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Elliptically induced alfven eigenmodes

R. Betti and J. P. Freidberg
Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, MA 02139

It is shown that noncircularity of tokamak flux surfaces leads to frequency

gaps in the magnetohydrodynamic (MHD) Alfven continuum. Within

these gaps discrete modes having macroscopic structure are shown to exist

that have many common features with toroidally induced Alfven eigen-

modes. In particular, both can be driven unstable by a small population

of high energy alpha particles. The present work focusses on ellipticity.

Since . - 1 > E in many tokamaks the elliptically induced Alfvin eigen-

mode may indeed be a more robust mode. The most potentially dangerous

mode couples the = 1, n = 1 and m = 3 , n = 1 "cylindrical" eigen-

modes. The region of strong coupling occurs at the q(r) = 2 surface and

the width of the coupling region is finite, of order (. - 1)a. For typical

q(r) profiles, continuum damping is expected to be weak. The elliptically

induced Alfv6n eigenmode may play an important role in the design of

future ignited tokamaks.
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I Introduction

During the past several years there has been increasing interest in the problem of ener-

getic particle-Alfv6n wave interactions. These interactions can drive instabilities that may

play an important role in (1) the observation of fishbone oscillations in existing tokamaksi

and (2) the possible enhanced loss of alpha particles in future ignited devices such as CIT

and ITER.2 Specifically, in the latter case it has been shown that MHD Alfven waves whose

frequency WA is lower than the alpha diamagnetic frequency w*, can be driven unstable

by resonant particle interactions. Within this class of instabilities, the current view is that

toroidally induced Alfv6n eigenmodes (TAE)3-5 may pose the most serious threat. The

TAE instabilities have global structure and a real frequency that lies in a narrow gap in

the continuum caused by toroidal mode coupling. Hence they are sometimes called "gap

modes."

In the present paper we show that noncircularity as well as toroidicity can lead to

the existence of gap modes. We focus attention on ellipticity as this may be the most

important effect in tokamaks. In particular, since many tokamaks have a finite elongation

(K - 1 - 1) as compared to a small toroidicity (E < 1), the elliptically induced Alfv6n

eigenmode (EAE) derived here, may indeed be a more robust and potentially dangerous

mode than the TAE. A summary of the properties of the EAE mode is given below.

1. The most macroscopic and thus potentially dangerous EAE in a tokamak couples the

m = 1, n = 1 and m = 3, n = 1 "cylindrical" eigenmodes.

2. The region of strong coupling (i.e. the gap) occurs at the radius ro corresponding to

q(ro) = 2. The existence of the gap itself was first pointed out in Ref. [6].

3. The real frequency of the mode is approximately wo = va(ro)/Roq(ro). The actual

eigenfrequency is shifted slightly from wo. The shift can in principle be positive or

negative.

4. For the sake of analytic simplicity the ellipticity is ordered small: i - 1 ~ E1/2. Since

our results show that Aw/wo K K - 1, the implication is that finite ellipticity leads to

finite frequency shift. Similarly, the width of the coupling layer scales as Ar/rO - K -1
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indicating a region of finite extent.

5. Finally, for typical tokamak profiles satisfying 1 < q(r) < 3, the eigenfrequency wo

does not intersect the continua of m = 1, m = 3 or any other ellipticity induced m

number, over the entire radius 0 < r < a. Thus, the continuum damping is recently

shown to be important for the TAE 7'8 does not directly affect the m = 1,3 EAE.

There is, however, a continuum damping when toroidicity is included, as this couples

to the m = 2 continuum at the q = 4/3 surface. Even so, since the m = 2 coupling

takes place near the center of the plasma (where electron Landau damping is small),

this should not be a big effect.

These results are derived in the main body of the text. The analysis consists of

a general formulation of the noncircular gap mode equations, followed by an analytical

derivation of the EAE eigenfrequency utilizing an asymptotic matching procedure. Many

of the details are similar to those first presented in Ref. [3]. The calculation of the growth

rates in the presence of alpha particles is a rather complicated task and the results will be

presented in a forthcoming paper.

