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Abstract

In this paper we write the O-D energy balance in terms of the parameters

W 2 , N , and I E PR. The minimum value of W required

to achieve ohmic ignition (i.e. II = 0) in the generic case (i.e. no n or T

dependance on r), and for various dependencies of T on n and T is W ~ 15

in all cases. Also the value of W below which no access, even with the aid of

auxiliary power, to high temperature alpha dominated operation is possible

is W ~ 2 in all cases. Optimized designs are obtained by minimizing the

ratio of the auxiliary power pa to the ohmic power pn at the Cordey pass.

The optimization is consistent with the physics requirements, the toroidal

field coil volume and stress constraints, and with the volt-second and stress

constraints of the ohmic transformer. Results under various r dependencies

are presented.

1 Inroduction

The zero dimensional power balance can be written in the compact form.

dT C2 W (1)
rET = -T +W [ NT32 + N (C.F - CbT +

Where, T(t) is the peak temperature, W = BrEIR is a basic parameter

measuring machine performance, N = nR/B is a normalized form of the
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density, and H = PaR/a2 B2 is a normalized form of the total auxiliary

power Pa = (pa)V, where V, is the plasma volume. The function F(T) and

the coefficients Cj are given in Appendix A. In these expressions and all

that follow, the units are T (keV), n(10 2 0 m-'), B (T), a (m), R (m), rE

(sec), and Pa (MW). In summary the quantities W, N, II are given by

W - (2)
R

N = -- (3)
B

P0 R
I = PB (4)

Equation (1) is the power balance relation describing the time evolu-

tion of T. There are many ways to rewrite Eq. (1) by defining a different

set of parameters. The choices made here for W and N are crucial for a

proper understanding of ignition. The critical issue is that n and TE are

not interchangeable parameters in the design of an ignition experiment. In

a given device, n ~ N can be easily varied over a reasonably wide range of

parameters without affecting the cost. N is constrained only by a practical

experimental operating limit, I known as the Murakami [3] limit given by

N < Nm = 1.4 (5)

In contrast, raising rE ~ W invariably requires an increase in either field,

current, or machine size and, hence, cost. Consequently, W = BTE/R gives

a measure of machine performance and cost. It is more reliable than such

traditional parameters as nfrE or n-rET which do not distinguish between

high n-low -rE (low cost) or low n-high rE (high cost).

'There is a second operational limit due to MHD instabilities known as the Troyon
[1,2] limit, N < Np = 1.121R/aT. In the analysis, the Murakami limit is assumed more

severe. The , limit is tested a posteori, once the final geometry is decided.
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In general the energy confinement time rE can be written as

TE = Q(a, R, , -.)F(N, T, H) (6)

where Q is a function of geometry (a, R, n, - -.), and F is a function of

temperature, density, and auxiliary power. Therefore, the paremeter W

may be written as

W = WF(N, T, II) (7)

_ B
W g(a, R, n, - -) (8)

In this general case W serves as a performance parameter. In particular

the following cases are investigated.

eGeneric. F(N, T, II) = 1

.Ohmic. F(N, T, II) = N
(9)

*Auxiliaryl. F(N, T, II) = 1/TO"

.Auxiliary2. F(N, T, II) = NIT

2 Ignition Definition

The natural definition of ignition follows from an examination of the T vs

T diagram. Depending upon the size of W there are three qualitatively

different regimes to distinguish: ohmic ignition, auxiliary power ignition,

and non-ignited operation.

Figure 1 illustrates the most desirable regime of operation. Observe that

for P. = 0 there are three steady state equilibrium solutions correspond-

ing to t = 0. The left point, denoted by Tn, represents the temperature

achieved in an ohmic discharge (pa) ~ (pl) and is dominated by 1/T/ 2 de-

pendance of the ohmic power term. It typically occurs at To - 2 - 3 keV.
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The second equilibrium point TB is dominated by alpha particle heating

and usually occurs at TB - 12 - 20 keV. Since the optimum temperature

for fusion power production, at fixed 3, occurs at T ~ 15 keV this is ulti-

mately the desired operating temperature. The third equilibrium point, TR,
represents the final stable temperature. It typically occurs at TR - 50 keV

as a consequence of the high temperature decay of the FU5 curve. This point,

even though stable, is uninteresting because the plasma 3 is far above the

MHD stability limit and corresponds to operation far from at the optimum

temperature for fusion power production.

