . . . . .

1. Introduction . . . . . . . . . .

2. The Nonlinear Three Wave Interaction

3. Time Only Evolution . . . . . . .

4. Spacetime Evolution . . . . . . .

5. Spatiotemporal Chaos . . . . . .

5.1 Definition . . . . . . . . . .

5.1 STC in the 3W . . . . . . .

Figure 1 . . . . . . . . . . . .

Figure 2 . . . . . . . . . . . .

Figure 3 . . . . . . . . . . . .

Figure 4 . . . . . . . . . . . .

Acknowledgements . . . . . . . . .

References . . . . . . . . . . . .

ii

.1

.2

.4

.5

7

.7

.8

10

11

12

13

17

17

. .



The Three Wave Interaction and
Spatiotemporal Chaos

Carson C. Chow, A. Bers and A.K. Ram
Plasma Fusion Center and Research Laboratory for Electronics

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

A tutorial account of spatiotemporal chaos (STC) in the nonlin-
ear three wave interaction (3WI) is presented. The concept of STC is
discussed and the 3WI is used as a paradigm for STC. Previous re-
sults of the 3WI, including time only solutions, low dimensional chaos,
spacetime parametric interactions, solitons and the inverse scattering
transform will be reviewed. These results will then provide the foun-
dation to understanding STC in the 3WI.

PACS numbers: 0.5.45.+b, 52.35M

1 Introduction

In the recent past the area of nonlinear dynamics has witnessed two major
discoveries - dynamical chaos and the inverse scattering transform (IST).
Chaos is customarily defined to mean randomness in deterministic systems
due to extreme sensitivity of initial conditions; considerable attention has
been given to mostly low dimensional or few degree of freedoms dynamical
systems [1, 2]. Although the ground work for chaos was laid out by Poincar4,
it was the advent of computer simulations that led to the explosion of results
and excitement in the last decade. The IST is a method to integrate certain
special nonlinear partial differential and difference equations. These equa-
tions are usually associated with exhibiting solitons, nonlinear structures
that preserve their form and collide elastically. Soliton solutions can be ex-
plicitly calculated with IST. The IST was first used by Gardner, Greene,
Kruskal and Miura [3] to solve the Korteweg-deVries equation. It was later
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discovered that their method was applicable to other PDE's [4, 5] and in the
ensuing years the growth of the field has been prodigious.

With these two discoveries some natural questions come to mind: (1)
What happens when more dimensions or degrees of freedom are added to
a low dimensional chaotic system? (2) What happens when a spatially ex-
tended system, integrable by IST is perturbed slightly to break the integra-
bility? Both of these questions will be addressed in this paper. The 3WI is
a system that can be used to answer these questions. The conservative form
of the 3W in space and time is integrable by IST, and the nonconservative
form in time only (spatially uniform) is chaotic. The dynamics of a non-
conservative, nonintegrable spatially extended form of the 3WI was recently
studied by us. The result is what has come to be called spatiotemporal chaos
(STC). The term STC specifically refers to the chaotic evolution of patterns
or coherent structures at a specific length scale in a spatially extended sys-
tem [6, 7, 8, 9]. This is in contrast to fully developed turbulence where there
is a cascade to smaller scales. The study of turbulence has been around for
many decades and a variety of approaches have had only limited success in
its description. It was once thought that chaos may have finally provided an
answer. It is now believed that this is not the case [10]. Turbulent flow is
full of coherent structures at all scales and is much more complicated than
low dimensional chaotic dynamics can address. STC lies in a regime between
the two extremes and is an interesting dynamical state in its own right.

The paper is organized as follows. The 3WI is introduced in section 2

and discussed in some detail. This is followed by the spatially uniform or
time only dynamics in section 3; both the integrable and chaotic situations

are reviewed. Section 4 is devoted to the spatiotemporal 3WI; the linearized

parametric instability and the IST solutions of the nonlinear equations are

reviewed. Finally in section 5, a discussion of STC in general and its mani-

festation in the 3WI is presented.