II Model

The basic equation describing Alfven gap modes in a noncircular tokamak is derived

from the standard MHD Lagrangian L = W - w2K. In order to carry out the analysis

we introduce the ohmic tokamak aspect ratio expansion, # ~ e2, q ~ 1, 8p- 1. The

derivation requires that L be calculated to third order in e: L = c2f2 + 63L3 + ...

The analysis begins with the following forms for the potential and kinetic energies,

bW = f dr [IQ12 + B 2 IV . j + 2 (j . C|2 +ypIV .e12

J11
-2( K= Vp)(P -f*j) - - (J*L x B) -()

K = dr p ||.(2)
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The modes of interest are low n number shear Alfven waves characterized by w2 ~ k2V.

Since k1 a ~ r, we are required to order V j_ ~ e f_/a, or else the magnetic compression

term would dominate the behavior. This implies that (1 ~ e2 
1 from which it then follows

that the plasma compressibility 7 pIV - f 2 , and the parallel kinetic energy pll 12 both give

rise to contributions in L of order c4. Thus, both terms can be neglected.

The first step in the derivation is to minimize the magnetic compressibility term order

by order. The value of V - correct to the required accuracy is found by noting that the

curvature n = -eR/R + O(E2 )/a. This yields

V 2R (3)

Equation (3) can be solved by introducing a stream function as follows

4, = RVX x eO (4)

where 4, = ( R, 0, z) is the poloidal component of fj and V, is the poloidal gradient.

The toroidal component (, is of order O ~ E4, and never enters the calculation, even

when evaluating C to order e3. The entire analysis is now expressed in terms of the single

scalar unknown X = X(R, Z) exp(-iwi - ino).

The remaining terms in 6W and K can be evaluated in a straightforward manner.

For the kinetic energy we obtain

pL1 2 = pR 2 1V PX| 2 . (5)

The evaluation of 6W requires the quantity Qj, which after a short calculation can be

written as

Q± (V x C_ x B)I = V[R2B -VX] x B (6)
Fo

where F(ik) = RB = Fof1 + O(E2 )]; that is F = ROBo = const. The quantity J11

appearing in the kink term reduces to JI = Jo[1 + 0(E2)] in the aspect ratio expansion.

Similarly Pc ; -eR/R is only needed to leading order in the curvature term.
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Upon combining these results we obtain the following form of L correct up to and

including terms of order d

L = dr[ R2 -JV VpX* x eO +2R 2p,(Bp.VpX) _Z _W2pR2|1VPX1.

(7)
Here, V = R 2B - VX, p' = dp(ik)/db, Bp = (VO x eo)/R, and b is the equilibrium flux

function satisfying the Grad-Shafranov equation. From Eq. (7) it is straightforward to

calculate the variation of L with respect to X. Setting bL = 0 leads to an Euler-Lagrange

equation that can be expressed as

B -V [A*(R2B - VX)] + 'Vp(RJO) x eO - Vp(R 2 B - VX)

(8)

-- 2 9 (p'Bp -VpX)+w 2 VP -(pR 2 VpX) = 0

where A*V = R 2 V - (VV/R 2). Equation (8) is the desired form of the basic stability

equation for Alfven gap modes in a general noncircular geometry, consistent with the

ohmic tokamak aspect ratio expansion.

III Derivation of the Simplified Gap Mode Equation

The primary aim of the paper is the investigation of gap modes induced by noncir-

cularity. In many noncircular tokamaks the elongation and triangularity are finite (e.g.

r = 1.8, 6 = 0.4) and thus represent a stronger source of symmetry breaking than toroidic-

ity. The analyses of these modes, as described by Eq. (8), is significantly simplified by

introducing a subsidiary expansion in which the noncircularity is assumed small, although

not as small as toroidicity. Specifically, we focus attention on elongation and order r. as

follows

i 1 ~ e1/2 9)

This ordering reduces Eq. (8) to its noncircular, infinite aspect ratio form where all toroidal

effects are ignored. (However, the toroidal expansion must be maintained when calculating

resonant particle growth rates.) In terms of the original Lagrangian formulation C =
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e2L2 + e3 L3, the subsidiary expansion neglects L3 and assumes E2 L2 can be rewritten as

f2L2 = E2(£20 + f1/2£21 ... ). Equivalently, Eq. (8) neglecting toroidicity but including

the full L2, reduces to

B . V[V (B -VX)] + VpJO x eo - V,(B . VX) + W 2V, . (pVX) = 0. (10)

This equation is similar to that derived in Ref. [9] whose main concern is kink instabilities

in elliptical plasmas.