Unfortunately, it is not possible to gain access to the high temperature

equilibrium point TB through the normal evolution of the ohmic discharge.

The reason is as follows. At the initiation of the discharge the temperature

is very low and ohmic heating is the dominant mechanism in the power

balance relation. As time increases the temperature increases since T> 0.

This is equivalent to moving to the right along the T axis. Once the low

temperature ohmic equilibrium point, To, is reached the temperature can

increase no further. Any increase in temperature causes T < 0 which

drives the system back to the ohmic equilibrium point. Stated physically,

for temperatures greater than that corresponding to the ohmic point, the

losses increase faster than the ohmic power input.

It is thus clear that in order to reach the high temperature regime the

value of W or P. must be sufficiently high so that the minimum of the T

curve lies above the axis. In this situation, t > 0 during the entire evolu-

tion, thereby providing access to the alpha particle dominated operation.

The temperature at which the minimum of the t curve becomes tangent to

the horizontal (T) axis is denoted by TI, and is called the ignition temper-

ature hereinafter.

There are two ways to achieve t > 0. First, for P. = 0 the minimum

of the t curve can be raised above the axis by increasing the machine

performance (and hence cost); this is equivalent to raising the value of W
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Figure 2: t vs T plot illustrating the case of ohmic ignition
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and corresponds to pure ohmic ignition since P. = 0; see Fig. 2. Note that
when T exceeds T, the plasma temperature will runaway.

The second method to achieve t > 0 applies when economic and/or

technological considerations prevent the design of an ohmically ignited ma-

chine. In this case the minimum of the t curve can be made positive if
sufficient auxiliary power is supplied to the plasma. This type of ignition is
denoted as ignition with auxiliary power; see Fig. 3. Once T is exceeded,
the auxiliary power can be gradually decreased shifting operation to T = TB

on the P. = 0 curve. Note that at T = TB the system is susceptible to a

thermal runaway since t (TB) > 0. This is the problem of burn control.

For non-ohmically ignited systems the form of the T vs T curve in Fig. 3
is the most desirable because, with the aid of auxiliary power, access is

provided to the thermal equilibrium point TB along the P. = 0 curve.

A second, and not as desirable, situation is illustrated in Fig. 4. Again,

with sufficient auxiliary power, the minimum of the T curve can be made

positive. However, the corresponding curve for P = 0 has a maximum

which is below the axis. Thus, once T exceeds T1 , the auxiliary power

cannot be completely shut off since no thermal equilibrium point exists.

Instead, the power is reduced as much as possible until the maximum of T

is just tangent to the axis. Since P. is now not equal to zero at the steady

state equilibrium temperature TB, the system acts as an amplifier with gain

Q = P,/P. where P,., is the fusion neutron power.

The third situation to consider is illustrated in Fig. 5. Here, the con-

finement is so poor that tvs T is a monotonically decreasing function for

any auxiliary power. There is no potential region for alpha dominated op-

eration and only the ohmic equilibrium temperature To is possible. This

corresponds to "no fusion" and is obviously the least desirable regime of
operation.

The natural definition of ignition thus requires a region of thermal run-

away in the T vs T diagram regardless of how small. The precise mathemat-

ical definitions [4] of the regimes of interest can be conveniently summarized

as follows
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1. Pure Ohmic Ignition

t(T, W, N, = 0) = 0 (10)

T(T, W, N, I= 0) = 0 (11)

2. Auxiliary Power Aided Ignition

t(T, W, N, II) = 0 (12)

a(T, W, N, I) = 0 (13)

(T, II = 0) > 0 (14)

The significance of the temperature TM can be infered by examining Fig. 3.