2 The Nonlinear Three Wave Interaction

The nonlinear 3WI appears in many contexts within the fields of plasma

physics, nonlinear optics and hydrodynamics. Ref. [11] provides an excellent
review of its applications. It can occur whenever: (1) a weakly nonlinear
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medium supports a set of discrete waves

w = wI(k). (1)

(2) The nonlinearity is manifested as a coupling of slowly varying linear

field amplitudes, (3) The lowest order nonlinearity is quadratic in the field

amplitudes, and (4) the three coupled waves satisfy the resonance conditions

Wi = Wj + Wk (2)

k; = k3 + kk. (3)

These last two conditions are akin to conservation of energy and momentum.

If these conditions are satisfied and the nonlinear coupling is conservative

then a slowly varying amplitude or wave packet expansion will yield the

conservative and integrable nonlinear 3WI [12, 13]

(Ot + v; - V)a; = -Kajak (4)

(Ot + v, - V)aj = K*aia (5)

(Oe + vk . V)ak = K*aiaj, (6)

where the a's are the slowly varying complex wave envelopes, K is a coupling

coefficient and the v's are the group velocities. The above form of the 3WI

is integrable by IST. Wave aG will be referred to as the parent and the other

two waves are the daughters. The solution will be discussed in section 4.

In many physical situations there will not be exact integrability. For

instance the linear waves may have some growth or damping associated with

them

m= w(k 1) + i71(ki) (7)

There may also be the situation where the resonance is not exact so that

W, + wk - w, = 6 0. (8)

This results in a dephased interaction. From these considerations a noncon-

servative form of the 3WI can be derived [12, 14, 15]

89a; + vi - Vaj = -Kaak exp(-iSt)+ ,yiaj + DV 2a, (9)

Otaj + v, -Va, = K*aia exp(i6t) - -yaj (10)

Otak + vA - Va = K*aiajexp(it) - ykak, (11)
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Here the -y's are growth or dissipation coefficients and D is a diffusion co-

efficient. This last term in Eq. (9) is usually not included in the 3WI; as

will be detailed in section 4 its presence is essential for nonlinear saturation

and the long time behavior of the equations. It arises if the growth of the

parent is assumed to have a slow spatial variation. It then gives the simplest
reflection invariant cutoff in wavenumber of the growth.

These equations ignore wave particle 'quasilinear' interactions whose low-
est order effect is also second order in the field amplitudes. The particles
are assumed to be nonresonant with the waves. In a generalized ampli-
tude expansion the 3WI is the lowest order nonlinear effect and so the 3WI
will dominate other nonlinear effects if the resonance conditions (2) and (3)
can be satisfied. For instance the celebrated nonlinear Schrbdinger equa-
tion would come in at a higher order. Only one spatial dimension will be
considered in the paper.

3 Time Only Evolution

The 3WI in time only has the form

di = ;at - Kajae*t (12)

dc = --tyai+K*aahet (13)

4 = -7kai.+K*aiaj e (14)

The conservative, resonant interactions (7f = 0,6 = 0) are easily solved in

terms of Jacobi elliptic functions [17, 18, 16]. The solutions are oscilliatory

with a period

1 __;(_)T ~ In . (15)l
2Kja(0) Ia,(0)(1

With the addition of the nonconservative terms closed form solutions do not
exist. However, we can consider an initial situation where the daughter wave

amplitudes are small. Then the equations can be linearized. This is known

as a parmmetric interaction. Linearizing (12) yields

a -(t) = ai(0)e" (16)

The other two equations become

di + 7,a, = K*a;(t)a. (17)

4



dh* + -ak* = Kai(t)*a, (18)

Now assume that a(t) is very slowly varying and substitute in the following

a3 = Aie*, a, = Age, - = IKa;(t)J (19)

This then yields the dispersion relation

(p + 'Y)(p + -y) - 7 = 0. (20)

The threshold for instability is given by y2 > _7,7k. So for a slowly grow-

ing high-frequency mode ai there will always be a parametric interaction

instability. The question is what happens nonlinearly.

This question was studied in references [19, 20, 21]. It was shown that

there is no nonlinear saturation unless the interaction is off resonance (i.e.

