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Abstract

Fusion born a particles moving parallel to the magnetic field can resonate with toroidal

Alfven eigenmodes (TAE) leading to anomalous a orbit diffusion across the a loss bound-

aries in a tokamak. This is analyzed using the Hamiltonian guiding center code ORBIT

in conjunction with the kinetic magnetohydrodynamics (MHD) eigenmode solving code

Nova-K. Resonant single a orbits are studied below and above the threshold for orbit

stochasticity and Monte Carlo randomized ensembles of alphas subjected to a finite am-

plitude time dependent TAE are followed with respect to their radial losses using realistic

MHD equilibria and numerically computed toroidal Alfv~n eigenfunctions for one toroidal

eigenmode n = 1 and the full Fourier spectrum of poloidal harmonics m involved in the

"gap mode." The a loss mechanisms are resonant drift motion across the loss boundaries

of alphas born near these boundaries and stochastic diffusion to the boundaries in con-

stants of the motion (phase) space. After a first transient of resonant drift losses scaling as

Br/Bo, the number of alphas lost via diffusion scales as (r,/Bo) 2 . For TAE amplitudes

b,/Bo > 10-3 a orbit stochasticity sets in and, depending on the radial width of the fast

a density nr(r), a substantial fraction of alphas can be lost in one slowing down time. For

B5/Bo < 10-4 the losses become insignificant.
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I. INTRODUCTION

Until recently, the fusion born energetic alphas were assumed to be classically confined

during their collisional slowing down on the bulk electrons and ions in the tokamak. This

notion was supported by the apparently classical equilibration of neutral beam injected

ions with beam energies Eb < 150 keV. However, the 3.5 MeV a velocity is typically

1.5-2 times faster than the Alfv6n speed vA of the plasma which gives rise to Cherenkov

excitation of Alfv~n waves and anomalous a losses.

The ensuing theoretical possibility of resonant interaction between fusion born alphas

travelling parallel to the magnetic field and shear Alfv6n waves wA = k VA was recognized

by Mikhailovskil and Rosenbluth 2 over 15 years ago and solved numerically in Ref. 3.

When the free energy of the centrally peaked a particle density is included one finds a

linear instability if w,, > wA. (Here w, is the a diamagnetic frequency.) Nonlinearly, an

anomalous fast a diffusion coefficient Da" can result which becomes important when r 4

4D2 ->4a2> -1 where a is the minor radius of the plasma and TSD is the a particle slowing

down time. Two recent tokamak experiments 4'5 with parallel neutral beam injection have

demonstrated the essential features of super-Alfv6nic ion losses due to excited Toroidal

Alfven Eigenmodes (TAE) 6'7'8'9 . The subject of the present work is the calculation of ro,

due to the TAE spectrum10 in burning tokamak plasmas such as the Compact Ignition

Tokamak (CIT)'1 and the international Thermonuclear Experimental Reactor (ITER).12

In Section II, the toroidal Alfvan eigenmode structure is introduced, analytically and

numerically. The a kinetic resonance with the TAE produces an a energy exchange with

the mode which, because of the finite a orbit width, is treated numerically as a two dimen-

sional (2-D) problem. Since wA < la (the a gyrofrequency) a guiding center description

is adopted. Its Hamiltonian formalism is described in Section III. The a Alfven wave res-

onance gives rise to an anomalous radial guiding center drift. Above a critical amplitude

(Br/Bo)cr~i, a orbit stochasticity sets in. Section IV is devoted to numerical studies of

single a orbits in Subsection IV. 1, a Monte Carlo simulation of relatively short duration (of

200 a transit times) in a circularized CIT equilibrium, in Subsection IV.2, and an extended
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(up to 5000 -ransit) Monte Carlo simulation showing stochastic diffusion in constants of

the motion space in a D-shaped CIT equilibrium in Subsection IV.3. The properties of the

a orbit stochastic maps and their significance for transport across the a loss boundaries are

developed in Section V. Section VI gives a summary and conclusions. Finally, numerical

accuracy of the orbit integrator and the Monte Carlo simulation are briefly discussed in

an Appendix.

