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ABSTRACT

The influence of the longitudinal space-charge waves of a coherently gyrophased,

helical relativistic electron beam on the cyclotron maser instability is investigated in

a cylindrical waveguide configuration using a three-dimensional kinetic theory. A dis-

persion relation that includes waveguide effects is derived. The stability properties of

the cyclotron maser interaction are examined in detail. It is shown that, in general,

the effects of space-charge waves on a coherently gyrophased beam are suppressed in a

waveguide geometry in comparison with an ideal one-dimensional cyclotron maser with

similar beam parameters.
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I. INTRODUCTION

It is well-known that in ideal one-dimensional systems the longitudinal electro-

static waves of an isotropically gyrophased relativistic electron beam decouple from the

co-propagating transverse electromagnetic waves in a uniform magnetic field. The in-

teraction of the fast electromagnetic wave and the beam cyclotron mode, driven by an

inverted population in the perpendicular momentum of the electron distribution function

fo(pI p.), leads to the cyclotron maser instability [1],[2], providing the physical mech-

anism for coherent radiation generation in relativistic cyclotron autoresonance masers

[3]-[8] and gyrotrons [3],[9].

In the early 1970's, Kotsarenko et al [10] realized that both space-charge waves and

beam cyclotron modes can interact with the fast electromagnetic wave, provided that

the initial distribution of the electron gyrophases is nonuniform or coherent. An exam-

ple of such a coherently gyrophased beam is a helical beam that is often transformed

from a solid beam by means of a wiggler or kicker magnet [6]-[8]. Recently, Fruchtman

and Friedland developed a one-dimensional linear theory using both a cold-fluid model

[11] and a kinetic model [12]. Kho et al [13] subsequently performed one-dimensional

computer simulations and found good agreement with the kinetic theory. These analyses

concluded that the longitudinal space-charge waves can strongly alter the stability prop-

erties of the cyclotron maser interaction. In particular, near the cyclotron resonance, the

growth rate for a coherently gyrophased beam was found to be substantially larger than

that for an isotropically gyrophased beam. Also, Antonsen et al [14] investigated the

effects of transverse space-charge waves in gyrotrons.

In this paper, a three-dimensional kinetic theory is developed describing the interac-

tion of the longitudinal space-charge waves on a coherently gyrophased, helical relativistic

electron beam with the beam cyclotron and transverse-electric (TE) waveguide modes in a

cylindrical waveguide geometry. A dispersion relation that includes waveguide boundary
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conditions is derived. The detailed stability properties of the cyclotron maser interac-

tion are eximined. In comparison with the existing one-dimensional theory [12],[13], the

results of this paper show that the presence of a waveguide plays an important role in

suppressing longitudinal space-charge wave effects.

The basic physical mechanism for the excitation of longitudinal space-charge-waves

in the cyclotron maser (with kl 0 0) driven by a coherently gyrophased electron beam is

similar to that in the free-electron laser [2] in the sense that there is a ponderomotive force

bunching the electrons axially in configuration space. The ponderomotive force results

from the beating between transverse electromagnetic perturbations and the coherent

modulation of the electron transverse velocities induced by the wiggler magnetic field in

the free-electron laser or by the axial magnetic field in the cyclotron maser. However,

in the cyclotron maser, coherent velocity modulations occur only when the distribution

of the electron gyrophases at the entrance of the interaction (z = 0) is coherent, e.g., a

delta function distribution where all particles have the same gyrophase.

The organization of this paper is as follows. After presenting the basic equations

and assumptions in Sec. II, a dispersion relation is derived in Sec. III for the cyclotron

maser interaction including longitudinal space-charge waves and waveguide effects. The

dispersion relation is analyzed in Sec. IV.

