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ABSTRACT

We point out the misconceptions in the arguments put forth by T. E. Oscarsson and K.

G. R5nnmark (Geophys. Res. Lett. 13, 1384, 1986) that question the validity and usefulness

of the well-known theory of absolute and convective instabilities. The solid basis of the

well-known theory is clarified.
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ABSTRACT

We point out the misconceptions in the arguments put forth by T. E. Oscarsson and K. G.

R~nnmark (Geophys. Res. Lett. 13, 1384, 1986) that question the validity and usefulness

of the well-known theory of absolute and convective instabilities. The solid basis of the

well-known theory is clarified.

INTRODUCTION

Absolute or convective evolutions of instabilities can produce very different signatures

of observed radiation from unstable plasmas. This is particularly useful in space plasmas

when correlating experimentally observed emissions with theoretical models describing

the source regions [Ram 1991]. A letter [Oscarsson 1986] has questioned the basis and

usefulness of the theory of absolute and convective instabilities by using some very simple

minded examples. However, the arguments put forth by these authors are based upon some

singular examples that are misleading. Furthermore, the notion of a time-asymptotic limit

is treated in a trivialized manner by these authors.

The theory of absolute and convective instabilities [Briggs 1964, Bers 1983] describes

the linear evolution of instabilities from an initially localized source in an infinitely homo-

geneous medium. In this paper we clarify the conditions for the validity of the theory of

absolute and convective instabilities, and, furthermore, show that the examples discussed

in the aforementioned letter are not generic for continuous media and do not invalidate

the theory of absolute and convective instabilities.

In what follows, we shall consider the case of evolution of instabilities in time and in
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one spatial dimension. The generalization to higher spatial dimensions is more complicated

but can be carried out in a straightforward manner.

SPACE-TIME EVOLUTION OF INSTABILITIES

The theory of absolute and convective instabilities is based on a Green's function

analysis of equations describing the space-time dynamics of a small-amplitude perturbation

in a spatially homogeneous and a time-invariant medium. The equation for the Green's

function, G(z, t), is given by:

Z G(z, t) = 6(z) 6(t) (1)

where Z is, in general, a linear integro-partial-differential operator with constant coeffi-

cients. Using complex Fourier-Laplace transforms, the solution to Eq. (1) can be written

as:

G(z, t) = IL doF S D(,w) exp(ikz - iwt) (2)

where D(k, w) is the dispersion function for the system - directly related to the transforms

of L, and L and F are the appropriate Laplace and Fourier contours, respectively, chosen

to satisfy causality [Bers 1983].

The time-asymptotic evolution of G(z, t) can belong to one of only two possible cate-

gories [Landau 1953, Bers 1983 and references therein]:

(a) an absolute instability, where the response grows in time and encompasses more and

more of the space as a function of time - the response always including the spatial

location of the initial perturbation; thus, every spatial point eventually becoming

unstable, i.e. having temporally growing fields;

(b) a convective instability, where the initial response grows in time but propagates away

from its point of origin; thus, any spatial point eventually becoming stable, i.e. having

temporally decaying (or oscillatory) fields.

As shown by Bers and Briggs [Briggs 1964, Bers 1983], for an unstable medium,f

this distinction in the time-asymptotic behavior of Eq. (2) is obtained by determining the

t An unstable medium is one for which D(k,.,w) = 0 (k, being the real-k) gives at least

one branch, w(k,), that has a positive imaginary part, w,(k,.) > 0, for some k,..
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pinch-point saddles in k (at k = k.), and the associated branch points in w (at w = w,)

given by:
9D (k., wo)D(k, wO) = 0 , k = 0 (3)

The time asymptotic Green's function is dominated by the pinch point associated with the

largest value of w0a (w 1 being the imaginary part of w,). If that w0, is positive then the

instability evolves as an absolute instability. If wj is negative for all the pinch points then

the instability will evolve as a convective instability.

DISCUSSION OF THE EXAMPLES USED IN OSCARSSON [1986]

Before we consider the examples in Oscarsson and Rnnmark [1986], two remarks

are in order. First, the notion of time-asymptotics should not be considered, trivially, as

simply t --+ oo; in this limit any linear instability will have long violated the, ab-initio,

assumption of small-amplitude fields. A time-asymptotic state is established as soon as

the contribution from the pinch point with the largest w; dominates over the contribution

of the pinch point with the next largest w0 i; this gives a time-asymptotic time scale which

is quite finite. The importance of nonlinear effects over such time scales of evolution must,

of course, be assessed separately.