3. Auxiliary Power Aided Amplification

t(T, W, N, II) = 0 (15)

(TI, W, N, II) = 0 (16)

(T, HI = 0) < 0 (17)

4. No Fusion

aT(TI, W, N, II) <0 (18)

The ignition characteristics can also be observed by eamining the con-

tours of constant auxiliary power. These contours usually refered to as

Plasma Operating Contours (POPCON) [5] are obtained by calculating the

auxliary power required to make dT/dt = 0 at a combination of plasma
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density and temperatures. Thus a POPCON represents steady state be-

havior. A typical POPCON is shown in Fig. 6. The ignition temperature

TI, satisfying Eqs. (10, 11) form the contour indicated by the dots in Fig. 6.

This contour goes through the "Cordey pass" - the point at which both

t = 0 and di/dT = 0 are satisfied with the least amount of auxiliary

power. This contour which is henceforth called Marginal Ignition Ridge

(MIR) is important since it is the boundary between the regions of negative

and positive growth rates for the plasma temperature.[6]

In the following section the ignition requirements for systems falling

in regimes 1 and 2 are investigated, and the boundaries separating these

regions in the parameter space of auxiliary power vs performance are pre-

sented.

2.1 Ohmic Ignition

An ohmically ignited plasma is one that gains access to the alpha dominated

regime solely be means of ohmic heating; no auxiliary power is required

(i.e., II = 0). This is highly desirable in view of the scientific and techno-

logical complexities associated with auxiliary power. The major difficulty

with ohmic ignition is that it requires large values of W which ultimately

translates into high cost.

The minimum value of W required for ohmic ignition is determined by

the condition that the t vs T curve becomes tangent to the T axis at

T = TI. See Fig. 3. This is expressed by Eqs. (10, 11). Solving these

equations gives the minimum W = W(N). The function W(N) itself has

a well defined minimum with respect to N as it is shown in Fig. 7. Setting

dW/dN = 0 then gives the absolute minimum W and corresponding N

and T for ohmic ignition. These values are given in Table 1 for the generic

scalings, the ohmic scaling, and the auxiliary scaling. Also given are the

values for nrE.
By writting the function F in the general form
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Table 1: Critical Parameters for Ohmic Ignition

Generic Ohmic Auxiliaryl Auxiliary2
W 14.2 19.5 14.6 22.92
T, 11.39 7.06 9.89 7.07
N 0.249 0.576 0.371 0.679
nfrE 3.51 11.20 5.42 15.56

T = N' (19)

the complete parameter range of possible N and T dependances can be

investigated. By taking a = 0 the minimum values of W and the corre-

sponding N are plotted in Fig. 8 as a function of the exponent 0. Note

that the variation of W with 3 is very small. Also note that the values

for N are well below the Murakami limit for all 3. Interestingly, as seen

from Fig. 8, and from table 1 the minimum W shows very little variation

whereas n-rE varies by more than a factor of three. Even so, a value of

W ~ 15 is sufficiently large that the resulting machine cost would exceed

the economic resources allocated for currently envisaged next generation
ignition experiments.

2.2 Auxiliary Power Ignition

When W is less than the value required for ohmic ignition, sufficient auxil-

iary power guarantees access to a dominated operation as long as T(Tm) >

0 on the P. = 0 curve (see Fig 3 for an indication of the temperature TM).

The condition that the t curve be tangent to the T axis at TM defines the

minimum value of W required for auxiliary power ignition.

The solution of Eqs. (12, 13) gives the minimum W = W(N). In this

regime W monotonically decreases as N increases. Thus, the absolute min-

imum value of W occurs when N reaches the Murakami limit. Table 2 gives
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Table 2: Critical Parameters for Auxiliary Power Ignition

Generic Ohmic Auxiliaryl Auxiliary2
W 1.63 1.63 1.75 2.14
T 34.2 34.2 25.1 19.13
N 1.4 1.4 1.4 1.4
nfrE 2.28 2.28 2.45 2.99

the values of W, T., N and nrE for the generic scaling, the ohmic scaling

and the auxiliary scalings.

Observe that the value of W is much smaller than that required for ohmic
ignition.