The subsidiary expansion can be conveniently substituted into Eq. (10) by introducing

a set of normalized flux coordinates as follows. The equilibrium flux function, satisfying the

Grad-Shafranov equation, is written as 0 = 0o(r) + 01 (r) cos 20 where '1 /7o ~ J/2 and

(r, 0) are the usual toroidal coordinates R = RO + r cos0, Z = r sin0. The flux coordinates

(r', 0') are defined by

r = r - A(r) cos20

(11)

0' = 0 + sin 20
r

where A(r) = -ik1/4 ~1/2 a. The elliptical distortion A can be easily shown10 to satisfy

the perturbed Grad-Shafranov equation given by

d 2dA) B2( rB ) 3-A=0
drdr r

A(0) = 0, A(a) = -a(K. - 1)/2. (12)

Here Be(r) is the zeroth order poloidal magnetic field, which is assumed to be specified

as a free function. We shall assume that Eq. (12) has been solved either analytically or

numerically and thus A(r) is hereafter treated as a known quantity.

From Eq. (11), it is straightforward to show that

B- V = -iBOk 1 - B4 d \ cos 20' (13)

where k1 is the operator

= -(n+ (14)
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and q(r') = r'Bo/RoBe is the safety factor. Similarly, the V 2 operator can be written as

V2 a ,ra 1 2  dAcos20 (15)

The last terms in Eqs. (13) and (15) represent the c1/2 corrections. Actually, in Eq. (15)

there are additional e1/2 terms involving first and zeroth order derivatives with respect to

r'. In analogy with previous analysis of gap modes we anticipate that the f1/2 corrections

are only going to be important in a narrow region of physical space corresponding to the

frequency gap. Thus, it suffices to maintain only the highest derivative 0 2 /Or' 2 terms

in the corrections to V 2 . In contrast, the operator B - V has no radial derivative terms

because of the introduction of flux coordinates.

The subsidiary expansion and the flux coordinates are now substituted into Eq. (10).

After a short calculation we obtain

(Lo + L 1 )X = 0 (16)

where the operators LO and Ll have the form

LOX w2 VO - (pVoX) - B2k1 (V2kjjX) + i dJ ax O (17)
r dr 809

2dA 02X 2da 62X
2 Xp l cos 2 6  2+ 2 B d k1  cos26kiaiL 1 XEr20 -;irco 8r2 Ia2

d e & 2X a 82X

+iBoBo - I cos 20 kii 2 + kg cos 2 . (18)

In these expressions the primes have been suppressed from (r', 6') and

1 d
J - rB=

r dr
(19)

72 1 0 19 1 92

r r Or r 2 a92

Equation (16) can be solved by Fourier analyzing X in the angle 6:

X(r, 6) = > Xp(r)ePO. (20)
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Here, p = m + 2f, m is the fundamental mode number, and the different i harmonics

represent the coupling due to noncircularity. Substituting into Eq. (16) yields the following

equation for the p'th harmonic

DpXp + Dp+ 2Xp+ 2 + Dp- 2 Xp- 2 = 0 (21)

where the D operators have the form

D21 r(w2p-k2B) 2(w2p-k2B2)-rB2p

Dy+ 2- (~p- kkp2BS + (p+2)rBoB,(kp+kp+2)d\ }d2 (22)

2 2)dA 1 d (A)] d2

Dp-2 - (W2 - kpk- 2 BS ) + 12 - 2)rBoBe(kp + k-2)dr r dr2

and k, = (1/Ro)(n - p/q).

Note that Dp- 2 , Dp+ 2 are small by order c1/ 2 compared to Dp. Thus, over most of

the cross section the Dp± 2 terms can be neglected. However, if these terms are neglected

everywhere, then whenever w2p = k2 B 2 the coefficient of the highest derivative in Dp

vanishes and (D,)~1 does not exist; that is, there are no discrete modes, only a continuum.