II. LINEAR MODE THEORY

1. Linear TAE Spectrum

Lately the linear theory of the TAE has received a great deal of theoretical attention 13 ,14

and we refer to these papers. For present purposes it suffices to recall the linear mode

structure for a given toroidal mode number n

All = Am(b) cos[(-n( + mO - wt)]
m

= Am (0) cos - m()
m

where the poloidal mode numbers contain two principle m-numbers such that the flux

surface where k2  = k2  defines the "gap" location qg,,p = m+1/2 (valid for circularsurfac whr -Im+1 n, vldfrcrua

plasma cross section. For D-shaped plasmas cf. Ref. 14. (Here k0 = (n - ')/Ro is

the parallel wave vector and q(0b) the radial safety factor profile.) The radius rgap where

q = qgap is called gap radius. The real frequency of the TAE is w, = kVA= VA/2Roqgap.

The ideal magnetohydrodynamics (MHD) shear Alfvin wave has B1 = 0,

1 aA1 1 _E=-V110- C& = 0

or

AlA (2)
ckj

We write

= m(r) cos -m (3a)
m
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and using B = V x A||b there results, for a given poloidal harmonic

B," = cki m sin m
w r

_m= ck11 a~qmC0$
w u Or Cs-

(3b)

E"- "mcos 4 m
Or

~ m
E= -- ,Om sin -mr

The flux surface radius r is related to the flux label Op. (In our numerical work we use

normalized toroidal flux OT = (q)2 /2 for circular plasma cross section cases and poloidal

flux Op = f dOTb/q for noncircular equilibria.) We note from Eqs. (3b) that while E0 peaks

at r = rgap, B1 will peak elsewhere, depending on 1 kIl (r). We normalize Ai such that

a =A/RoB (4a)

where RO is the major radius and BO the equilibrium B-field and we will frequently refer

to the peak amplitude of & as a measure of the strength of the TAE perturbation. Using

a, one can write

f = V x &BRo (4b)

Typically, ; > &.

2. Alpha Kinetic Resonance with TAE

The resonance condition for passing alphas

w-,, - kjL - VD, = 0

can be readily satisfied for w = kI vA and vll, >vA. Invoking poloidal sidebands resonance

occurs also for vla < VA.1 4 The retention of the magnetic drift term is essential for the
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wave-particle interaction since, with Ell = 0,

dEc
t eavgca * E oc VDa ' V0

OCVDr ao+ (VDr) o 5
ar a

oc krvDrb + MVDO
r

Equation (5) shows that the magnetic drift in the 6 direction can dominate over the

radial drift in the core region of the burning plasma thus making this a 2-D problem.

This fact, combined with the large orbit width of the fast alphas has led us to adopt

a numerical approach for the a guiding center TAE interaction study, very interesting

analytic work15 ,16 for varying ratio of mode width to a orbit width notwithstanding.

III. HAMILTONIAN GUIDING CENTER MOTION OF THE ALPHA PAR-

TICLE MOTION IN THE WAVE FIELD

1. Hamiltonian Formulation

A Hamiltonian formalism 1 7 1 ' 1 9 is useful for enhancing the numerical accuracy of the

orbit integrator with respect to the constants of the motion as well as to avoid numerical

stochasticity in the area preserving orbit maps to be shown further below.

Starting from Morozov and Solov6v 1 7 and Littlejohn' 8 (to produce a Hamiltonian

form and satisfy Liouville's theorem) we have for the a drift motion

v1 / B ... Vi
'6D = .. -. (B + V x plIB); p --

1 + p1lb -V x b

which leads to the Hamiltonian

HGC= p'B2+ pB+e4

The shear Alfvdn perturbation is introduced through 20

6B = V x &B, & = amn(0) cos(mO -- n - wt)
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Letting pc = plj + & permits inclusion of the perturbation & in the Hamiltonian as

H = (Pc - &) 2B 2 + pzB + eO
2

with four Hamiltonian variables

,, P -Pc - p, PO IPc +T

where g = RBO, I(Vb) is the toroidal current inside 7 and OT is the toroidal flux. One has

9H . H

OH . H

Also, one finds expressions for the radial drift b = b(&, &) and the parallel acceleration

Oi = i (&,a-) describing both classical drift- and perturbed a-orbit motion. The radial a

particle drift velocity is

g(P2+p)oB
11D + + Aanm cos(n - mO -wt)

where D and A are equilibrium quantities defined on pages 71 and 254 of Ref. 20 and

(t), 0(t) describe the toroidal and poloidal guiding center drift motion. The first term

gives the "banana" width, the second term can become secular if w ~ Wd, describing the

resonant radial a drift which can take the a particle to the loss boundary of the finite

tokamak geometry.

