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ABSTRACT

The double stream cyclotron maser is a novel source of millimeter wavelength

radiation in which two copropagating electron beams are caused to gyrate in a uniform

axial magnetic field. The interaction of the slow cyclotron space charge wave on one

beam with the fast cyclotron space charge wave on the other beam leads to high

frequency bunching. The desired operating frequency is proportional to the electron

cyclotron frequency (or a harmonic thereof) and inversely proportional to the difference

in beam velocities, and can be achieved at low beam energies and axial magnetic

fields. The linear instability growth rate is calculated from the fully relativistic Vlasov

equation for the case of cold electron beams.

PACS numbers: 42.55 Tb; 42.60 Fc; 52.75 Ms
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Electrons with relativistic velocities gyrating and drifting in a uniform axial mag-

netic field Bi, are known' to generate intense, coherent electromagnetic radiation at

centimeter and millimeter wavelengths. This radiation is a manifestation of the "neg-

ative mass" instability2 of the copropagating right circularly polarized wave traveling

in the magnetic field direction. The instability arises from a relativistic mass shift of

the electron gyrofrequency 1 = (eBj1/m'-y) with - = [1 - (V - (v/c)2] -21. The

resulting emission occurs at a radiation frequency

W (1+ 311)_Yj(mf2), (m = 1, 2,3...) (1)

where 01 = vil/c and yl = [1 - 12 ~. The gyrotron3 (with -yl ~ 1) and the cyclotron

autoresonance maser 4 (with -yl > 1) are special cases of the above instability.

The double-stream cyclotron maser is a novel source that does not rely on rela-

tivistic effects for instability growth, but on the mutual interaction of charge-density

perturbations of two copropagating beams traveling at somewhat different speeds. The

advantage of the double stream system over the conventional one-beam cyclotron maser

is the much higher frequency that can be achieved for the same experimental parame-

ters. As will be shown below, the interaction frequency is now given by,

W2 ~- 2 (0jjgg )2(_Y /AYIj)(Mfj) (2)

where A-y1 is the energy difference between the two electron beams. Comparing Eqs. (1)

and (2), it follows that W2/wI ~ (-yj 1/Ayjj) so that, for example, a 20% energy differ-

ence can increase the interaction frequency fivefold. Conversely, a desired operating
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frequency can be now obtained at relatively low beam energies and axial magnetic

fields.

The double stream cyclotron maser is illustrated schematically in Fig. 1. Two

well intermingled electron beams of different axial velocities v11,1 and V1,2 are spun up

and allowed to gyrate in a uniform axial magnetic field B11. The appropriate velocity

difference can be obtained, for example, by means of a split-cathode' technique in which

half of the cathode is connected to the accelerator via a resistive load. The spinning

up of the beams can be performed using a magnetron injection' gun configuration;

however, in order to minimize axial velocity spread, a short section of bifilar helical

wiggler 7 is preferable (see Fig. 1). As a result, the electron beams acquire transverse

velocities vJ,1 and VJ.,2.

The spun-up beams interact in a cylindrical drift tube which also acts as a wave-

guide. In this three-dimensional configuration, the wave vector k has both axial (kii)

and transverse (k1 ) components, with k1 being determined by the beam radius and

the transverse guide dimensions. Excitation of a space-charge wave (E,f 11 k ), at

the cyclotron frequency and its harmonics comes about solely because the transverse

component of the rf electric field Erf exerts a tangential force on the electron in its

helical motion. This orbit perturbation leads to harmonic generation. In order to

achieve significant wave amplitude at a given harmonic, the perpendicular wavelength

must be comparable in magnitude to the electron Larmor radius, or, kivw/fL ~ 1. It

should be noted that the type of two-stream instability discussed here differs from the

conventional8 one characterized by frequency oscillations tied to the electron plasma
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frequency w2 = Ne2 /miE0 ,-y rather than the electron cyclotron frequency [I. Indeed,

in such cases, calculations9 and the resulting microwave amplifier tubes' 0 are based on

the assumption that v1 ~ 0, so that coupling to the electron cyclotron motion is of no

concern.

