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ABSTRACT

In D-T and D-VHe plasmas ICRF heating at the second harmonic of deu-

terium results in the modification of the distribution function of the heated
ions. This report describes the effects of this distribution function modifi-

cation on the steady state and dynamic behavior of plasmas. The theory

of tail formation due to ICRF heating is summarized and its effect on the

fusion reaction rate is presented. Using a O-D plasma transport model the

effect of ICRF heating on the plasma operating contours is analyzed for the

CIT, ITER, and a D-3 He tokamak. In analyzing the dynamic behavior, a

model for the characteristic time of tail relaxation, re, is developed and a

feedback model based on auxiliary power is presented. The stabilization of

temperature perturbations in a D-3He plasma is simulated under various

values of -rt.

1 Introduction

As the world fusion program is approaching the burning plasma state there

is increasing interest in understanding plasma operating point control and

thermal instability. Strong auxiliary heating power P.. is required to cross

the Cordey pass and - if ICRH is used - the ensuing energetic minority ion

tail will affect the fusion reactivity and hence the burn dynamics, particu-

larly if the main burn control system relies on tailoring Pa. dynamically

in response to thermal excursions.

Dawson, Furth and Tunney [1] were the first to point out the fusion

reactivity enhancement due to auxiliary (N.B.I.) heating. Latter, follow-

ing the ground breaking work of Stix (2] who theoretically demonstrated
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ion tail formation due to ICRH, Kesner [3] performed an investigation of

the combined effect of NBI and ICRH driven fuel ion distribution function
distortions on the thermonuclear energy multiplication factor Q. More re-
cently, Blackfield and Scharer [4] applied a 2-D (in velocity space), 0-D (in

configuration space) Fokker-Planck ICRF code to (PLT and) the hypothet-

ical NUWMAK tokamak reactor and found little Q enhancement due to
deuteron minority heating for their parameter regime. Later, Scharer et.

al. [53 performed a specific analysis for JET with fundamental deuteron

minority heating in a tritium plasma resulting in a 1.6 - 1.9 fusion power
enhancement after a 1 sec heating pulse.

Using their bounce averaged Fokker-Planck quasilinear code, Harvey

et. al. [6] analyzed second harmonic heating of a 50:50 D-T plasma. De-

pending on the chosen density, the ion tail can be pushed out beyond the

maximum of the D-T (o-v) curve. At values of Q < 1 sizable ion tail

driven enhancement factors of the reactivity can be obtained but at Q > 1

the enhancement decreases rapidly, in this ICRH heating scenario.

Returning to minority heated fusion plasma scenarios, we focus in the

present work on a different novel aspect, i.e. the problem of operating

point control in tokamaks relying on variable ICRH heating for burn con-

trol. Besides burn control it appears that the resulting phase lag of the

plasma temperature time response can yield important information on en-

ergy equilibration and confinement time of the main ions, the minority and

the fusion products.

In Section 2 we develop the problem by starting with the Stix formula

for the energetic ion tail driven by ICRH. In Section 3 we pursue its conse-

quences for the fusion reactivity (ao v) averaged over a fuel ion distribution

function with effective temperature Tejj = T/.F( ) where oc PihVT/fn.

is the Stix parameter and Y is a known function. In Section 4 we implement

the ICRH enhanced fusion power source term in the 0-D plasma power bal-

ance in a space spanned by plasma density and temperature and analyze

the self-consistent (nonlinear in Pih) steady state solutions of the plasma
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power balance for three tokamaks resembling (a) CIT, (b) ITER and (c) a

10 Tesla, Ro = 6.3 m D-He advanced reactor design, see Table 1. In Sec-
tion 5, the 0-D steady state power balance of Section 4 is extended to the
time dependent case to study the dynamic effects of the energetic ion tail

equilibration with the bulk plasma and its implications for operating point

control using a simple feedback law but including the delayed additional

heating power input from the ICRH minority tail. Sections 6 contains a

summary and conclusions.

2 Distribution function modifications due
to ICRH

Before the distribution function, derived Appendix A, is used to calculate

the fusion reactivity and the plasma performance it is useful to investigate

the effect of the various plasma parameters on the shape of the distribution

function. From Eq. 47 it is apparent that the parameter C depends on

the applied ICRF power density, (PICRF), and on the plasma density and

temperature, i.e.

( (PICRF), T, n) (1)

and in particular follows the scaling

(PICRF)T, 2  (2)
n.

As e increases the distribution function deviates increasingly from the Maxwellian.