2. Resonant and Stochastic Alpha Motion

dE-
Indeed, the condition o 0c vd - VO = const. is essentially the condition w =

kcv + kdvd along an orbit. When dr - 0, the a pitch angle A pBO/Ea will change

while pA is conserved (wA < eaB/mac). A frequently observed event is the resonant

conversion of a passing a near the passing/trapped boundary into a fat banana orbit.

When the orbit width A, is comparable to the radial mode width Am ~ ergap of the
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global (where F = a/Ro) the resonant drive can be maintained for several transit times.

This condition is satisfied for energetic alphas near the trapped/passing boundary, for low

mode numbers n, m. For high mode numbers the a guiding center traversing the more

narrow mode width Am suffers a shorter resonant kick. 16 ,21 For both conditions, a orbit

stochasticity will be shown to occur at sufficiently large amplitude of b,/Bo. This can

lead to stochastic diffusion in a guiding center phase space. Typical a orbit widths are

shown in Fig. 1.

Thus, one expects three mechanisms of a losses from the system. The first is resonant

drift of an a born near a loss boundary, the second is the above mentioned resonant

conversion of a barely passing a into a fat a-banana intersecting the wall and the third is

sustained stochastic diffusion in PW - E - A space until the a is swept across an orbit loss

boundary. These loss boundaries are shown in Fig. 2 and are the subject of Part I of the

present work. 22 In the next section we will show a guiding center Monte Carlo simulations

with two different loss boundary scenarios.

IV. ALPHA GUIDING CENTER SIMULATIONS

In this section we investigate numerically the resonant a losses due to the gap mode

fluctuations. Given machine parameters, q-profile and mode numbers, a numerical solution

for the radial eigenfunctions ' m(') of Eq. (3a) is produced with the Nova-K code. 13 Then,

B and Ali follow from

=l 0, b=V xA1 b=V xe&BR,

where B is the equilibrium field. Figures 3 and 4 show the toroidal Alfvin radial

eigenfunctions vs. OT and o,, the toroidal and poloidal flux variables such that tkTb = 0.5

and lkpb = 0.147 at the plasma boundary.

Next, the parameter 6 corresponding to a given amplitude Bis prescribed. Typically,

we vary

Br= 10-5,10~4, 10-3
B,
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Up to 5120 particles are followed for up to 5000 transit times. v and 0 -are chosen fixed or

with a certain spread, and and v, 0 are distributed randomly. Two types of studies are

carried out:

(i) single guiding center orbits, subject to the motion in the equilibrium field B 0 and

the time dependent fluctuations B, 4 (where we monitor a particle resonances and

ensuing loss details;

(ii) ensemble of guiding centers, monitoring loss rate, Ntot (lost) and properties of lost

(or "exiting") alphas.

The choice of perturbation amplitude is not arbitrary but guided by experimental val-

ues for low mode number MHD-like perturbations. For example, in the TEXT tokamak,2 3

Br/Bo(f > 50 kHz) ~ 10-5 has been observed near the edge; in the so-called # collapse

of the Tokamak Fusion Test Reactor (TFTR),24 Br/B.o ~ 10-4 is estimated; and for the

fishbone oscillations in the Princeton Beta Experiment (PDX),2 5 B5/Bo Z 10-3 was ob-

served. Close to disruptions, Mirnov oscillations can exceed B/Ba ~ 10-4 . The TAE

amplitude was not determined in the two experiments 4,5 but, judging from the observed

fast ion losses, should approach the fishbone amplitudes (cf. also Ref. 26). An analytic

stochastic onset calculation 21 gives Br/Bo 10-3.