2.3 Non-Ignited Operation

If W is less than the value given in Table 2, the t vs T diagram for P. = 0

assumes the form illustrated in Fig. 5. In this case there is only one steady

state operating point corresponding to an ohmically heated discharge, T =

To. There is no steady state operation dominated by alpha power heating.

Consequently, this regime is non-ignited and is discussed no further.

3 The Minimum Auxiliary Power for Igni-
tion

Another topic of interest concerns the minimum auxiliary power required

for ignition. It is important to minimize this power for two reasons. First,

since auxiliary power is technologically complicated and economically ex-

pensive, it is desirable to keep the requirements as low as possible. Second,

and more critical, is the experimental evidence that the empirical scaling

relations are more reliable and optimistic in the ohmic dominated regime.

Hence, minimizing P. also minimizes the uncertainties associated with rE
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in the auxiliary heated regime. In this connection it is more appropriate to
minimize P./PO rather than Pa itself. Here Pn is the total ohmic power.

In order to calculate (P./Pa )min, the value of W is fixed at some in-
termediate value between the ohmic ignition and auxiliary power ignition
boundaries. The ignition condition is given by

i'(T, W, N, 1) = 0 (20)

9(T, W, N, H) = 0 (21)

Solving these equations gives H = f(N, W). This is substituted into
the following

PCa
p = P- = - fT/2 (22)

PO Co

yielding F = P(N, W). For higher values of W, P has a minimum with

respect to N (see Fig 7) that is less than the Murakami limit. At smaller

W, the minimizing N exceeds the Murakami limit. In this situation the

minimum W is obtained by setting N = 1.4, the Murakami limit.[3]

Fig. 9 shows the variation of (P./P.)min with W. As expected P./PO is

a decreasing function of W, illustrating the basic tradeoff between physics

reliability and cost. Observe that P./Pa is a very steep function of W

for small W. Thus, for W < 5 the plasma is operating in a particularly

sensitive region of parameter space. Also there is relatively small variation

in P./PO for the different scaling relations.

4 Coupling Physics and Engineering

Up to this point the goal was to estimate the values of the various physics
based parameters W, N, ][.These parameters are directly related to the

physics considerations as represented by the 0-D model. In this section the

ignition ideas developed in the previous sections are coupled to fundamental

engineering considerations of both the toroidal and the ohmic heating coils

resulting in optimized tokamak designs.
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4.1 Optimized Ignition Physics and Machine Perfor-
mance

The first step is to develop a sharply defined goal of "optimized ignition".

There are two main issues to consider. First, since we have been driven to

auxiliary power aided ignition because of the prohibitive economic limita-

tions imposed by pure ohmic ignition, the total machine cost is clearly one

of the most important problems. Second, and somewhat less quantitative,

is the relatively high physics uncertainty associated with auxiliary power

confinement scaling as compared to the ohmic scaling.

Consider now in more detail, the questions of cost and physics uncer-

tainty. Optimizations based purely on cost tend to place too much emphasis

on auxiliary power. Large values of P. relative to P0 are required, resulting

in operation in a regime of high physics uncertainty. Thus, while the cost

is minimized, the probability of success is not.

In this analysis a different approach is adopted. It is assumed that

virtually all of the available economic resources are dedicated to the basic

machine (excluding auxiliary power). The machine design is then optimized

by minimizing the auxiliary power required for ignition. This philosophy

places a high weight on minimizing the physics uncertainty, and as it is

shown below it does not add significantly to the economic constraints as

relatively small values of P. are required.

It can be argued that the tokamak performance is approximately pro-

portional to the cost of the TF system. Furthermore, the overall TF design

is strongly driven by the coil throat, the most critical element in the mag-

net. By assuming that the cost of coil throat is proportional to its volume

1,, V can be adopted as a universal measure of machine performance. It is

then possible to relate the geometric quantity W to the coil throat volume

V. In this way W is eliminated in terms of the volume V

Minimizing the physics uncertainty actually implies minimizing P. with

respect to a given ohmic power P0 . A minimization of the absolute value of
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P leads to the unphysical limit Bo -+ oo, a -- 0. Since a -- 0, the plasma

volume approaches zero implying that no auxiliary power is required. Even

so, in this limit, the ratio Pa/PO can be large implying high physics uncer-

tainty.