The deviation becomes pronounced for > 1, and thus it is important to

determine the values of the density, temperature and ICRF heating power

density that result in ( = 1. The relation between , n, T, and (P1CRF) is

shown in Fig. 1 where the e = 1 contour is shown in the density-temperature

operating space for a D-T plasma for various values of (Fk[RF)-
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Figure 1: The contours = 1 for the various values of ICRF heating power
density indicated on each contour.
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Two contours on Fig. 1 are of significant importance. The contour
labeled 0.1 MW/m 3 corresponds approximately to the power density for
the technology phase of the ITER tokamak, and the contour labeled 0.6
MW/m corresponds to the power density of the CIT tokamak. Note that
as the power density increases the C = 1 contour encompasses more of the
density - temperature operating space.

As an example of the change in the distribution function of ions heated

by ICRF, a D-3 He plasma is considered with the following parameters.

Electron density n,= 0.7 x 10 2 0/m 3

1
Deuterium density nD = 0.7 x 10 2 0/m 3

3

Tritium density n= 10.7 x 10 20/m 3  (3)
3

Electron temperature T, = 50keV

Heating power (PICRF) = 0.11MW/M

The value of the parameter is a function of the electron temperature

and the dependance is shown in Fig. 2. Note that e increases with temper-

ature as indicated by Eq. 47. For reference, a plot of the function H, given

by Eq. 50, is shown on Fig. 3.
For the plasma parameters indicated above the distribution function of

the heated deuterium ions is shown on Fig. 4. The dotted line represents

the distribution due to ICRF heating and the solid line corresponds to a

Maxwellian distribution. Note that the change in the distribution function

due to ICRF, for the D-'He plasma under investigation, is significant for

this case.

3 Effect of ICRF heating on the fusion re-
action rate

In the previous section the change in the distribution function of ICRF

heated ions was shown to be significant under certain circumstances when
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Figure 2: A plot of the parameter as a function of plasma background
temperature for a D-IHe plasma heated by .11 MW/m of ICRF power.
The density of the deuterium and tritium ions is 0.23 x 10 2 0 /m 3 .
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Figure 3: A plot of the function H (see Eq. 50) for a D - 'He plasma as a
function of the energy of the resonant ions. The corresponding value of (
is 2.2.
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Figure 4: Normalized distribution function of Maxwellian (solid line) and
ICRF heated deuterium ions in a D-3He plasma with an assumed back-
ground temperature of 50 keV. The ICRF power density is .11 MW/m 3 and
the density of the deuterium and tritium ions is 0.23 x 102 0 /m 3 . Expressions
for the parameters R3 and E are given by Eqs. 48 and 49 respectively.
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compared with the equivalent Maxwellian distribution function. This change
in the distribution function results in changes in the fusion reactivity (uv)
which in turn affects the fusion reaction rate and thus the overall plasma
power balance.

The reaction rate, R, of a thermonuclear plasma depends on the reac-
tivity of the interacting particles and on their density. In particular if the
plasma is composed of particles of two species with density nj and n2 the
reaction rate is given by

R 12 = nin 2 (0rV) (4)

The reactivity (ov) is given by

(crv) = 4r - exp - F() vsa(v) dv (5)2rT 1 [ 2TI I

In the above equation m,. = mim 2 /(m 1 + M 2 ) is the reduced mass of

the reacting particles and T is the temperature of the background ions. For
a plasma whose species are characterized by Maxwellian distributions the
function F(e) is equal to unity. However, for ICRF heated plasmas the
function F < 1 and thus the resulting reactivity differs from the reactivity
of pure Maxwellian plasmas. Equation 5 can be written in terms of the
particle energy E in the center of mass reference frame as follows

4 3, /2 * ,E
(0-y) = ( e) fexp [ r)' () E cr(E) dE (6)

V27rmi mjT mjT

Once the cross section o- of the reaction is characterized, Eq. 6 determines
the reactivity. In this analysis we evaluate the reactivity of D-T and D-3 He
plasmas with expressions for their cross sections given in Appendix B.

For Maxwellian plasmas the reactivity (o-v) is independent of the plasma
density, but for ICRF heated plasmas the function F, and thus the reac-
tivity, depend on the plasma density cf.Eq. 44. The following examples are
considered:
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D-T Plasma D-3 He Plasma

n. = 0.7 x 102 0/m 3  n, = 0.7 x 10 20/m 3

0.7 20 3 0.7 (7)
n= -- x 102 /ma n& = -- x 10 2 0/m 3 (72 3

n= 2 x 10 20/m 3  n3He = 0 x 10 20/m 3

(PICRF) = 0.11 MW/M 3  (P1CRF) = 0.11 MW/m 3

In Fig. 5 the reactivity of the D-T plasma, whose parameters are given

in (7), is shown for the cases when both the deuterium and tritium ions are

characterized by a Maxwellian distribution, and when the deuterium ions

are heated by 0.11 MW/m of ICRF waves. A similar plot for the reactivity

of a D-3 He plasma is shown on Fig. 6.