Exposing the a particles to only one toroidal mode number is expected to produce

a conservative loss rate (cf. Ref. 21). Furthermore, mode coupling effects neglected here

may indeed be unimportant for the saturation of the TAE (cf. Ref. 27).

1. Characteristic Single Particle Orbits

As a first simplified case, (presented previously, cf. Ref. 7a) first we assume a circular-

ized CIT equilibrium specified in Appendix A. Starting in the untrapped pitch angle region,

an a particle of energy Eo = 3.5 MeV near the center (ro/a = .1) becomes resonant with

the Alfvin wave and loses energy to the wave thereby undergoing a resonant radial outward

excursion. Near the edge, the a particle is scattered by the fluctuation (Coulomb collisions

are excluded throughout this work) into the trapped region which constitutes a prompt loss
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orbit. Figures 5a,b,c show an important class of orbits for Br/Bo = 5 x 10-3 in a circular

plasma cross section, where the TAE of Fig. 3 has been used. Figure 5a shows the frac-
AEtional energy loss E as a function of time, measured in units of 1rtans it _ (v 0/27rR)~ 1 .

Figure 5b shows the evolution of the pitch angle variable vjj /v. Figure 5c shows the orbit

in the r - 6 plane terminating at the wall.

Figures 6 show a similar passing a orbit in a D-shaped cross section for CIT equi-

librium B (see Appendix A) for the eigenfunctions of Fig. 4. Note in both cases that

resonant interaction of the passing a launched near the passing/trapped boundary lasts

for 2-3 transit periods at a time, reducing E,. This finally increases the pitch angle variable

A = pBo/E enough to trap the a as can be seen clearly when 1 goes through zero. The

trapped a is on a loss orbit, i.e., it intersects the plasma boundary. This class of orbit losses

has been identified to play an important role in TFTR fast ion experiments. 2 8 Likewise, as

will be shown in the next section, this type of loss of barely passing alphas dominates the

loss statistics in the guiding center Monte Carlo simulation. As a subdominant effect, we

have observed a small percentage of initially trapped fat a- bananas precessing toroidally

and exhibiting resonance with the TAE such that the banana center drifts radially outward

until it is scraped off at the plasma boundary in the outer midplane.

2. Monte Carlo Simulation of Alpha Particle Ensemble in a Simple Circularized

Plasma Case

For the circular cross section eigenfunction of Fig. 3, we consider in this first study

an initial ensemble of 5120 particles localized at r0 /a = .5, with randomly distributed

poloidal angle and pitch angle with energy 3 MeV < 3.52 MeV. Br/Bo = 5 x 10-4 is

assumed and the a loss rate is monitored as a function of time. Figure 7a shows the

final spread out radial distribution after 200 transit times (which ends the run). Figure

7b shows the energy distribution of those alphas which hit the wall due to their resonant

energy exchange and ensuing outward drift. Figure 7c shows the loss rate vL =

where at is coarsegrained (averaged) over 5T,,anit. The initially large prompt orbit losses

have evanesced after : 4 07transii. In this simulation, we replace each lost a resonantly

9



drifting across the plasma boundary by another one at a randomly chosen phase space

point. These alphas can be born near the plasma boundary and dominate the observed

losses. Losses of alphas having stochastically diffused from "inner" regions of phase space

would scale as (b/Bo) 2 do not have a chance to be observed in this case.

In a second run of this study for the same circularized equilibrium we assume a radially

spread out birth distribution, namely

nc (r)= (nc(o)(1 - (r/a)4 )4 , r/a < 0.75

0, r/a > 0.75

(truncated to avoid trivial prompt losses near the plasma edge). This shape is derived

from the assumed pressure profile 3 oc (1 - (r/a)4 )2 ). Taking -g = 5 x 10-4 we find the

loss rate vjO,, ~ 1025-1, i.e. r108 8 - 10 ms~ 1rSD. Noting that the fusion a particle

production rate at T = 10 keV, ne = 5 x 1014 cm 3 is about 60 a- 1 , the TAE mode losses

can overwhelm the fusion a production unless y < 10-4 in this simulation.