6 5 0). In those works the damping rates of the two daughters were chosen

equal. The essential parameters governing the dynamics were the dephasing

6 and the ratio of the dissipation to the growth 7-/7;. Depending on the

values of these parameters they observed regions of no saturation, stable

equilibrium, period doubling route to chaos, and intermittency.

4 Spacetime Evolution

The spacetime conservative 3WI is integrable by Inverse Scattering Trans-

forms (IST) [11, 22, 23, 24]. Ref. [11] provides a complete review of the

solution. IST is a transform technique to solve certain classes of nonlinear

partial differential equations, and difference equations. Other equations in-

tegrable by IST include the Korteweg-de Vries, sine-Gordon, and nonlinear

Schr6dinger equations. One notable feature of IST theory is the ability to

explicitly calculate soliton solutions.

In the 3WI the order of the group velocities gives different behavior. The

case where parent wave has the middle group velocity is known as the Soliton

Decay Instability. The IST solutions.for the conservative case on the infinite

domain show that solitons exist but they do not necessarily belong uniquely

to a particular envelope [11, 22, 24]. Solitons in the parent wave tend to

deplete to solitons in the daughters which propagate away. The simplest

soliton solution for decay shows that a soliton of the form Jail = 2iqsech27x,
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will decay into solitons in the daughters of the form 1a11 = V2 secht7(x +

vjt), where 17 is the IST spectral parameter for the Zakharov-Manakov [23]

scattering problem. The spectral parameter is also the eigenvalue for a bound

state in the Zakharov-Shabat [5] scattering problem with the parent pulse

as the potential function. In the WKB limit 17 is related to the area of the

parent pulse through the Bohr quantization condition [11, 14, 5]

laf -7 211/ 2d& = 7r/2, (21)

where [a, b] are turning points for a local pulse. A collision between a daugh-

ter pulse and a parent soliton is necessary to induce the decay of the parent

[11, 24]. For arbitrary shaped parent pulses that exceed the area threshold,
the soliton content will be transfered to the daughters leaving the radiation

behind. Collisions between daughter solitons are elastic. The depletion of

the parent into solitons is the nonlinear saturation of an absolute instability.

The case where the parent wave has the highest (or lowest) group velocity

is known as Stimulated Back Scatter. In this case the daughters can possess
solitons but they are not transfered between the envelopes.

The inclusion of growth and dissipation breaks the integrability of the

3WI just as it did in the time only case. However, the linearized parametric

instability where the daughters are initially small can be studied as in the

time only case [12]. Transform to the frame of the parent wave (vi = 0) and

consider ai(t) = const >> a3 , a, so eq's (10, 11) can be linearized [25]

(Ot + vjO., - -yj)aj = yak, (22)

(Ot + vhO. - -y,)a. = yag, (23)

where -y = IK*a and only one spatial dimension is considered. The disper-

sion relation is simply

D = (w - kj + y1)(w - kv + i ,) +_y2 = 0. (24)

There is a threshold of instability

I2 2. (25)

For vjvI, > 0 this is a convective instability. For vjv1 < 0 (parent has middle
group velocity) there is an additional threshold for an absolute instability
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[25]

21 -1 a> /(IaI + Iafk) (26)

where a = -fl/vI.

If the parent is spatially varying then one must solve a boundary value
problem. For vjvk < 0 the condition for an absolute instability is the exis-
tence of a growing normal mode. The WKB condition is given by [25]

n- r < J[a2 _ (IajI + Iakl) 2  1/2dX < + (27)

where a and b are turning points. Notice that for no damping this condition
is identical to the condition for soliton possession.