4 Steady state issues: Operating point se-
lection including ICRF produced ion tail

In the analysis that follows the performance of tokamak plasmas is inves-

tigated with the aide of a volume averaged (0-D) plasma transport model.

In such a model, the plasma density and temperature are characterized by

fixed profile shapes and the averaging is performed over the plasma vol-

ume. In general the 0-D power balance of the ohmic Po, the fusion Pf, the

auxiliary Pxa, the conduction losses P, the Bremsstrahlung radiation PB

and the synchrontron radiation P, power densities, of a plasma of elliptic

cross section with elongation n and with parabolic density and temperature

profiles that is characterized by the exponents v,, and vT respectively, are

given by

0.024 0T0
1(no + nio) - Po +7f Pf + Pau. - P - PB - P (8)

1+ ,+ V &
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Figure 5: The reaction rate (uv) as a function of plasma temperature for
a D-T plasma characterized by Maxwellian distribution functions (solid
curve) and for a D-T plasma whose deuterium ions are heated by 0.11
MW/m of ICRF power.
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Figure 6: The reaction rate (ov) as a function of plasma temperature for
a D-3He plasma characterized by Maxwellian distribution functions (solid
curve) and for a D-3He plasma whose deuterium ions are heated by 0.11
MW/m of ICRF power.
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With the temperature given in units of keV and the density in units of
10 2 0/m 3 the terms on the right hand side of Eq. 8 become

Ph = 0 .0 1 04 5 1nA Z 311+2 B(
1 + 1.5VT k J R(T 2  (9

0.024 (n,0 + n,(

+ Vn + L/r T

PB = .0053Ze 1f n2 T1(/2
2vn + 0.5 vT + 1 n

P, ~ 0.00621 *T* B 2 1 + T -0 (12)
1+ Jn + VT 0 k 146( + +v)

where in A, Z~ff, BO, and RO are respectively the Coulomb logarithm, the

effective charge, the magnetic field on axis, and the plasma major radius.

For a D-T plasma P corresponds to the alpha power Pa which is given

by

Pf = P. -- ndont,oFf(To) (13)
VT

For a D-3He plasma the fusion power is given by

2.928
P1 = 2T928ndomlHe,oFf(To) (14)

The function F(To) is given by

F(To) = 1022 JT0 a(T)T )/~ dT (15)

The plasma self heating efficiency 77 allows for less than perfect coupling

of the charged fusion product power P to the bulk plasma. In the present

work it is assumed that qf = 1 throughout.
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The energy confinement time rE is a combination between the ohmic
(Neo-Alcator) (7] scaling rNA and the auxiliary scaling TAU. In this analysis

the inverse quadrature form is used in order to limit the energy confinement
time to the ohmic value.

1 1 1/2
- + --- (16)

TE TNA T7U

The Neo-Alcator confinement scaling is given by

TNA = 0.2ffaOK.5  (17)

In this analysis the auxiliary scaling is given by the ITER89P [8] energy

confinement scaling

I K e R2*o*oBO-.2 A*-6
TAu = 0.048 H IP a BA 1  (18)

(P. + P) -5

Here H represents the H-mode enhancement factor, Ip is the total plasma

current in MA, a is the plasma minor radius, Ai is the average atomic mass

number of the plasma ions, and P.,. is the auxiliary power in MW.For a

D-T plasma P is the alpha power in MW and for a D-3 He plasma P is

the total fusion power in MW.

By setting 8To/Ot = 0 in Eq. 8 the effect of ICRF heating on plasma

performance is investigated in the density-temperature operating space of

the tokamaks whose parameters are given in Table 1.

By solving Eq. 8 for the auxiliary power in the density - temperature

operating space we can obtain both the plasma operating contours (POP-

CON) and the contours of constant e for the parameters given in Table 1.