Another series of runs was made involving an initial ensemble of 512 particles with a

randomly distributed poloidal angle, pitch angle, and box-like radial density profile (cut

off r/a < 0.7 to minimize prompt losses outside of this radius). The initial energy was

randomly distributed within a given range as shown in Table 1. The results of those Monte

Carlo simulations are summarized as follows (see also Table 1):

1. Roughly, vo,, = (2 x 106)&, i.e. proportional to ,/BO. This linear scaling can be

understood from the formula for i, given above.

2. For the energy group Eo < 1.5 MeV, the loss is insignificant. For 2.52 < EO < 3.52

(i.e. the initial particle kinetic energy is randomly distributed between 2.52 and 3.52

MeV) and 6 = 10-4 (i.e. Pj = 5 x 10-4), we have 1,, =4 ms - NlsD.

Note that as shown in Fig. 7, all of the above runs were terminated after only 200 a

transit times. Longer runs (to be discussed next) are necessary to demonstrate the final

steady state a loss level. They are described in the next section.
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3. Extended Monte Carlo Simulation in D-Shaped Plasma

The CIT equilibrium parameters for this second study are given in Appendix A (equi-

librium B) and the corresponding radial structure of the TAE poloidal harmonics is shown

in Fig. 4. Besides these MHD modifications from the run in Section IV.2, a number of

important changes have been made to address open questions and obtain a deeper under-

standing. First and foremost, using the theory of Ref. 22 all relevant loss boundaries in

phase space have been worked out for the equilibrium magnetic field geometry and alphas

crossing the loss boundaries are not replaced, in order to clearly bring out the stochastic

phase space diffusion driven losses. Second, the run time is extended to 1000-5000 rTanait.

Third, the relative orbit width in the D-shaped cross section shown in Fig. 1 is smaller

than that of the circular equilibrium A, but more importantly, by following the alphas

in constants of the motion (COM) space rather than in configuration space, appropriate

diffusion coefficients can be formulated 22 and measured in the simulation. Fourth, we have

constructed the Poincar6 plots of the a guiding center orbits for each assumed value of

B5/Bo and have determined the stochastic threshold. Consequently, the location of th

KAM surfaces in P,, A space reveals the split between resonant drift losses oc br/Bo and

stochastic diffusion losses oc (B,/Bo)2 which was not apparent in the simple simulation

scenario of Section IV.2.

Figure 8a shows the initial density na(r) - e-40/01'd for an ensemble of 512 alphas

with a = E,, = 3.5 MeV. Taking & = 2 x 10-, the final density after 1000 Treanit is

shown in Fig. 8b. Note the substantial broadening of na(r) whose gradient drives the linear

TAE instability growth rate.9 As in the circular equilibrium case (cf. Fig. 7b) after 1000

trtn.,it we observe that the TAE mode structure does not resonantly scatter alphas below

E. ~ 1.5 MeV thus dashing any hope for He-ash removal (desired for Ea ,< Ecit - 800

keV). Figure 9 shows the pitch variable ! of exiting alphas as they cross the loss boundary.

One observes a peak at 9 0.6 which corresponds to a barely trapped a on the way to

the wall. Inspecting Fig. 5b it becomes apparent that this a particle had 9 = -0.6 before

it went through its banana tip. And values of 3 ~ -0.6 correspond to barely passingV s

alphas in resonance with the TAE on the outboard side of its orbit. This confirms our
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previous observation of the predominance of this resonant orbit transformation for the

overall losses driven by the TAE. Independently, Zweben et a128 have isolated this orbit

transformation as important in TFTR experiments on energetic single ion losses. Figure

10 shows the total number of lost alphas vs. time, clearly showing a steady state loss rate

of ~ 4 particles per unit time out of 512. (We have cross-checked this rate with runs with

> 1024 alphas.) Figure 10 (running for 5000 -rransit) supercedes the result of Fig. 7c and

we stress again that in Fig. 10 lost alphas are not replaced by new randomly born alphas

and prompt first orbit losses are not admitted. The initial transient in Fig. 10 is due to

the resonant drift losses of alphas born near the loss boundary which was the dominant

loss mechanism for the first simulation of Section IV.2. The subsequent steady state loss

rate is due to fluctuation driven diffusion to the loss boundary.