II. BASIC EQUATIONS AND ASSUMPTIONS

We consider a relativistic electron beam undergoing cyclotron motion in an applied

uniform magnetic field Bo0 ' and propagating axially through a lossless cylindrical wave-

guide of radius r,. The motion of each individual electron is described by the Lorentz

force equation

= -e 8E + x (Boe + 8.9),(1)
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and the electron phase-space density function f (', t) evolves according to the Vlasov

equation

+Of Of e Of 0+ 1- -P + cx (Boe,+69). -0 . (2)

In Eqs. (1) and (2), -e is the electron charge, c is the speed of light in vacuo, and the

perturbed electric and magnetic fields, ( t) and 6A(, t), include electromagnetic and

space-charge wave contributions.

A. Equilibrium State

In the absence of perturbations (bE = 0 = 6b), the exact constants of motion

for an individual electron in the applied magnetic field Boe, are the electron guiding-

center radius and angle, r, and 0,, the perpendicular and axial momentum components,

P1 = (p. + p')'/2 and p,, and the quantity 4 - mofez/po, where m0 is the electron rest

mass, fl = eBo/moc is the nonrelativistic cyclotron frequency, and # = tan-'(p,/px) is

the gyrophase of the electron (see Fig. 1). Therefore, the equilibrium distribution function

describing a cold, coherently gyrophased relativistic electron beam can be expressed as

fo(r9 , 0 - morez/p, p±, p) = -b G(r9)8(p± - po)6 (pz po)S( - moSz) (3)

with f G(rg)rdrdOg = 1, r, = [r 2 + r' + 2 rrL sin(O - 4)]1/2, and rL = p /mjOc. In

Eq. (3), nb is the number of electrons per unit axial length and 6 is the delta function.

The electron density in cylindrical coordinates is given by

n(r, 0, z) = fo(r,, - monc/pz, p., p,)pLdp.dpdO = nbG(fg(r, 0, z)) , (4)

where f,(r, 0, z) = [r 2+rL+2rrL sin(0-moncz/pzo)] 1 /2 , and rL = p-o/molc is the Larmor
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radius of the electron with p± = p-o. The density n(r, 6, z) has an axial periodicity of

L = 27rp.o/mne: = 27r-yv,/fI,. The remainder of this analysis assumes an on-axis helical

electron beam with

( 1/7rr , if0<r. <rgm <r,

G(rg) = (5)
0 if r, > rgm

B. Field Perturbations

In principle, the periodic equilibrium state fo supports electromagnetic and space-

charge wave perturbations of a Floquet type. In the present analysis, however, we assume

that only one Floquet component in the radiation field, namely, a transverse-electric

(TEmn) mode, can strongly couple to the electron beam and space-charge waves. The

electric and magnetic fields of the TEmn mode are [4],[5]

6Eg(X, t) = i5Emn X Vt mn(r, 9) exp[i(kllz - wt)] + c.c. , (6)2

69t(X, t)= Ci bEmnVtim.(r, 0) exp[i(kllz - wt)] + c.c. , (7)
2 w

l ick2
6B(5,t) = 6mEmnImn(r, 0) exp[i(kllz - wt)] + c.c. , (8)

where Vt = e,8/Or+(ee/r)8/89, the subscript t denotes the transverse components of the

electromagnetic perturbation, SEmn is the amplitude of the TEmn mode, and w = 27rf is

the (angular) frequency of the perturbation. The vacuum TEmn eigenfunction is defined

by

4m.(r, 0) = CmnJm(kmr) exp(im0) , (9)
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with k,/C., = 7r(v', - m2 )J2(vm.). Here, Jm(x) is the Bessel function of first kind

of order m, and vmn = kmr, is the nth zero of J(x) = dJm(x)/dx. The function Fm,

satisfies the eigenvalue equation

(V2 + kmn) Imn(r, 0) = 0 , (10)

the boundary condition O'Imn(r = r,)/8r = 0, and the normalization condition

f,,.2 X* nmnda = 1.