5 Spatiotemporal Chaos

5.1 Definition

The term spatiotemporal chaos has acquired a more specific meaning than
simply chaos in space and time. Although there is no official definition, STC
has come to refer to the chaotic behavior of coherent structures or patterns.
This is in contrast to the more familiar low dimensional chaos and fully
developed turbulence. The distinction can be made on the basis of length
scales. Following Hohenberg and Shraiman [6], for any chaotic dynamical
system there exist certain length scales. There is: (a) the excitation length
1E, the length scale at which energy is put into the system; (b) the dissipation
length ID, the scale at which energy is dissipated; (c) the system size L; and
(d) the coherence length . Systems where energy is created and destroyed
at the same length scale, L ~ I - ID, > L, correspond to low dimensional
chaos. The system is completely spatially correlated. On the other extreme,
in fully developed turbulence energy is usually injected at some large scale
and dissipated at a small length scale, L > LB >> LD, and the so called iner-
tial range lies between the length scales. Also in fully developed turbulence,
coherent structures exist at all scale lengths and the correlation length is
not well defined. However systems where energy is injected and dissipated
at the same length scale and the correlation length is much smaller than the
system size, L > LB ~ ID, << L, corresponds to the regime of STC. In
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STC there is no inertial range yet spatial degrees of freedom are very impor-

tant. The clean separation of scales also allows a statistical description in

that correlation functions are well defined.

5.2 STC in the 3WI

This finally leads us to STC in the 3WI. We studied the dynamics of the

3WI in one spatial dimension x and time t. For weakly growing and damped

waves without dephasing the nonconservative form of the 3WI Eqs (9-11) is

Ota - D8..aj - Ijaj = -aja (28)

Ota - 8 .a +yjaj = aaZ (29)

Otak + gak + yka = aja;, (30)

where the a's are complex wave envelopes, the 'y's are growth or damping

coefficients, and D is a diffusion coefficient. We have transformed to the

frame of the parent wave and normalized the magnitude of the daughter

group velocities to one. We will consider the case where the daughter waves

have equal damping (i.e. -y = sy,). The length and time can then be rescaled
so that the damping coefficient is unity [26].

The group velocities satisfy the condition vi, > vi > v3 (i.e. the highest

frequency parent wave has the middle group velocity, see [27]). In the absence

of growth, damping and diffusion (71 = D = 0) the IST solutions for this

group velocity ordering is described by soliton exchange between wavepackets

[11, 22, 23, 24].

We numerically simulated the system on the domain x E [0, L) with
periodic boundary conditions. We began with random real initial conditions

and evolved until the transients died away before the system was analysed. It

can be shown that for real valued intitial conditions the envelopes remain real

for all time [11, 15]. We were interested in the large system, long time limit.

We considered the case with parameters D = 0.001, -y = 0.1, -y = 7y' = 1,
and L = 20. These parameters were chosen becase they exhibit STC and fall

into a regime where perturbation theory is possible. However, the system is

extremely rich and different parameters do lead to vastly different behaviour.

Aspects of these different regimes will be touched upon later and details are
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given in [15]. We measured the correlation function, S, (z, t) = < a,(x - z', t -

t')a1(x', t') >, where the angled brackets denote time averages.

A sample of the spatiotemporal evolution profiles in the STC regime of

the parent and daughter envelopes is given in Fig. 1. The length shown

is one half the system size and t = 0 is an arbitrary time well after the

transients have decayed. The profile of the parent wave is irregular but

spatial and temporal scales can be observed. There are coherent structures

of a definite length scale that can be seen to grow, deplete and collide with

one another. The profile of the daughter wave shows a sea of structures

convecting to the left. We only show one daughter, the other will be similar

but with structures convecting to the right. The correlation functions for

both the parent and the daughter waves are given in Fig. 2. The parent

correlation function shows a gradual decay in time. Spatially, there is a

definite length scale seen in Fig. 1. The daughter function is calculated

along the characteristic. It has a fast decay followed by a slow decay in

both time and space. The approach to zero in correlations in both space

and time indicates STC. Figure 3 shows the spectrum of static fluctutations

S1(t = 0, q). For the parent wave there is a cutoff near q ~ 10 and a range

of modes show up as a prominent hump. The cutoff reflects the length scale

seen in the spacetime profile. For q below the hump the spectrum is flat.