For a deeper understanding, we return to Fig. 2 showing the a loss boundaries in

PW - A space which was the topic of Part I (Ref. 22) of the present work. Figure 11b of

Ref. 22 contains the (P,, A) values of exiting alphas (dots). The analytically predicted

loss boundary is shown in Fig. 5 of Ref. 22. (The excellent agreement between the analytic

and the simulation boundary also serves to confirm the accuracy of the ORBIT code used

here.) Figure 11a of Ref. 22 shows the initial (P,, A) values of the later exiting alphas.

Those initially far removed from the loss boundary have stochastically diffused to the

boundary, rather than making it across by resonant drift. This diffusion is demonstrated

and analyzed in detail in Part I of Ref. 22.

To determine the TAE amplitude threshold for the onset of stochastic diffusion, the

mean square phase space displacements ((AP,) 2 ) and ((AE) 2 ) were measured as a function

of time. Figure 12a of Ref. 22 shows ((APW) 2 ) for & = 2 x 10-4 where it is practically zero

(note the scale factor 10-7) and Fig. 12b of Ref. 22 for & = 2 x 10-3 where it becomes linear

in time after the first 200 transit times. A similar behavior is observed for ((AE) 2 ) vs. t,

for & = 2 x 10-4 to 2 x 10-3. This places the stochastic threshold at about &ct ~ 10-3,

in accord with an analytic map criterion given in Ref. 21. Numerically, the onset of

stochasticity is demonstrated in the stochastic maps shown in Figs. 14 in Ref. 22. An ele-

mentary derivation (contained in Ref. 22) proves Dpp, ((APW) 2 )/2t oc (b,./Bo)2 2ap
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and indeed, the Monte Carlo simulation of 512 alphas exhibits that the diffusion coeffi-

cient scales as (B,/B 0 )2 , as shown in Fig. 13 of Part I (Ref. 22). Concomitantly , the

number of lost alphas, N, (lost), also scales as B2, see Fig. 11. A second run over 5000

rtan.it proves the expected linear increase of Na with run time. This value of N"'o(t)

corresponds to a loss frequency vL = dN = AN = 14/sec (taking At = 1000transit

where Tiransit = = 0.8 x 10-6) for t= 1 x 10-3. With the a slowing down time
Vat

rSD = 0.180 sec this yields vL'sD = 0.25 an estimated average radial diffusion coefficient

Da = a2 vL/4 ~ 1.1 m2 /sec. Also, using Fig. 13 of Ref. 22, D, can be roughly estimated

from D,, through renormalization by the factor ('pb ) 2 .trai At ~ x 10 3 ,,Da - 1.6

m2 /sec, which agrees with the estimation from N'ot.

V. SUMMARY AND CONCLUSIONS

A single toroidal mode number n = 1 toroidal Alfven eigenmode (but containing

all important poloidal mode numbers and their radial mode profiles calculated with the

Nova-K code) is prescribed with certain mode amplitudes 10-4 < BrIBo 5 2 x 10-3.

A Hamiltonian guiding center code ORBIT (using a 4th order Runge Kutta algorithm

tested as described Appendix B) is used to study (i) single a orbits and (ii) ensembles

of up to 5000 particles following their orbits in the finite amplitude time dependent TAE

fluctuations (All, ). Randomized (Monte Carlo) initial conditions are used to study phase

space averaged behavior. Two CIT-like tokamak equilibria were used (cf. Appendix A for

parameters). The main findings for the energetic fusion alphas are as follows:

(i) For alphas with vlla - vA the parallel shear Alfvin resonance W-kl vlc, -kj -vDa = 0

(where w = vAklgp is the TAE (gap) frequency) leads to resonant energy exchange

and resonant radial drift, proportional to B,/Bo. If b5/Bo exceeds a threshold

stochastic orbit diffusion occurs even for only one toroidal mode number. (See discus-

sion in Ref. 22, i.e. Part I of this work.)

(ii) Toroidal angular momentum diffusion Dp,p, and energy diffusion DEE scales oc R'

and inversely with the square of the plasma current inside the gap radius.
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(iii) Depending on (E, jL) and mode amplitude, the P vs. W action-angle plot shows

stochastic regions clearly bounded by KAM surfaces. However, alphas in the stochastic

domain can remain confined (although diffusing within a bounded region). This phase

space location dependence of stochastic losses makes a uniform analytic description

of Dpp (Et, P,) difficult.