Thus, in the analysis that follows, the quantity Pa/PO required for ig-

nition is minimized, subject to the constraint of a fixed volume V set at

the maximum value permissable by economic constraints. When the calcu-

lation is complete it is shown a posteriori that the auxiliary power cost is

not prohibitive and that the equilibrium burn temperature is indeed in the

ignited regime of operation.

The optimization procedure can be summarized mathematically as fol-

lows. The quantity Pa/PO is easily found from Eq. (1).

PCa
- = -- =T3/ = U (T, I, N, W, q., n, a, Ro) (23)
Ph Co

U is to be minimized subject to the condition that the plasma is ignited.

T(TI, H, N, Wq,) = 0 (24)

5-(T, 11, N, W, q, n) = 0 (25)

and the constraint that the TF coil throat volume V is fixed. In the next

section it is shown that V = V (W, a, Ro, n, q*) so that the fixed volume

constraint becomes

V (w, a, RO, 6, q*) = const. (26)

In principle, Eqs. (24) and (25) are solved for T1 and HI, and Eq. (26)

for W. These results are substituted into Eq. (23) yielding

U = U (N, q*, n, a, Ro; V) (27)
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The quantity U is then minimized with respect to N, q., n, a, RO holding V

fixed. In practice, the dependence of U on q. and , is monotonic implying

that these quantities must be set to their extremum values as determined by

physics: q. = 2, n = 2. What remains is a three dimensional minimization

of U with respect to N, a, Ro.

4.2 TF Coil Design

The one remaining relation required is that expressing the throat volume,

V, in terms of the ignition parameters. The coil model described below is

sufficient for this purpose. The critical assumption is that V is determined

by stress considerations on the inner leg of the magnet.

The coil model is deliberately simplified for purposes of pedagogical

clarity and to avoid any false impressions of unjustified accuracy. It is

important to realize that the goal of this work is to demonstrate trends

rather than to arrive at a precise final design. Thus, while the results are

only semi-quantitatively correct in detail, they quite accurately describe the

features and directions of the optimized design.

Consider the rectangular coil model illustrated in Fig. 10. The distances

bl, b2 and b3 separate the plasma from the TF magnet and provide space for

the first wall, divertor, RF antennae, etc. The values of b, and b2 are taken

from the current CIT design and are assumed to be known quantities. The

value of b3 is scaled with the minor radius according to the relation. [7]

b3 = 0.88 a + 0.5 (28)

The thickness of the coil throat is denoted by c, and it is this quantity

that is crucial in determining the volume V. The value of c is found by

calculating the Tresca stress on the inner leg of the magnet and setting it

equal to its maximum allowable value a,, ~ 500 MPa.

The analysis begins with the evaluation of V. A short calculation gives

V = 47rc (Ka + b3) (Ro - a - b1 - c/2) (29)
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In order to obtain a reference case, for comparing the accuracy of the model,
the CIT parameters are considered (i.e. RO = 2.1 m, a = .64 m, r = 2.0,

b= .17 m, b2 = .6 m, b3 = .86 m, c = .43 m, BO = 11 T, I = 11 MA,

or = 500 MPa). This gives a throat volume V = 12.4 m' for the reference
case.

Next, consider the vertical hoop stress. The total vertical force Fz acting

on the upper half of the magnet can be approximated by

Fz - B Ro (a +b) (30)
PLO

where

b( + b2 31)
2

This force is assumed to be distributed equally between the inner and outer

magnet legs. It produces a tensile stress Ut that is much larger on the inner

leg because the stress area of the inner leg, Az = 7 (R' - R'), is much

smaller. A simple calculation gives

Fz _ BO Ro (a+;)
Ut = -- -- ()

2z 2oc(Ro - a - b - c/2)

The second stress to be considered is due to wedging. As a simple

approximation, it is usefull to calculate the relation between the wedging

force and the hoop force in the thin coil limit c -- 0. Using this relation, it is

then straightforward to estimate the Tresca stress, using the finite thickness

tensile stress [Eq. (32)].