To further simplify the analysis, we assume that the space-charge wave is longitu-

dinal and radially symmetric (8/89 = 0). Under this assumption, the space-charge-wave

field is approximately electrostatic and given by

E E j'( 6E$c)C&c)Jo(k(c)r) exp[i(k('c)Z - )]e2 + C. 11)

[The magnetic and transverse electric fields associated with the space-charge wave are of

order Ji(k("')r) ~ k(")rgm < 1.] In Eq. (11), k(sc) = p/r, is the transverse wave number

of the space-charge wave, Jo(y) = 0, and C(c) = kC)/7r1/2IsJO,(y) is a normalization

factor. The wave number of the space-charge wave, k 'c), remains to be determined [see

Eq. (40)].

C. Wave Equations

From the Maxwell's equations, it can be shown that the electromagnetic perturba-

tion satisfies the wave equation

+ V t+ 'T = - _V X , (12)

that the space-charge wave satisfies the continuity-Poisson equation
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E,$= -41r8J_. 
(13)

In Eqs. (12) and (13), the current density perturbation is

8f(s, t) = -e ff(, , -t)df, (14)

with fi(-,, t) = f(, , t) - fo(rg, 0 - mofe/

Substituting Eqs. (6)-(8) and (14) into Eq. (12), multiplying the equation by * ,,

and integrating over the cross section of the waveguide yields

2 k - k2 YSEmn = 87riew eddo(, x * -Vf 1 exp[-i(kllz - wt)] (15)T2 11 nn, c2 k ga tFn

for the TEm, mode. Similarly, from Eqs. (11), (13) and (14), we have

6E(SC) = 87rie ddaC(8)Jo(k'c)r)vzfi exp[-i(k 'c)z - wt)] (16)

for the space-charge wave.

D. Linearized Vlasov Equation

The electron phase-space density perturbation f, (, , t) evolves according to the

linearized Vlasov equation

dt, 8 B = e8f+ x 5 ) . (17)

In Eq. (17), the usual total time derivative is replaced by total derivative with respect

to the axial distance z because the system has a single frequency and it is the spatial
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evolution of the perturbation that is of interest. Furthermore, it is convenient to express

Eq. (17) in terms of the guiding-center phase-space variables (rg, 9  ZiPj, q,p,) illustrated

in Fig. 1. Using bE = 6Ei e' + 6E' + 6Ea)e and 69 = 6B1Le + 6B4 + 6Bze"

with e' = e, cos(o - 0) + e sin(O - 0) and F4 = -e, sin(O - 0) + ee cos(4 - 0), some

straightforward algebraic manipulations result in

=f (8E - #z6B) + P. 1 iB - + 6E - , (18)e dz pi. 49R. 19Pz

where Pj = v±/c, #, = vs/c. The partial derivatives with respect to pi and p, are

defined in the independent guiding-center phase-space variables,

1 Ofo _ b'(p± - p-o) (19)
fo p± b(P. P.Lo)

and

1 f9fo 6 '(P, - Pzo) moSez 8'(0 - moIIz/pZ)
fo pz~ 6(pz-PZO) + p 6(4-moonz/p) . (20)

In Eq. (18), we have neglected the terms proportional to G'(r,) and Ofo/o., Inclusion

of these terms would add terms of order (w - k - llv/7) to the dispersion relation

[Eq. (42)], and not change our basic conclusions.

III. DISPERSION RELATION

To derive the dispersion relation, we make use of recurrence relations and Graf's

theorem for Bessel functions [15] to express the field perturbations in Eq. (18) as

bE- = bE,. cos(4 - 0) + E9 sin(O - 0)
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1 00
= kmnCmneSEmn Xmnj(r,, rL) exp[iAmi(z, 0, 0g, t)] + c.c. ,

2 100

6E('c) = 1C(c)6E(') 1EX/s) (r,, rL) exp[iA 'c)(z, 0, 6,, t)] + c.c. ,

6BO = 6E..