(iv) An a particle whose unperturbed Pp is close enough to a loss boundary can drift

resonantly into the loss region if the corresponding KAM surface touches the loss

boundary at a br/BO value even below the stochastic threshold. Such losses scale as

B, (not ,2) and tend to vanish after a transient unless alphas are replenished by the

fusion source or collisions. The stochastic threshold depends on (EIy,PW) and the

radial profile of the TAE which for low mode numbers typically peaks in the plasma

core. Thus the core can be stochastic while the plasma edge still possesses KAM

surfaces which cannot be crossed. Correspondingly, the total number of lost alphas

Na (lost) oc (') in the initial transient phase of near boundary losses (lasting for

~ 50 7 ransient and Na (lost) Oc f in the following steady state diffusion phase.

(v) The statistically most likely' loss process is the fluctuation driven conversion of resonant

counter-going circulating alphas near the passing/trapped boundary ~ -0.6) to

large trapped orbits. The conversion occurs because of the large resonant change of

Ec (and thus the pitch angle parameter r = r-). The stochastic threshold depends

on A-=E, u= IT ae.g., for A = 0.8, = 1, (threshold) > 10 3 forthen=1

TAE and fixed Eao = 3.5 MeV.

(vi) After 1000 Ttanit an initially peaked na(r) is broadened, depending on e. (We vary

2 x 0 & =-a <2 x i0-, or 10~3 < B < 10-2).

(vii) For a squared Gaussian na(r) initial profile, at & = 2 x 10-3, the absolute loss fraction

is Q in 5000 treansij. (For CIT parameters this corresponds to 4 ms vs. TSD ~ 180

ms). Scaled back to a = 4 x 10-4 which corresponds to a more typical B = 2 x 10-3

this yields a loss fraction of 52% in one slowing down time. For a broader trapezoidal

na(r) the loss fraction is M or 88%. This indicates the advantage of using peaked a
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source profiles for good energetic a confinement.

(viii) No anomalous a transport below ~ 1.5 MeV is observed in the simulation which

implies that resonant a TAE interaction is not useful for He-ash removal.
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Appendix A

CIT Equilibrium Parameters

The ORBIT code following the Hamiltonian a guiding centers was run using two

different (CIT-like) equilibria:

Equilibrium A is circular, with a = 0.55 m, Ro = 1.75 m, B = 10 T, q(0) = 1.01,q(a) =

3.4 and a q-profile which is relatively flat out to 1/2 of the minor plasma radius. n(0) =

5 x 1020 m- 3 , T(0) = 15 keV. (For this case, rSD = 40 ms, (ofv) (at T = 10 keV)

= 1.1 x 10-16 cm3/s. f, = 4.8 x 10 8 ,rreni ( v.) = .85 x 10-6 s, WA =

1x106 , rf. u= O 8 If us = 17 ms < 17S

Equilibrium B is D-shaped with the same a, Ro, B and q(10) profile. Elongation r. = 2,

triangularity 6 = 0.25, with the same n(0) and T(0).
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Appendix B

Numerical Accuracy of Orbit Integrator

The fourth order Runge Kutta algorithm was tested in several ways. Sensitive types

of perturbed drift orbits such as stagnation orbits and pinch orbits (see Fig. 12) were

followed over 30 riran,it and remained stable to an accuracy of 10-5. Energy conservation

for zero fluctuation amplitude was within A = 3 x 10--14 in 30 Tran.,it. The time to for

a single a to exit on a loss orbit was tested as a function of the internal orbit stepsize' At.

to/Tiransit remained constant within ±15% upon halving At from At/transit = 1 to .
More saliently, the Poincar6 plots retained excellent stability for At/tran it changing from

1 to -. The phase space diffusion coefficient Dpp, and the total number of alphas10 20

lost, N"'S, were stable under the change At/rtransit = 1 to 1. Finally, N"'t after 5000

'rransit proved equal to 5 x Nos after 1000 tranit as it should.
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Table 1

a Loss Rate vL for & =

-+ 10-3 5 x 10-4 10- 4

3.52 -+ 2.52 3 x 10 3  1.2 x 103 250
2.52 -- 1.52 10 3 500 100
1.52 - 0.52 40
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Figure Captions

Fig. 1: Examples of a orbits with Ea = 3.5 MeV but various pitch values vII/v in

CIT equilibrium B (described in Appendix A). Note that the alphas near the

trapped/passing separatrix have large orbit width even in this high magnetic

field (B = 10 T) high current machine.