The daughter spectrum has a cutoff around q ~ 6 again indicating a length

scale. Figure 4 shows the local power spectrum SI(w, x = 0). The spectrum

for the parent clearly shows two time scales. The spectrum bends over near

w ~ 0.02 which gives a long time scale and a shoulder at w ~ 0.3 gives a

short time scale. Longer runs with these parameters hint that there may be a

very slow power law rise of undetermined exponent for frequencies below the

low w bend similar to that observed in the Kuramoto-Sivashinsky equation

[6]. The short time scale appears as the growth and depletion cycle observed

in the spatiotemporal profile. The daughter power spectrum has two peaks

at high w. One is where the shoulder of the parent spectrum is and the other

is at twice this frequency. The spectrum begins to bend over and flatten out

at at w ~ 0.007. This bend is more pronounced in longer runs. It is not

known whether the spectrum becomes flat or has a power law rise like the

parent for frequencies below the bend.
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Figure 1: Spatiotemporal profiles of (a) the parent wave ai(z, t) and (b) the
daughter wave a (z, t).
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Figure 2: Correlation Function S1(z, t) of (a) the parent wave and (b) the
daughter wave.
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and (b) the daughter wave.
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Figure 4: Local power spectrum St(z = 0, f) of (a) the parent wave and (b)
the daughter wave.
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The main features of the behaviour can be understood if we consider

the growth and dissipation as perturbations about the conservative 3WI,
as discussed in Sec. 4. With the addition of weak growth and dissipation,
parent pulses deplete provided they satisfy the WKB threshold condition

(27). In the normalization of Eqs. (28-30) this condition is [14, 25]

a? - _tj" 2 d > 7r/2. (31)

The decay products in the daughters are quasi-solitons; they damp as they

propagate away and do not collide elastically. The soliton content of the

parent is not completely transferred to the daughters. The parent wave with

some initial local eigenvalue q will deplete and be left with some remaining

area. This area is due to the conversion of soliton content into radiation

by the perturbations. This left over area can be represented by an effective

'eigenvalue' 77'. This remaining part of the parent will then grow until it

exceeds the threshold for decay. This time denoted by t, is given by

tC 1 InI. (32)

The cycling time observed in the spacetime profiles is this time plus the time

required to deplete. The depletion time from IST theory is on the order

1/277 and for - << 277 this can be neglected and t, gives the cycling time.

By treating the damping and growth as a slow time scale perturbation of

the IST soliton decay solution described above and ignoring the effects of

diffusion on this short time scale, a multiple-time scale perturbation analysis

about the IST soliton solution was used to estimate n'. In this calculation

the ordering yi << -f << 277 was chosen. The small parameter is 7f/27 but

by simply rescaling in time and space either -y or 7 can be scaled to 0(1).
To leading order this yields [15]

1'~ 7j. (33)

The derivation assumes that the decay time for a soliton is very much faster

than the growth and damping time. Simulations for parent soliton intial

conditions verify Eq. (33) [15]. In order to complete the calculation for the

cycling time t, it is necessary to estimate the threshold local 7 required for

decay. By comparing the Bohr quantization condtion (21) with the WKB
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condition for decay with damping (31) we know that q > 7j. Using the
IST scattering space perturbation theory developed by Kaup [11, 28, 29]
and recently reviewed in Ref. [30], we constructed the time dependence of
the IST scattering data due to the perturbation. The same ordering as the
multiple scale calculation was chosen. From this we were able to estimate 71

to leading order to be [15]

17 ~- 2- + 4 ,j, (34)

where 4, is the parent correlation length and will be defined later. Equation
(34) is sensitive to the amplitudes of the colliding daughter amplitude that
induces the decay. The calculation assumes the decay is induced by collisions
with quasi-solitons with the same phase from each daughter generated two
correlation lengths away. The relative phases of the colliding daughters is
very important. Consider real amplitudes for the moment, Eq. (28) shows
that two daughter quasi-solitons with opposite signs (phase) actually rein-
force the parent rather than make it deplete. Thus expression (34) should be
considered more of a lower bound. In the simulation, radiation and diffusive
effects will be relevant and may also further delay the decay of the parent.
From 7 we are able to estimate the daughter correlation length. This is given
by the quasi-soliton width ed ~ 2/1.