These contours are shown on Figs. 7, 8, 9, 10, 11, 12 for the CIT, ITER,

and D-3 He tokamaks.
Large values of 6 imply significant alteration of the resonant ions distri-

bution function (see Eq. 44) which in turn results in appreciable changes
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Table 1: Parameters for the Tokamaks under consideration

Parameters CIT ITER D-3 He
RO Major Radius (m) 2.6 6.0 6.3
a Minor Radius (m) 0.8 2.15 2.0
BO Magnetic Field (T) 9 4.85 10
Ip Plasma current (MA) 11.8 22 33
H H-mode factor 1.85 1.85 4.0

in the fusion reactivity (reaction rate). In order to investigate the effect of

ICRF tail heating " effect" on machine performance we choose an oper-

ating point (density, temperature) and then calculate the auxiliary power

required to sustain the operating point with and without the effect.

In the CIT operating space (Fig. 7) we calculate the effect of at the

operating point n. = 4.2 x 10 2 0/Mrn, T,0 = 18 keV. In order to sustain

the operation at this point 24 MW of auxiliary power must be provided to

the plasma if both the deuterium and tritium ion distribution functions are

Maxwellian. By considering the effect of ICRF heating on the deuterium

distribution function (with effect) the required auxiliary power is reduced

to 20.5 MW. This 14% reduction in the required auxiliary power is a conse-

quence of the increase in the fusion power production due to the alteration

of the distribution function by the ICRF heating.

In the ITER operating space (Fig. 9) the effect of is calculated at the

operating point n.. = 0.6 x 10 20/m 3 , T., = 32 keV. In this case the auxiliary

power required to maintain this operating point without the e effect is 16.5

MW and with the effect the auxiliary power is reduced by 24% to 12.5

MW.
A similar analysis is performed for the D-3He tokamak. In the D-3He

operating space we choose the operating point n. = 1.0 x 10 20/m 3 , T. = 60

keV. Sustaining operation at this point requires 36 MW of auxiliary power

when no effect is considered, and 28 MW with the inclusion of the effect.

This results in a 22% decrease in the required auxiliary power.
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5 Dynamic Issues

In the previous analysis the effect of ICRF heating on the steady state

plasma performance was analyzed. Due to the enhancement of the fusion

reactivity the amount of auxiliary power required to sustain a given equi-

librium can be reduced by 14% in CIT and by as much as 22% in a D-3 He
reactor.

In reality, a plasma is expected to experience temperature perturbations

which might need to be stabilized in order to achieve the optimum perfor-

mance required by a fusion reactor. In order to model this scenario, a time

dependent plasma transport model is considered. The time dependent 0-D

transport model (Eq. 8) can be used to analyse the global dynamic behav-

ior of the plasma. One way to stabilize plasma temperature fluctuations is

by active auxiliary power modulation. Such a method has been considered

in the past [9,10,11] finding that it can be used effectively to control both

positive and negative temperature fluctuations.

' As it is demonstrated in reference [10] the delay time rd associated with

the feedback system of a burn control scheme which is based on auxiliary

power modulation is closely linked to the behavior of the complete control

scheme. In the present analysis the work presented in [10] is expanded to

include the effects of the energy transfer between the ICRF heated tail ions

and the background plasma.

In an ICRF heated plasma the tail of the resonant (heated) ions dis-

tribution function is raised thereby increasing the effective temperature of

the heated species. When the ICRF power is shut-off, or when the amount

of ICRF power supplied to the plasma changes, as it will happen during a

burn control scenario, it takes a finite amount of time for the distribution

function to achieve a new equilibrium. The new equilibrium is achieved

by collisions which result in energy transfer among the plasma species. A

full Fokker Plank simulation of Eq. 30 including fast alpha particle slowing

down is beyond our scope. Here, a simplified analysis of a two component
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plasma is considered with the background species ( denoted by 3) which

are characterized by a Maxwellian distribution function with temperature

TO, and of test particle (denoted by a) which are characterized by "tem-

perature" Ta. In such a plasma, the rate of change for the temperature

of species a, which results from collisions between particles (a) and (,0), is

given in [12] as

dT , 1
=T a/ (T - ) (19)

where 1/0 is the equipartition time for the temperature

ab 3 (mT +mT) 3/2  (20)
8v/2v5r/m -#m.Z2Z,92np In A./p (0

In the above equation m, Z, T, and n1 correspond to the mass, charge,

temperature, and density of the jth particle, and in A./, is the Coulomb

logarithm. In MKS units and for the temperature given in keV and the

density in units of 10 20 /m' Eq. 20 becomes

C/4 = 5.5 x 1010 (mnT, + mTa)1/2  (21)T ,mpm.ZZZ2nO In A/p

5.1 The complete O-D time dependent model

The relation which describes the volume averaged (0-D) evolution of the

plasma temperature is given by Eq. 8. For a given heating power, the

characteristic time associated with the evolution of the global temperature is

proportional to the energy confinement time TE.- The next step in developing

the complete 0-D transport model is to characterize the feedback system

required for performing burn control simulations, and to determine the

various delay times and characteristic times associated with the system. In
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reference [10] the equations characterizing an auxiliary power burn control