Fig. 2: Phase space topology of 3.5 MeV a particle in PW - A space. (A = Bo/E). For

example, an a crossing the heavy line which starts at PW = -1.26 (where PW is

normalized to gkboundary) is converted from a counter-going passing particle

orbit to a trapped orbit which soon intersects the wall Op = Oboundary-

Fig. 3: Radial eigenfunction of perturbed vector potential All for toroidal mode number

n = 1, with relevant poloidal mode numbers m = 1,2,3 for circular plasma

equilibrium described in Appendix A.

Fig. 4: Same for D-shaped equilibrium described in Appendix A.

Figures 5a,b,c show a resonant a in the circular equilibrium of Appendix A.

Fig. 5a: Resonant energy loss of fusion born a, due to TAE vs. time. -transit

2irRo /voa.

Fig. 5b: Resonant pitch change vs. time of same a. Note the conversion from a passing

to a trapped orbit.

Fig. 5c: Orbit of the same a in r - 6 space. Note the conversion and loss to the wall.

Figures 6a,b,c show a resonant a in the D-shaped equilibrium of Appendix A, anal-

ogous to Fig. 5.

Fig. 6a: The orbit in i 7 , - 6 space.

Fig. 6b: Resonant energy change of the orbit.

Fig. 6c: Resonant pitch change.

Figures 7a,b,c: Monte Carlo simulation in circular equilibrium.

22



Fig. 7a: Monte Carlo simulation of 5120 alphas originally at E", = 3.5 MeV, T =
(r/a)2 /2 = 0.12 (for the circular equilibrium), random pitch vi and random

poloidal angle. The TAE structure is shown in Fig. 2. B,/Bo = 5 X 10-4.

After 200 ranit the a density n(r) is spread out as shown in the histogram.

Fig. 7b: TAE driven energy spread for the same case. Note that after 200 rTransit (i.e.

after : 200 Alfv6n wave periods since WA - wtran~it) there are still no alphas

below Ea = 2.9 MeV.

Fig. 7c: Number of alphas lost to the wall, vs. time. The first short transient is due

to prompt orbit losses to the wall. The evolution thereafter mainly describes

alphas born near the wall drifting resonantly across the prompt loss boundary.

Each lost a is replaced by a new a randomly initialized in p, 0, , vi;/v.

Figures 8a,b: Alpha particle density profiles.

Fig. 8a,b: Initial (Fig. 8a) and final (Fig. 8b) na(Op) profile for the Monte Carlo simu-

lation of 512 alphas using the D-shaped equilibrium B of Appendix A, running

for 1000 rtanit. Note the substantial a profile broadening due to the TAE.

& = 2 x 10-3. The initial profile was na oc exp[-40/'0pbl, following n 2T 2 .

Fig. 9: Number of exiting alphas vs. pitch vil /v. Again, note the predominance of nearly

trapped (barely passing) alphas which are resonantly scattered into fat trapped

alphas on loss orbits.

Fig. 10: Number of lost alphas N, (lost) vs. time for a much longer running simulation

(5000 Traneit) than that of Fig. 7c which spanned only the first 200 Ttran,it

during which resonant radial drift losses predominated. Over the longer time

shown here, resonant diffusion losses in P, - A space transport alphas from all

over phase space to the loss boundaries.

Fig. 11: Scaling of N, (lost) with perturbed TAE amplitude 6B = B,. The constant

C = 2 x 10-3. The observed scaling with (6B)2 indicates the diffusive nature

of the loss mechanism.

Fig. 12: Testing the accuracy of the orbit integrator on the delicate pinch orbit, over
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30 , The pinch point remains stable. Similar stability is observed for

stagnation orbits (see also Part I of this work.)
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