The regions where coupling is most important can be found by plotting curves of kpRo

vs q for various I as shown in Fig. 1 (dashed curves) for the case n = 1, m = 1. Observe that

the f = 0 and t = 2 curves intersect at the q = 2 surface where k1 (q = 2) = -k 3 (q = 2) =

1/2RO. For arbitrary m,n strong coupling occurs when qo = (m + 1)/n, km = -km+2 =

1/qoRo, and wo = va(ro)/qoRo.

Consider now a mode with Xm, Xm+2 as the two dominant harmonics and neglect

all others. In the potentially singular region near q = qo, the terms with the highest

derivatives for the m and m + 2 harmonics are given by

(W2P - k 2B 2  m - 22dA d2 Xm+2 + 0mw~ 0 m dr2 d r

(23)

-2 2 dA d2 XmWp M+2B dr2 - 2wp P r dr2+
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If the determinant of these terms vanishes for any value of r, the equations cannot be

inverted and no discrete modes are possible. The frequencies for which the determinant

vanishes are given by

2(r)= (1 - k 2+ k 2 - k +2) 2 + 16A12 k 2k 2+ 2 ]/}

(24)

2 1/2
~ a 1 ± 2 (m +1)2(l _ gO)2 + Af2
q2R20 1 qI

where the second form is obtained by explicitly expanding about the q = qo surface.

Observe that as r varies between 0 < r < a, there is a narrow band of frequencies centered

about w = va/qRo, q = qo, for which the determinant does not vanish. This is the frequency

"gap" shown as the solid curve in Fig. 1. Its boundaries are determined by setting q = qo,

corresponding to the throat of the gap.

Va At) <W <Va (1 + A'). (25)
qoRO qoRo

Within this range, the determinant does not vanish, and the differential operators in

Eq. (23) can be inverted. Thus, if a discrete mode does exist, its frequency must satisfy

Eq. (25). To determine the actual existence of such a mode, it is necessary to solve the

full equations over the entire plasma 0 < r < a. In this connection, note from Fig. 1

that for typical tokamaks satisfying 1 < q(r) < 3, the frequency wo does not intersect the

m = 1, m = 3 or any m = 1 + 2 continuum at any value of r < a. Thus continuum

damping which has been shown to be important for the TAE is not expected to be so for

the EAE.

A simplified form of the full equations is obtained by assuming the mode consists

primarily of the Xm and Xm+2 harmonics, and evaluating the small operators Dp+2

at ro corresponding to the q = qo surface. For simplicity the density p(r) is assumed

constant: p = po. It is also convenient to introduce new variables em and Cm+2 defined

by Xm = rVm,Xm+2 = rim+2. Equation (21) for the (m, m + 2) harmonics reduces to

Dm~m + F~m+2 = 0 (26a)

Dm+2Cm+2 + F~m = 0. (26b)
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The operator D, is given by

D = 1 d3 2po - k2B ) - (P2 _ 1)w 2po - k2 B2 . (27)D~-r (w P0 p dr /\P1pO/r dr d

The operator F is slightly subtle. Straightforward substitution yields

F(, = -2w 2poA'(ro)(r2 ,)'. (28)

However, under our previous assumption that the correction terms are only important in a

narrow layer where the highest derivatives dominate, we maintain consistency by writing

FC, ~ -2wxpo A'(ro)r 2". (29)

The errors made by this approximation are of the same order as those already neglected

in the derivation of the Dp± 2 operators.

Equations (26)-(29) describe gap modes in weak noncircular geometries.

IV Asymptotic Matching Solutions

The gap mode equations can be solved by a standard asymptotic matching procedure.

The analysis is similar but more general than that originally given by the Princeton group.3

A The Layer Region

The first step is to simplify Eq. (26) in the layer region. We introduce normalized

quantities

r - ro

ro

w2 =w(1 + 2n) (30)

where ro is the layer radius and f is the new eigenvalue. Under our previous ordering

assumptions fl < 1 and x < 1. It then follows that in the vicinity of the layer
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1 1
- Z -(1 - SX)
q qo

k ~ 1 (1 + 2msx) (31)
R qO

km+ 2 ~ 2 [1 - 2(m + 2)sx].
R qO

Here, a = roq'(ro)/q(ro) is the shear at the layer. Equation (26) reduces to

d dm d2__

(fl - mSX)!L - A' 0

(32)

d~(n + psx) 4p- A'l d 2'" = 0.
dx _X2 -2

In these equations p = m + 2 and A'= dA(ro)/dro is dimensionless.