system are derived. These equations are: the energy balance equation,
the equation characterizing the effect of fusion particle thermalization, and

the equation describing the feedback system behavior. In summary these
equations are:

dT - g(T, n, P.(n, T), P..(Td)) (22)
dt

- - = 1-[Q. (n, T) - P. (n, T)] (23)
dt -r,

dTd 1
dTd- -[T -Td] (24)
dt 7-d

where the equations describing the evolution of plasma particle density have

been omitted. Equation 22 corresponds to the energy balance Eq. 8 and

has been written in functional form for convenience. Q is a function of
the plasma temperature (T), the density (n), the fusion power absorbed

by the plasma at time t (Pa), and the auxiliary power supplied to the

plasma at time t (P.au(Td)). Equation 23 represents the effect of finite

thermalization time for the fusion products (i.e. alpha particles in D-T

fusion). Q. represents the amount of fusion power produced at time t, P.

is the amount of fusion power absorbed by the plasma at time t, and -r,

corresponds to the fusion particle thermalization time. Equation 24 models

the feedback system which is characterized by a delay time rd. Note that

T is the temperature of the plasma at time t and Td is the temperature

that the feedback system responds to at time t. (This concept is briefly

elucidated in Appendix C).

Equations 22,23,24, along with the equations characterizing the density

evolution, have been used in [10] in modeling the burn control system of

CIT. There it was found that the feedback delay time rd is strongly related

to the performance of the overall control system. Depending on the value
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of Td the feedback system can be underdamped or overdamped. An over-

damped system is characterized by small rd (5 1/10 sec). As rd increases
the system becomes underdamped and the smallest perturbations may re-
sult in instability particularly when Td becomes greater than 1-2 seconds.

For the problem at hand a simple modification must be made to the
model presented by Eqs. 22-24 in order to include the effect of distribution
function modification due to ICRF heating. The basic principle is that the
problem is now characterized by another delay time which is a function of
the change induced to the distribution function due to ICRF heating. This
time delay is labeled re and is given by Eq. 21.

When the plasma is heated by ICRF waves the energy is stored in the

plasma due to the alteration of the distribution function which has an ef-

fective temperature T. If the heating is cut off the characteristic energy

thermalization time of the heated ions with the background plasma is given
by Te. By taking into account this phenomenon the complete burn control

model is given by

dT = C(T, n, P.(n, T), P..(T)) (25)
dt

dPa 1
dt - 1[Q.(n, T) - P.(n, T)] (26)dt 7

dTd[T -T] (27)
dt Td

dt, 1 (Q..(Td) - P..(T)) (28)
dt -re

Here, Q.. is the amount of auxiliary power deposited in the plasma at time

t and P.. is the amount of auxiliary power transferred to the bulk plasma
at time t.

5.2 Time dependent simulations

Using Eqs. 25-28 the dynamic behavior of a D-3 He tokamak plasma is in-

vestigated under various temperature perturbations and for different values

of the system characteristic delay times rd and re.
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The equilibrium about which the dynamic behavior is to be investigated

is chosen from the operating space of the D-3 He reactor shown on Fig. 11. In

particular the chosen operating point is: peak electron density 1.0 x 10 20 /m 3

and peak electron temperature 60 keV. At this operating point, and for the

case where the distribution functions of both the deuterium and 'He ions are
represented by Maxwellian distribution functions, steady state operation is

achieved with 36 MW of auxiliary power. By incorporating the change in

the distribution function due to ICRF heating the required auxiliary power

for steady state operation at the the same point is reduced to 26 MW.

Equation 28 requires the characterization of the function Q..(T) which

represents the feedback system response. In this analysis the relation of

auxiliary power to temperature is given by

QMa. T < T1

Q..(T) = {Qa [1 -(z_)'] T 1 < T < T (29)

0 T- T > T2

The above equation represents a proportional feedback law. QM. is the

maximum amount of auxiliary power available. T is the temperature which

the system attempts to stabilize. T, is a temperature below which the con-

trol system supplies the maximum amount of auxiliary power Qma, and T2

is a temperature above which the the auxiliary power is zero. The exponent

A represents the rate of change of auxiliary power with temperature. In the

results presented below it is assumed that T, = 55 keV, T2 = 67 keV, A = 2

and Q,,,.. = 30 MW.