Here,

Ami(z, 0, 0,, t) = kgjz - wt + l0 - (I - m)9, + (I - 2m)7r/2

Afac)(z, , 0,9, t) = k( ')z - wt + 1 - 0, + l1r/2

XmnI(rg, rL) = Ji-m(kmnrg)J'(kmnrL) ,

X'c)(r,,rL) = J(k'c)rg)J(k('fc)rL)

Substituting Eqs. (21)-(23) into Eq. (18) yields

(21)

(22)

(23)

(24)

(25)

(26)

(27)

k-lv.) afo + kIlv±Ofo
= kmnCmnSEmn ,Xmn, exp(iAml)

+ C('c)6EBc X ' exp(iA '))] + c.c.+ 2v~~ 1=000' cP (28)

Integrating Eq. (28) along the characteristics given by t(z') = t + (z'- z)/v, and O(z') =

0 + (fl/)(z' - z)/v 2, we find
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(29)f, = f (+) + C.C. ,

f (+) (r,, 0,, z, pL, pz, 0, t)

e kmnCmnXmn.6Em4 exp(iAmi) TE C(Sc)X,c)6E('c) exp(iA('C))

1 w + 00c/' k("c)v, - w + Mr

The operators 0, 0T, and 0(') are defined by

0 =(1 - ap1

o(Sc)}f

(30)

+ kjv 1  0
W aPz (31)

(32)OTE = O + iv, k||v_ m2OO 0
k1v, - w + Mc /-y w p2 0'

OC)= a i, mfe a
+ k+vz -w+lIy p3 a (33)

Substituting Eq. (30) into the wave equation (15), and expanding 0mn(r,9) in terms

of guiding-center variables [as used in Eq. (21)], we obtain

D T(w, k||)bEmn = x(w, k(lc))bE('c) (34)

DE(w, k1j) = W k - kmn - 47re 2 - C2 f dod4 /3±Xv,2-Wf 0 ,mn~mn cI i-_ k --w + lfne/1 (35)
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X(w, k("')) = 47re2(W) (mn ) CC)
c mn

x , J ddiexp[i(A I') - Am1 )] IX/ :8XmnIo0I(c,?fo (36)
=-00 k I(vz - W + (I - m)ic/

Similarly, combining Eqs. (16) and (30), we have

DL(w, k'8))6E('c) = i,(w, kji)eEmn , (37)

where

fc\ ga) 0 O2fo O
DL(w, k Ic)) = 1 - 4e 2  s[C)]2 J dad [C) [ (38)(Wc) C( I=-00 k( IVz - W + -m)SIc/Y iOp,

K(w, k11) = 4we 2 (W) kmnCmnC(8c)

x $ ddexp[i(Am - A(-c kllvm + E/7 (39)
k=-il - w + WZc/y

To determine the coupling of the TEmn mode and the space-charge wave, we need to

evaluate the overlap integrals in Eqs. (36) and (39). After a careful inspection of the

integrals, we find that the relation,

kg=kII+m C k 1 +m-, m = 1,2,3,..., (40)
Pz0 ^1O

must be satisfied for the coupling. From Eqs. (35) and (38), we obtain the dispersion

relation

D T(w, kjj)DL(w, kgC) = x(w, k('c))1c(w, k1j) (41)
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with ki(") defined in Eq. (40). This dispersion relation can be used to examine the

stability properties of the cyclotron maser interaction of a fundamental or harmonic

beam cyclotron mode with longitudinal space-charge waves and various TE modes.

In particular, for the cold, coherently gyrophased helical electron beam described

in Eqs. (3) and (5), to leading order in (w - kilv, - lo /7)-2, the dispersion relation (41)

for I = m becomes

D ,(w, k)Dw, kgj) = fmnflk n(CkI)) (42)

The dielectric functions for the TEmn mode and the longitudinal space-charge wave,

DT-(w, k1j) and DL(w, k1i), are given by

D E 2 2 (L02 - c2k2)
Dmn(w, k) = - k - kmn + Emnikmn A 2k11 (43)

and

D (,k) = 8- (ck c))2

DLW ~)=1-y lM (44)

respectively. Moreover, Al = w - kliv, - lc/,y, -y = [1 + (p0 + p 0 )/moc21/2

2)-1/2, #3. = v±/c = pio/ymoc, and #z = v./c = pzo/ymoc. Finally, the dimensionless

coupling constants fmnl and efl- are defined by

fmn = 4 [J-m(kmnrg)J((kmnrL)] 2  (45)
S=7#z IA / (Vmn - M2) (45)

and
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p(c) 4(Ib)[ Jm(kic8r,)J-.m(k(crL)]2 46