Equation (32) can be easily solved, yielding

m = +/2\(1 _ Cm ln cos a + Am

(33)

= [C+ AC a+Cplncosa+Ap]

where Am, Ap, Cm, Cp are four free integration constants,

= m+1 (34)
(mp)1/ 2 A'0

is a new form of the normalized eigenvalue 1, and

x= 0 + (1 - A2 )1/2 tan a (35)
.S(mp)1/2 1M+ 1J
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defines the new independent variable a. Equation (33) represents the desired solution in

the layer region.

The second step in the analysis is to solve for the solutions in the exterior regions,

which satisfy

1 d 3f 4m (m 2 1)fmim = 0
rdr dr

(36)

1dr _f (2 - 1)fPyP = 0

where fm = WPPo -k2B , f, = w po - k2B2 and the^ denotes exterior region. Near the

layer, these equations reduce to

d dim
dx dx

(37)

x = 0.
dx dx

The solutions to Eq. (37) are given by

K+ inx2+bj1 =K [ Inx2+b-]

(38)

+=K+ ilnx2+b+] - =K,~ Inx2+b-.

The superscripts (+) and (-) refer to the regions between the layer and r = a, and the

layer and the origin respectively. The constants Km and K, are free integration constants.

The coefficients bm and bp represent the fraction of "constant solution" to "logarithmic

solution" near the layer. These coefficients are in principle known. For instance by can be

obtained by integrating the exact exterior equation [Eq. (36)] from the origin towards the

singular layer r = ro, using the regularity boundary condition at r = 0. The coefficient be

is found numerically by computing

b=; =_I - [xen - In x2 . (39)
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A similar calculation yields bl. The only difference is that in this case Eq. (36) must be

integrated inward from the boundary r = a, using fl(a) = 0. In this case

bj =_4 + I, - In x2. (40)

Equations (39) and (40) also yield bj and b+ by replacing m by p.

Another approach to calculate bm and bp is by variational techniques, as demonstrated

in Appendix A. The result is a set of explicit integral expressions for these coefficients that

can be easily evaluated for any given q profile.

Based on the above discussion we shall hereafter assume that be, bj, bi, b+ are known

quantities, and that the desired exterior solutions in the vicinity of the layer are given by

Eq. (38).

V The Dispersion Relation

The eigenfrequency of the gap mode is obtained by asymptotically matching the so-

lutions across the layer as follows,

(X -+ 0) = m(x -+ -oo) m(x -+ oo) = ('(x -- + 0)

(41)

~-x-+0) = WX - -00) WX --+ 00) =P (X - )

It is straightforward to show that in the limit x -+ ±oo the layer solutions given by Eq. (33)

have the same functional form (i.e. c1 + C2 ln x 2 ) as the exterior solutions. This is a direct

consequence of Eq. (35): that is, as x -- ±oo then a --+ ±r/2 and cos a -* ±i/x where

1 = A' (1 - \)1/2 1/2.

The first step in the matching is to equate the coefficients of the logarithmic terms.

This yields

K.= K; =Cm
m /2

(42)

Kp+ p / =
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The second step in the matching is to equate the coefficients of the constant terms. After

eliminating Am and A from this set of relations we are left with two coupled equations

for the coefficients Cm and C, given by

CP +ACm
7r \ 2= CmAbm

(1 - A2 )1!2

(43)

Cm+ACp
7r + = -CpAbp(1 - A2 )1/2

where Abm = b - b; , Abp = b+ b.