As a base case the dynamic stabilization of a D-3 He plasma, without the

effect of ICRF heating on distribution function modification "no effect",

is considered first. Figure 13 shows the evolution of the global plasma

temperature after a 10% temperature perturbation at time t = 0.5 sec. The

feedback system responds by reducing the auxiliary power supplied to the
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Figure 13: Stabilization of a 10% positive temperature deviation (left) with
the aide of auxiliary power (right) for a D-3 He reactor plasma. The effect of
ICRF heating on distribution function modification is not considered. The
system is characterized by a feedback delay time rd = 0.1 seconds.

plasma with a resulting decrease in temperature. The amount of auxiliary

power supplied by the feedback system Q.. is equal to the amount of

auxiliary power transferred to the bulk plasma since the effect of heating

on the distribution function is not considered. In this situation the plasma

temperature equilibrates within one second of the disturbance.

In order to investigate the effect of ICRF heating on the plasma dynam-

ics, as presented by Eqs. 25-28, the evolution of the plasma temperature

following a 10% temperature perturbation is investigated under various as-

sumptions for the characteristic time re.

First, for re = 0.1 seconds and for rd = 0.1 seconds the temperature

and auxiliary power evolution following a perturbation is shown on Fig. 14.

Note that by considering the effect the system becomes underdamped as

it is apparent by the overshooting and eventual stabilization of the system

within two seconds of the disturbance. By increasing the characteristic

time 7- to 0.5 seconds (see Fig. 15). Note that in this scenario the system is

further underdamped and it is eventually stabilized within 5 seconds from

the disturbance.
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Figure 14: A plot indicating the stabilization of a 10% positive temperature
deviation with the aide of auxiliary power for a D-3 He reactor plasma. The
system is characterized by a feedback delay time rd = 0.1 seconds and
by a tail relaxation delay time Tr which in this plot is set equal to 0.1
seconds. The top figure shows the temperature evolution and the bottom
figure represents the evolution in the auxiliary power.
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Figure 15: A plot indicating the stabilization of a 10% positive temperature
deviation with the aide of auxiliary power for a D--He reactor plasma. The
system is characterized by a feedback delay time rd = 0.1 seconds and
by a tail relaxation delay time Te which in this plot is set equal to 0.5
seconds. The top figure shows the temperature evolution and the bottom
figure represents the evolution in the auxiliary power.
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The characteristic time rT is a function of the plasma parameters as given

by Eq. 21. At the equilibrium point (i.e. at T.. = 60 keV and n. = 1.0/m')

Eq. 21 gives ir = 0.72 seconds. For -rC given by Eq. 21 the evolution of

the plasma temperature following a 10% positive and negative temperature

perturbation is shown on Fig. 16. Note that the perturbation is stabilized

after substantial oscillations about the equilibrium which indicates that the

system is underdamped.

In the example presented here the longest time constant in the problem

is the energy confinement time r. At the equilibrium of interest the energy

confinement time is 11 seconds for ITER89P scaling with an H-mode factor

of 4. For rt = rE a simulation of the control is shown on Fig. 17. In this

situation the system is severely underdamped and it takes a long time for

the system to return to equilibrium.

The phenomenological variations of rX in the range -rd r r as-

sumed in our time response studies are intended to show the consequences

of fuel ion tail heating without addressing the underlying causes for a given

value of rt. In actual burning plasmas, the tail equilibration will be more

complicated than given in Eqs. (21)-(19). The tail ion distribution can be

modelled more accurately using a bounce averaged rf Fokker-Planck code.

In addition to collisional temperature equilibration the effective relaxation

time r may be determined by fluctuation driven energy exchange and by

less than perfect coupling of fast ions to the bulk plasma due to anomalous

losses during slowing down. This coupling efficiency qf (where f denotes

fast ions including fusion products) is a quantity of great interest since it

determines the power balance of the burning plasma. When qf < 1, sub-

stantially more auxiliary power may be needed to produce the same ignition

margin nrT. At present, first theoretical models of qf < 1 are forthcom-

ing but a predictive capability for the performance of an engineering test

reactor will require crucial comparisons with experiments. One can use the

time dependent modelling of the response to a temperature perturbation
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Figure 16: A plot indicating the stabilization of a 10% positive (top figure)
and negative (bottom figure) temperature deviation with the aide of aux-
iliary power for a D-3 He reactor plasma. The system is characterized by a
feedback delay time rd = 0.1 seconds and by a tail relaxation delay time re
which in this plot is given by Eq. 21.
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developed above to shed light on the magnitude of Ta , re (cf. Eqs. (26)-

(28) and the underlying physical mechanisms, by comparing the simulation

results (such as Figs. 14-17) with experimental measurements in a manner

reminiscent of heat pulse propagation studies of the electron thermal con-

ductivity x. using the sawtooth crash or an applied local heat pulse at the
q = 1 surface.