Our calculations of the wave frequency and growth rate are based on a solution"

of the relativistic Vlasov equation and Maxwell's equations in free space. In place of

a fully self-consistent solution of the unneutralized two-beam system, a neutralizing

background of infinitely massive ions is assumed. The wave with Ef 1k and an exp

[j(wt - k 'r )] dependence has a linear (small signal) dispersion equation of the form,

KL(k,w) = (k - K - k)/k2 = 0, where K is the tensor dielectric coefficient and KL

the effective longitudinal component given by12

KL=1- 0 dv_ dvW, 2rfo x
beams JOJ-oo

00 [ ( [J.2(p+ [k 2 - kI I ~Jn (P(3
E v _ dp I C M,1= 0. (3)

M--00 .( P -k 1 vi -m)2

Here fo = f0 (v±, v11) is the unperturbed velocity distribution function for each beam,

and Jm (p) is the mth order Bessel function with argument given by p = kjv 1 /.

We now assume for simplicity that the two beams are completely superimposed

and that they fill entirely a cylindrical waveguide of radius a. In that case8 k1 = ul,,/a

where ul,, is the sth root of J1(u) = 0. Then,

p = uisvw/f2a (4)

= ulsrL/a
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where rTL is the Larmor radius of the electron orbit (rL < a). The values of I and s

select the waveguide mode. For the lowest transverse magnetic TMO,1 mode of interest

here, us = 2.405. For beams with cold electrons, the distribution function has the

form,

fo(v., v11) = 6(vi - voi)6(vj - v011). (5)27rvOI

Substituting Eq. (5) in Eq. (3) yields the sought-after dispersion equation:

KL = 0 =1- - k 2  +
beams m=--o (o - kg og - ml)

k- J .(6)
20(w - k -m v ) - m()

In the case of one beam alone, the above dispersion equation shows that around

each harmonic number mll = w - k11vlj, there are two narrow propagation bands,

one above and one below each integral multiple of Q. The propagation bands extend

approximately ±WpJm(p) on either side of mfl. The lower, slower branch around each

harmonic is a negative energy wave1 3 , while the upper, faster wave is a positive energy

wave. At high plasma densities (w, > m11) the negative energy wave of the mth

harmonic can come into phase velocity synchronism with the positive energy wave

associated with the (m - 1)th harmonic, and a high frequency micro-instability can

develop14. However, this phenomenon is of little interest for unneutralized electron

beams considered here since such beams will become macroscopically unstable unless8

W, < n/vZ.
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The situation is different when two beams with different axial velocities interact

with one another as is illustrated in Fig. 2. Now, phase velocity synchronism can be

achieved at low plasma densities p < 0. For the case of almost paraxial propagation,

k l > k-, the second term of Eq. (6) can be neglected; it is identically equal to zero

when p is so chosen as to maximize Jm (p). Then, the dispersion characteristics for

each beam-cyclotron mode can be approximated by

w ~ kjjvi + m01

(7)
w ~ kjjv 2 + nf 2 .

with n, m equal ±1, ±2.... For, say, n = -m, and beams whose velocities are not too

different, Eqs. (7) yield

W - MO V2 + VI
V2 - V 1  (8)

= 2(,|3 ||yj)2(-y||/A-y|)(mQ)
where now 0, 3 1 and 3|| represent averages over the two beams. We note that in the

vicinity of the above frequency, w ~ kil(vi + v2 )/2, the wave is dispersionless, and has

a phase velocity equal to the average beam velocity.

The accompanying spatial growth rate, Im(k), of the convective instability (the

system is an amplifier rather than an oscillator) is derived from Eq. (6). This is

most readily accomplished by noting that for sufficiently small growth rates, Im(k) ~

Im(w)/vg, where vg is the group velocity of the unstable wave. Thus, solving for

complex w and real k one then obtains,

Im(w) -- wp,(p)/2j||.()

In deriving the growth rate, it is assumed that the two beams have equal plasma

frequencies, or more precisely that w,,1Jm(P1)111j,1 = W,,2Jm(P2)/h1j.2 = W)Jm(P)/ 11 -
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For purposes of illustration we consider two cases: the interaction of two slow

beams where relativistic effects are very small, and the case of two beams with mildly

relativistic energies. In both cases the energy differences A-yl are taken to be consider-

ably smaller that the mean beam energies, but much larger than the parallel thermal

energy spreads expected in each beam. The results of the calculations are summarized

in Table I. The conversion efficiency 77 (at saturation) quoted in the Table is estimated

from 8 ?7 ; AgI/(b - 1).