The dispersion relation for A is obtained by setting the determinant to zero. A short

calculation yields

W m1/2(m +2)1/ 2  ,
- = I+ -A/(44)

WO M +1 (1 + b2)1/2 0

with

b 7r2 + Abm+2Abm (45)
7r(A bm+ 2 - A bm)'

Note that b can in general have either sign indicating that the frequency may be shifted in

either direction with respect to wo. Also, note that for the special case of m = 1, Eq. (36)

can be solved exactly, leading to the result that b; 1 = oo. Thus, for m = 1, Eq. (45)

simplifies to

= -Abm+2 (46)
7r

The calculation of the asymptotically matched eigenfunctions and the corresponding eigen-

value 1 proves that an ellipticity induced gap mode does indeed exist.
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VI Conclusions

We have demonstrated the existence of elliptically induced Alfven eigenmodes. These

modes are of the same general class as the toroidally induced Alfven eigenmode. In

configurations with finite ellipticity, the EAE has a global structure centered about the

q = (m + 1)/n surface. The region of "localization" is of order 1C - 1 which is often much

larger than E. Thus, the EAE may be more robust than the TAE in such configurations.

The EAE as well as the TAE can be excited by resonance with circulating alpha

particles3 ,5 . The details of the mode excitation have been investigated and will be presented

elsewhere. These studies indicate that growth or damping depends upon a competition

between the alpha particle driver, electron Landau damping and continuum damping7' 8

(as first pointed out for the TAE mode). Continuum damping is weaker for the EAE mode

as there is no interaction with the continuum for typical q profiles satisfying q(a) - 3, even

when density profile effects are taken into account. See Fig. 1. Our stability studies also

show that perhaps unexpectedly, ion Landau damping may have a substantial stabilizing

effect on the TAE. The effect on the EAE is much weaker. Both the TAE and EAE need

further investigation to determine how detrimental their effect may be on alpha particle

confinement in ignited tokamaks.
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Appendix A

The coefficient bm can be accurately estimated by variational techniques. The appro-

priate Lagrangians for b; and b+, corresponding to Eq. (36), are given by

e= lyf. [y2(.2 + (M2 _ )g2 ] dy - c2f'(l)ln c (Al)

+= 1 y/m 2,2 + (M2 _ i)g2] dy + c2f'(l) nE (A2)

where y = r/ro, k = a/ro and in Eqs. (Al) and (A2), c = 1/b; and c = 1/b+ respectively.

This variational principle is valid only if m satisfies the following two conditions. First,

near the singular layer

tm(y) = 1+ clnly - 11. (A3)

Second, em must be properly normalized by choosing the solutions at r = 0 and r = a to be

regular, with amplitude independent of c: that is, Cm(O) - alym- and tm(k) ~ a2 (k - y)

with a1 and a2 independent of c.

In the analysis c is treated as a variational parameter to be evaluated in the limit e -+ 0.

The validity of the variational principle can be easily verified by standard techniques using

the relations 6t(1) = bcn E [from Eq. (A3)] and 6C(k) = 0 (from the normalization). A

convenient choice of trial functions is as follows

- = 6(y) + c2(y)

(A4)

+ = 6(y) + ce4(y)

where

6 = y"n-i

62= ym+'In 2 Y2)
(A5)

= -M- 
2m 2m

ik2n (1

= -M-1 k k2mt _ ,2"m {k2 _ Y 2)I (2_

(A~y ks"m-1 P \ 12_ n 2 }
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Substituting into the Lagrangian yields expressions of the form

L = Io + 2cI1 + c2 12 . (A6)

Minimizing with respect to c we obtain

b; = -I; /I

(A7)

In the limit E -+ 0, the integrals can be written as

= yfm [Y2 e'' + (m2 - 1)e1i2] dy

I= 10y1{fm [Y2 2 + (m2 - i)g] + y

(A8)

I yfm [Y 2%' + (m2 - 1)34] dy

I j={yfm [y 2 &2 + (m2 - 1)] - dy + f'(1)ln(k - 1).

Note that in the expression for I j and I, the integrands are finite as y -+ 1. Equations

(A7) and (A8) are the desired expressions for bm and bl.
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Figure Captions

Fig. 1 Plot of w(r)Ro/v. = k,,Ro vs q(r) for the following modes (a) m = 1, n = 1 and

m = 3, n = 1; (b) m = 2, n = 2 and m = 4, n = 2; (c) m = 3, n = 3 and m = 5,

n = 3; (d) m = 4, n = 4 and m = 6, n = 4. The dashed lines are the equivalent

cylindrical modes while the solid curves represent the fully coupled system.
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