6 Summary and Conclusions

When feedback control of the auxiliary heating power P.. is used to pro-

vide thermal stability for an underignited fusion plasma, this heating (par-

ticularly ICR minority heating) can produce an ion tall formation which

affects the fusion reactivity and hence the dynamic behavior of the plasma
operating point.

Using the Stix formula for the ion tail formation due to ICR minor-

ity heating we find substantial tail formation, i.e., the Stix parameter

(cf. Eq. (2)) is ; 1 for typical operating points in CIT and ITER, and

> 1 in a D- 'He reactor. For T = 10 keV in CIT and ITER this produces

a fusion reactivity enhancement by a factor of ~ 1.5, and at T = 50 keV in

the D- 'He reactor by a factor of ~ 3.0. In steady state at finite Q below

ignition, this enhancement corresponds to a reduction of required P. of

~ 14% in CIT, 24% in ITER and 22% in the D- 3 He reactor.

Extending this approach to the time dependent volume averaged (0-

D) power balance we have presented a dynamic feedback model based on

controlling P. with a time delay rd (reflecting not only the feedback circuit

response but also the finite response time needed for a sudden adjustment of

the heating power source). In addition to rd the model (Eqs. 25-28) depends

on the effective fusion power thermalization time 7- (which may be affected

by anomalous fast a diffusion losses) and the effective tail ion thermalization

time 7- (similarly affected by classical and possible anomalous processes).
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Increasing r/Td increases the phase lag between the power Q. applied to

the plasma and the power P.. absorbed by the plasma, at a given time

t, leading to an increasingly underdamped behavior of P.. as well as the
plasma temperature T. For re = rE, the damping time of these oscillations

is several times TE in the D-3 He reactor used here to demonstrate the effect.
Temperature excursions and the ensuing oscillations induce fluctuations

in fusion power which may effect the fatigue characteristics of the mechani-

cal components surrounding the plasma. In order to evaluate the magnitude

of this effect a comparison between the frequency of the oscillations and

the time constant which introduces adverse thermal cycling effects must be

made.
Besides the consequences of these oscillations on the operating charac-

teristics, the shape of the temperature excursions can be used to reveal and

analyze the physical features of the underlying anomalous transport mech-

anisms determining T. and re which need to be understood to predict the

burning plasma performance.
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Appendix A: Theory of Tail Formation due
to ICRF Heating

The bounce averaged Fokker-Plank equation is given by

_(_f) 1 dM
- [C(f) + Q(f)] (30)

Ot ;]LLI|JJwAJ)

where C corresponds to the local collision operator and Q represents the

local quasi-linear diffusion operator due to ICRF heating. rB is the particle

bounce period and is given by

TB = d (31)

and ( ) represents the bounce averaging operator. Eq. 30 becomes

O) (C(f)) + (Q(f)) (32)

The bounce averaged collision operator, C, may be written as

(C(f)) = (ar(f)) (33)

where r signifies a flow in velocity space which, if pitch angle scattering

and slowing down of fusion products is neglected, is simply

r= AjAj(v) 1 [ 2O + M f] (34)

with the subscript j representing the background plasma species. m is the

mass of the minority ion. The parameters A, and Al are given by

47re4Z2 Z?nj In A
A\ =M2 (35)
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Aj = - f-- xexp(-x)dx (36)

2/(3vi) (v/v) (37)1 + 4/(3v,7r) (v/vj)'

The quasi-linear operator Q is given by

Q(f) = D (38)
7v &

The diffusion coefficient V is given in reference [13], and upon bounce av-

eraging it becomes

V -12 (6E) (39)
-rB 3m

where 6E is the change in particle energy due to its interaction with the

wave. In terms of the ICRF absorbed power density (P) the diffusion

coefficient 7 can be expressed as

V = ((40)
3nm

where n and m are the density and mass of the resonating (heated) particles.