The long time behaviour is governed by the diffusion. The trivial fixed
point of Eqs. (28)-(30) is given by

8.a + qgai = 0, aj = al = 0, (35)

where qo = / 7 i;/D. Modes with q > qo will damp and those with q < qo
will grow. Thus the fixed point is always unstable to long wave length
fluctuations. However, when a local area between two turning points of the
parent wave contains a bound state with eigenvalue 17 it will deplete. In the
depletion process broad parent pulses will be decimated. The growth in the
q < qo modes are thus saturated nonlinearly. This results in long wavelength
distortions beyond lengths 27r/qo. The principal mode qo was observed as the
cutoff in the spectrum of static fluctuations (fig. 3a). The mode qo defines
the correlation length for the parent, 4, ~ 2w/qo. If D = 0 there will not be
any nonlinear saturation of the instability because qo would become infinite
and so would the amplitude required to fulfill the area threshold (31).
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The long time scale for the parent r is given by the diffusion time across

a length 4, giving rp ~ (27r) 2 /-y. This is the time scale in which the local
parent structures will shift postition, collide with other structures or diffuse

away. The long correlation time observed in the daughters is associated with
the interaction of the daughter quasi-solitons with the parent structures.
Whenever quasi-solitons collide with the parent structures they may induce a
decay and create a new quasi-soliton where the collision occurred. This would
lead to a long correlation time for the daughters. As the parent structures
drift so would the creation location of new quasi-solitons. However because
the quasi-solitons have a different width than the parent structures, the long

time scale for the daughters would be given by the diffusion time across a
quasi-soliton width yielding rd ~ 4/(q2D). The newly created quasi-soliton
damps while it continues to propagate along the characteristic. However
when it collides with another parent structure it could induce a decay and
repeat the process. The parent structures act as amplifiers regenerating
damped quasi-solitons that collide with them.

Using the above analysis for the parameters of the simulation we obtain
the following estimates: rp ~ 400, qo = 10, 4, ~ 0.6, q' ~ 1, q ~ 2.2,
t~ 8, d ~ 0.9, rd ~ 800. These estimates corroborate fairly well with
the simulation. The estimate for tc is a bit low compared to the shoulder in
the parent power spectra at w ~ 0.3 corresponding to t ~ 20. However the
spacetime profiles in Fig. 1 do show some of the parent structures cycling
near the predicted time scale, so the calculation does predict a lower bound.

A word should be said about the system size. It is clear with the very
long correlation times for the daughters that they cycle the box many times
before correlations decay away. Thus for long times, the temporal correlation
function along the characteristic or at a single spatial location would be the

same. This was borne out in the simulation. It is unknown what the precise
boundary effects are since it would be impossible to numerically test a system
large compared to this long time scale. However with other runs of varying

length, it was found that the above time scales seem to be unaffected by the

box size as long as the box is much larger than 4,. The power law rise for
the parent power spectrum below 27r/-r, seems to decrease in exponent as

the system increases.
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We chose parameters where perturbation theory about the IST solutions

could be applied to try to understand the dynamics. However the behavior

does dramatically change for different parameter regimes [15]. For strong

growth rates, the long time scales observed tend to disappear and only the

growth and depletion cycling time is evident. The parent grows strongly

and depletes violently preventing the structures to become established. The

larger the growth rate the larger the amplitudes of the quasi-solitons [15].

Another regime is when the diffusion is large so the parent structures are

much broader than the damping length of the daughters. In this situation

the daughters grow and damp within the confines of a parent pulse. Spatial

exchange of information between these pulses is very slow. These and other

regimes are reported in ref. [15]. It is quite clear that the 3WI in spacetime

is an extremely rich system. For weak growth and dissipation, it exhibits

STC and perturbation theory is able to estimate the length and time scales.

One of us (C.C.) wishes to thank T. Hwa and D. Kaup for fruitful and

interesting discussions. This work was supported in part by NSF Grant No.

ECS-88-2475 and NASA Grant No. NAGW-2048.
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