We see that high frequency operation can be achieved at low beam energies and

low magnetic field strengths. The instability growth rate is appreciable, but is limited

(see Eq. (9)) by the need to maintain the ratio wp/f2 < iv/ (Brillouin condition8 ),

and thereby prevent beam break-up in the unneutralized system. Introduction' of

a cold background plasma to provide space-charge neutralization offers an interesting

option. It allows an increase in w, which increases the growth rate, the beam current

density and the rf power. In addition, by properly tuning the plasma density of the

background plasma, the associated space charge wave can be made synchronous 17 with

the unstable beam cyclotron wave discussed above. This is readily seen by deriving the

wave phase velocity (as found by setting v1 =vil = 0 in Eq. (6)):

( 2 (w2 _ w2)( 2 - 2)
(--) ma = (U2 2 -W 2 +W2 (10)

Setting (W/kli) p s (V1 + v2 )/2 assures phase velocity synchronism with the beam

cyclotron wave of Eq. (8). This three wave interaction may enhance' 6 ", 7 the bunching

process.
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In conclusion, we have described the characteristics of a novel double-stream cy-

clotron maser that can achieve high oscillation frequencies using two mildly relativis-

tic beams propagating in weak magnetic fields. To interact with the beam-cyclotron

modes, the electrons must first acquire perpendicular energy just as in gyrotrons and

cyclotron autoresonance masers. The proposed interaction with n = -m results in

a slow wave (w/k 11 < c), and in this respect suffers from the same disadvantages

as other erenkov type systems. Thus, generation of electromagnetic radiation re-

quires the presence of a slow-wave structure such as a dielectric loaded, or corrugated

waveguide. Alternately, our two-beam system could be incorporated in a klystronl 8

geometry, and the rf power in the growing space-charge bunches extracted in a reso-

nant cavity. However, a different choice of mode numbers m and n can lead to a fast

wave interaction. In the general case, the interaction frequency and phase velocity are

found to be w ~ E(m,32 - n,1)/(02- ,1) and (w/k 11c) ~ (m32 - n,31)/(m - n). For,

m > 0, n > 0, (m 0 n) and for sufficiently large beam energies, w/kIIc can be equal to,

or greater than, unity, and interaction with an electromagnetic wave can take place.

Now, however, the validity of the quasi-static approximation (Ehf f k), on which

Eq. 3 is based, is open to question.

Studies are in progress concerning effects of electron beam temperature, lack of

complete spatial overlapping of the two beams, and nonlinear saturation. In the non-

linear regime, loss of synchronism will occur as a result of changes in Y1, -Y2 and A&y .

This limits the degree of bunching that can be achieved. Equations (8) suggests that

tapering the magnetic field as a means of "efficiency enhancement" may be possible.
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The calculations in this paper are applicable to beams propagating in an assumed

neutralizing background of stationary plasma ions. In the absence of the neutralizing

plasma, the results are a good approximation provided that the beam plasma densities

are sufficiently low, such that (w,/11) 2 < 1. As the density increases and the Brillouin

condition (w,/11) 2 = is approached, a self-consistent calculation is mandatory.
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TABLE I. Summary of Operating Parameters of a Double Stream Cyclotron Maser
for Ca,/D)2 (1/9) and (kvL/)m1.841.

12

PARAMETER I II

VOW(kv) 87.5 275

A V(kV) 25.0 50

J(A/cm) 23 100

Bz(kG) 1.0 2.1

W/2R(GHz) 50 150

Gain (dB/m) 80 68

efficiency q (%) 29 18

harmonic: m,n 1,-1 1,-i

waveguide mode TM, TM,

a(cm) 0.5 0.5

v.Ic 0.2 0.3



FIGURE CAPTIONS

Figure 1: Schematic drawing of a double-stream cyclotron maser.

Figure 2: Sketch of the dispension characteristics for cyclotron modes, n = -m (see Eqs. (7)).

The heavy lines denote the slow, negative energy waves on each beam. The dashed

bell-shaped curve shows the growth rate Im(w).
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