Finally by substituting Eqs. 33 and 38 into Eq. 32 and dropping the

bounce average operator ( ), the isotropic part of the Fokker-Plank equa-

tion becomes

Aj Aj (v) - +f +VL (41)
at 8v + V v& m

In steady state (8f/t = 0) Eq. 41 is integrated twice with the result

Inf(v) = - X AAjm/m, dv (42)
Jo E ZAAjv,/(2v) +VDO
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With further algebraic manipulation of the above integral, the velocity dis-

tribution function of the resonant ions can be written as

f(v) = n ( ) 3 /2 exp [-V 2 ()] (43)

Note that the above expression for the distribution function represents

a Maxwellian distribution modified by the function F. The function 3r is

given by [2]

1 R,(T, - Tj + eT.) H(E'E*" (44)1= + + e(/g (44) R e

In the above equation T, corresponds to the electron temperature and T

represents the temperature of the background ions. e is a dimensionless

parameter which represents the effect of wave heating on the shape of the

distribution function of the resonant ions and is given by

e ='VD V 42 ln (45)
2/(3fi)4rne 4Z 2 in A

which according to Eq. 40 becomes

m(P) 2T (46)
8Vn.nZ2e4 in A m.

Here, (P) represents the ICRF heating power per unit volume delivered

to the resonant ions, Z is the charge of the resonant ions, and in A is the

plasma Coulomb logarithm. In MKS units and with the temperature T,

given in keV and the densities n,, n in units of 102
1/m' Eq. 46 becomes

= 1.68 x 106 M(P) inTA 1  
/2 (47)

nnZ2 n A \m.

The parameters Rj, Ej and H in Eq. 44 are given by
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R = K.(48)

Ej = -- T- 3 (1 + Rj + ]) /
[3v/ (49)

M) 4(l+ ) (

H(x) = 1 fm +du/ (50)
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Appendix B: Cross Sections for D-T and

D- 3 He Reactions

The Deuterium Tritium reaction cross section is given by [14]

a(E) = ao + E(al + E(a2 + Ea)) 1 (51)
1 + E(b1 + E(b2 + Eb3)) E exp[B/v/E? - 1]

The parameters a3 and b3 assume the values

ao = 1.15 x 10-24 (52)

a, = 1.39 x 10-26 (53)

a2 = 1.50 x 10-28 (54)

a3 = -1.607 x 10-31 (55)

b, = -1.908 x 10-4 (56)

b2 = -4.306 x 10~4 (57)

N = 7.276 x 10-6 (58)

B = 34.3828 (59)

With the above parameters and with the energy E given in keV the

cross section o is given in m 2 and it is accurate to 3% up to energies of 250

keV.
The Deuterium Helium 3 reaction cross section is given by [15]

a(E) =a 1 (60)
1 + E(b + E(b2 + Eb3)) E exp[B/v', E - 1(

where

a, = 5.91 x 10-2 (61)

b, = -7.85 x 10-3 (62)
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b2 = 2.64 x 10~ (63)

b3 = -1.42 x 10-8 (64)

B = 68.765 (65)
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Appendix C: A Simple Feedback Model

The question is how to choose a temporal evolution for the applied aux-

iliary heating power P., = P..(t) such that a spontaneous temperature

excursion AT introduced at t = 0+ leads to a damped oscillation of the

plasma temperature. A simple choice is

dT
- = S + P..[Td(t)] (66)

where S denotes all other power sources and sinks. In equilibrium,

0 = S + P..(T = 0). (67)

The "delayed temperature" Td is chosen to obey

dTd 1
- (T - Td) (68)

where the constant delay time rd is determined by the feedback mechanisms

and the characteristic confinement and energy equilibration times of the

plasma (which may, in reality, depend on T, themselves.)

We perform a perturbation analysis T = To + T, Td = To + Td. The

initial conditions are, at t = 0

T = Td= To (69)

Td(0) = 0, T(O)=AT (70)

where AT is a sudden jump in temperature. Thus, for a small pertur-

bation AT

P..(Td) = P..(TO)+ ITa(Td - TO) (71)
P TthatTd

so that
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dT _OP-

dt -6 n ITo d (72)

and

dT 1
- (t - t'd). (73)

dt -rd

The feedback law 72 is chosen such that (a1- -) < 0. The delayed

response law 73 is chosen to be linear. From Eqs. 72, 73

ds. 1 dT. td =P.di2T + - -- t d (= (74)

which is a damped harmonic oscillator, as desired, with oscillation fre-

quency - . From 74 one can see that while T(t) jumps by

AT and then decays, Td(t) first rises and, after a delay, decays also.
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