0-1 IA k( r J('(k( *)r,,)

respectively. In Eqs. (45) and (46), Ib = enf#lfc is the beam current, and IA = moc/e

17 kA, the Alfven current. The dispersion relation (42) is a six-order polynomial of

kjj and therefore has six solutions for k1j. Each solution with negative imaginary part

corresponds to an unstable mode with a spatial growth rate of -Imki > 0.

Three remarks on the dispersion relation (42) are in order. First, the coupling

between the longitudinal space-charge wave and the TEmn mode is proportional to

(2w - ckji) 2 , which is in agreement with the cold-fluid treatment of Kotsarenko et al

[10]. This quantity can be negligibly small in waveguide configurations. In fact, at graz-

ing incidence #, 2 f = ck,/w, it almost vanishes and therefore space-charge-wave

effects are expected to be negligible. In any case, the influence of longitudinal space-

charge waves is suppressed due to kmn # 0 and fl > 1 in a waveguide geometry. On

the contrary, in an ideal one-dimensional system in free space, because W a ckyj = ck for

electromagnetic waves propagating in the z direction, (#2w - ck 1)2 5 (1 _ /3) 2w 2 . The

space-charge waves can then strongly modify the cyclotron maser interaction.

Second, the three-dimensional dispersion relation (42) recovers, to leading order in

(w - kv, - Oc/7)-2, the corresponding one-dimensional dispersion relation [121,[13] with

the following substitutions

1, k - k , kmn - 0 ,e.,(ck?'))2 q_+ , E$(Ckmn)2 (47)

Here, Wpb = (47re2n,/mo)1/2 is the nonrelativistic plasma frequency associated with a

constant electron density of n. in the one-dimensional theory.

Third, in the case of an isotropically gyrophased electron beam with an unper-
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turbed distribution function depending on p_ and p, but not on 4'- mofllz/p., it can be

shown that the space-charge wave decouples from the TEmm mode with m 3 0, that the

dispersion relation (42) reduces to

D (w, k1i) = 0, m, n = 1,2,3,... (48)

for the TEmn mode, and

DL(w, k11) = 0 (49)

for the space-charge wave. However, the space-charge wave does couple to the TEO,

mode, though the interaction is not a cyclotron maser type. In this case, the dispersion

relation is shown to be the same as Eq. (42) with m = I = 0.

IV. NUMERICAL RESULTS

In this section, the dispersion relation (42) is analyzed to illustrate the effect of

the longitudinal space-charge wave on the cyclotron maser interaction in a cylindrical

waveguide configuration for the coherently gyrophased, helical relativistic electron beam

described in Eqs. (3) and (5). The results are compared with the corresponding isotrop-

ically gyrophased beam as well as with the corresponding coherently gyrophased beam

in an ideal one-dimensional system.

Figure 2 shows the gain bandwidth of the TE11 mode for the following choice of

system parameters: beam current Ib = 500 A, beam energy y = 4.0, normalized perpen-

dicular velocity &3 = 0.36, 1 = 1, axial magnetic field BO = 18.94 kG, waveguide radius

rw = 0.3 cm, rm ; 0, kc) = p/r, = 2.405/r,, and k1i = vuIr = 1.8412/r.. In Fig. 2,

the solid curve shows the spatial growth rate, -Imkjj, as a function of frequency calcu-

lated from Eq. (42) for the coherently gyrophased electron beam, while the dashed curve
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shows the spatial growth rate calculated from Eq. (48) for the isotropically gyrophased

electron beam.