Second, the evolution of an arbitrary initial perturbation, 40 (z) at t = 0, is obtained

by convolving the Green's function with 0 (z) [Morse 1953]. Clearly, if 0 (z) is spatially

localized, 0 (z, t) will evolve in a manner determined by the Green's function. Thus, if

the Green's function analysis indicates the medium is absolutely (convectively) unstable,

0 (z, t) will evolve as an absolute (convective) instability. However, if &0 (z) extends all the

way to ioo then ?(z, t) may not, in general, evolve in a manner indicated by the Green's

function.

We now consider the examples treated in Oscarsson and R~nnmark [1986] and show

that they are not characteristic of space-time evolution of instabilities; they describe an

instability that evolves essentially in time only and, thus, are singular examples. The

dispersion function of Oscarsson and R6nnmark [1986] is:

D(k, w) = w - kv. - i- (4)
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where vo and -y are constants. The corresponding equation describing the evolution of the

electric field, E(z, t), is of the form:

OE(z, t) 1 OE(z, t) Y t = 0 (5)
+z - E(z, t)= ()

This is a hyperbolic partial differential equation with its characteristics given by z - v(t =

constant. It is easy to realize that Eq. (5) is a singular equation which is not generic of

space-time evolution. If we replace z and t by ( = z - vot and r = i, respectively, then Eq.

(5) becomes:

E,) -E((,T) = 0 (6)

Obviously, this equation describes the evolution of E in time and has nothing to do with

space-time. So the concept of an absolute or convective evolution of an instability, which

defines the space-time response of a medium, is not defined for such an equation. The

solution to Eq. (6) is:

E( , r) = e7(7- 7-o) Eo(e, 0 ) 6(r -ro) (7)

where E is the initial prescribed value of the field at r = r, and e is the Heaviside function

needed to satisfy causality. Thus, the solution to Eq. (5) is:

E(z, t) = e7(t - to) Eo(z - vot, to) 0(t - to) (8)

This equation implies that the field at a point z at time t has grown uniformly in time (at

the rate given by y) from the value of the field at position z - vet at time to. There is only

a trivial spatial evolution of the field along the characteristics.

The Green's function for Eq. (5) is:

G(Z, t) = v*e t 6(z - vt)e(t), Vo 3 0
eGt -(z)0(t), V. = 0

For vo 0 0, this shows that the instability convects away from its initial point of origin.

However, in a reference frame moving with velocity vo, the instability just grows in time

without any spatial evolution. The case when v. = 0 does not represent any space-time
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evolution; thus, it is irrelevant to speak of absolute or convective instability. This, again,

points out the singular nature of the dispersion function in Eq. (4).

It is important to realize that, for the dispersion function of Eq. 4 with v0 $ 0, the

spatial width of any instability does not change with time. For plasmas described by

non-singular dispersion relations, this is not the case for either absolute or convective in-

stabilities. Any arbitrary perturbation, in general, will spread spatially beyond its original

spatial width. By choosing initial perturbations that extend all the way to too, Oscars-

son and R~nnmark [1986] have attempted to create the impression that the perturbations

evolved spatially (instead of just temporally). We highligbt that aspect by considering in

detail one of the examples they used.

By using the Green's function given above, the time evolution of an initial perturba,

tion:

E(z, 0) = exp(-z 2 /d 2 ) exp(-ikoz) (10)

is given by [Morse 1953]:

E(z, t) = exp {-(z - vot) 2/d 2} exp(7t) exp -ik.(z - vt)} (11)

All points in space, in the coordinate system moving with velocity v0 , grow at the same

rate. This can be further emphasized by choosing E(z, 0) to be initially localized:

E(z, 0) = exp(-z 2/d2 ) exp(-ikz) {6(z - 1) + 6(z + l)} (12)

where I can be chosen to be as large as one wants. Then it is easy to show that at any

time t > 0 the field will be confined to a spatial width of 21 and will not extend beyond

that width.
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