Several interesting features are illustrated in Fig. 2. First, it is evident that inclu-

sion of the space-charge wave broadens the gain bandwidth of the fast unstable TE11

mode (corresponding to the dashed curve in the frequency range from w/ck 1 = 1.2 to

4.2). Similar behavior has been found in ideal one-dimensional systems [12],[13]. Sec-

ond, the influence of the space-charge wave on the cyclotron maser interaction is small,

particularly near the cyclotron resonant frequencies w/ckjj 2 3.24 (or w/27r : 95 GHz)

and w/ck 1 j 1.5 (or w/2ir 2 44 GHz). This is because the cyclotron maser interac-

tion is the most unstable near the cyclotron resonance in waveguide configurations and

waveguide effects play an important role in suppressing the longitudinal space-charge

wave, as it was discussed in Sec. III. In contrast, for an ideal one-dimensional system,

the longitudinal space-charge wave of the corresponding coherently gyrophased beam

results in strong instability at the exact cyclotron resonance [12],[13], i.e., the autores-

onance, where there is little gain for the corresponding isotropically gyrophased beam

[1],[2]. Third, space-charge wave effects cause instability in the frequency range from

w/cku 5 4.2 to 4.5, where the net axial and inertial bunching vanish in the case of the

isotropically gyrophased beam [51,[16].

Figure 3 shows the gain bandwidth for a coherently and an isotropically gyrophased

electron beam corresponding to the gyro-TWT amplifier experiment conducted at the

Naval Research Laboratory (NRL) [7]. The system parameters are Ib = 500 A, 'y = 2.76,

P.L = 0.4, 1 = 1, Bo = 8.0 kG, r, = 0.54 cm, r, - 0, kc) = P/r, = 2.405/r,, and ku =

vu/r, = 1.8412/r,. The amplifier operated near grazing incidence at w/2r = 35 GHz

(or w/ckj1 = 2.01). Although the bandwidth (solid curve) for the coherently gyrophased

beam is wider than the bandwidth (dashed curve) for the isotropically gyrophased beam,

there is little difference at the operating frequency w/ckj1 = 2.01, where /3gw - ckj G 0
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due to grazing incidence. This calculation suggests that the discrepancy [7] between the

measured and theoretically predicted growth rates can not be resolved by the inclusion

of longitudinal space-charge into the theoretical analysis.

V. CONCLUSIONS

In conclusion, a three-dimensional kinetic theory in a waveguide geometry was de-

veloped for the cyclotron maser interaction including the longitudinal, radially symmetric

space-charge waves of a coherently gyrophased, helical relativistic electron beam. A dis-

persion relation was derived and the detailed stability properties of the cyclotron maser

interaction were examined. The results were compared with the existing one-dimensional

theory [12],[13]. It was shown that, in general, the influence of longitudinal space-charge

waves on a coherently gyrophased beam is suppressed in a waveguide geometry in com-

parison with an ideal one-dimensional cyclotron maser with similar beam parameters. A

moderate enhancement of the growth rate was found near the cyclotron resonance for

relatively high-current, high-density beams. Moreover, longitudinal space-charge wave

effects were shown to be negligibly small near grazing incidence.
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FIGURE CAPTIONS

Fig. 1 Guiding center coordinate system.

Fig. 2 The solid and dashed curves show the gain bandwidth for the cyclotron maser

interaction calculated from Eqs. (42) and (48) for coherently and isotropically

gyrophased electron beams, respectively. The choice of system parameters

corresponds to Ib = 500 A, y = 4.0, f.C. = 0.36, 1 = 1, B0 = 18.94 kG,

rw = 0.3 cm, rg, 0, k(') = u/rw = 2 .405/rw, and k1l = vu /rw = 1. 8 41 2 /rw.

Fig. 3 The solid and dashed curves show the gain bandwidth for the cyclotron maser

interaction at grazing incidence for coherently and isotropically gyrophased

electron beams, respectively. The choice of system parameters corresponds to

the NRL gyro-TWT amplifier experiment: Ib = 500 A, y = 2.76, P. = 0.4,

1 = 1, B0 = 8.0 kG, rw = 0.54 cm, rm P 0, k(c) = p/r, = 2.405/rw, and

kl = vu/r, = 1.8412/r,. The operating frequency is 35 GHz or w/ckj1 = 2.01.
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