In the thin coil limit the net centering force is approximately given by

27r 1 1
FR ~ -BOR(na + b3) (33)

The centering force FR produces a wedging stress

24



FR
UW = 27rA (34)

where AR ;:: 2 (Ka + b3 ) c. Substituting Eq. (33) into Eq. (34) gives

BON2 1 1
2Oc BRo - a - b Ro + a + b2 (35)

In the thin coil limit, a comparison of Eqs. (32) and (35) indicates that

o,, =- 1 +e2  (36)

Where e2 is given by

62 = a + b2  (37)
Ro

Now assume for simplicity that Eq. (36) is valid for finite thickness coils

as well. Under this assumption, the Tresca stress o - o - u- can be
written as

= B2 (3 + E2) (a + b) Ro
UT 2to \1+62/ c (Ro-a-bi-c/2) (38)

By setting UT = or (the maximum allowable stress) in Eq. (38) the coil

thickness is given by

= B2 3+e (a + L) Ro
2piOam 1 + 62 C (PO - a - bi - c/2)

By substituting Eq. (39) into Eq. (29) the coil volume is given by

= 7rB 2 Ro 1 ] Ro+a+b2 ]40)V = m (2a + bi + b2) (na + b3)] [(3Ro + a + b2) (40
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Equation (40) is the desired relation. It is the equation that couples the

ignition physics and the engineering. Since the parameter W depends on
the plasma geometry the coil volume given by Eq. (40) can alternatively be

expressed as a function of W. In order to check the calibration of this model
the CIT parameters are used. By solving Eq. (40) for B and substituting

the CIT parameters gives B = 10.7 Tesla which is in good agreement with
the 11 Tesla CIT design.

In practice there are several important limits which prevent small Ro.
Certainly, the geometric condition RO > a + bi + c must be satisfied. An
even stronger limit on Ro results from the volt-second requirements of the
ohmic transformer, and it is investigated next.

4.3 OH Coil Design: Volt Second Requirements.

In this section a derivation of the minimum major radius that satisfies the

volt-second requirements of the ohmic transformer is presented.

4.3.1 Basic Constraint

The basic constraint defining the volt-second requirements can be written
as

AO =kLI (41)

Here, AO is the flux swing in the transformer, I is the plasma current, and

L is the plasma inductance, which can be approximated as [8]

L = poR o [In ( - (42)
anl/2 4

The parameter k is a constant and typically k ~ 1.2. This guarantees

sufficient volt-seconds to bring the current from zero to its final value as

well as maintaining the plasma for an extended period of flat top operation.

In equation (41) it is also convenient to express I in terms of Bo and q.

1= 27ra 2 nBO (43)
poRoq.
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4.3.2 Evaluation of Ab

In order to evaluate AO it is assumed that the magnetic field in the trans-

former is double swung from -Bm to +Bm. For a double swing system

AO = 2(01 + 02) (44)

where 01 is the flux in the vacuum region and 02 is the flux in the coil. The

final value of the flux in the vacuum region is

01 = 7rR2Bm (45)

where the transformer geometry is illustrated in Fig. 11. The flux in the

coil itself is easily found by noting that for a uniform current density

B = Bm( R - R R. < R < Rb (46)

A simple calculation then gives

02 = f'(Rb - R.) (Rb + 2R.) (47)

Therefore AO becomes

Ab = 27rBm R2 + (Rb - R.) (Rb + 2R.) (48)

4.3.3 Relate the maximum field Bm to the maximum stress o,

Typically o-, ~ 330 MPa for CIT. The local Tresca stress in a straight

solenoid has the form[9]

B2  R2  R
tT (R) = 2 R2 (49)

Unlike the TF coil, orT is a strong function of R in the ohmic transformer

coil, particularly if the coil is thick.
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Figure 11: The ohmic heating coil model
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In general, it is required that the peak to average stress ratio in the

OH system be less than some value 17. For CIT 77 ~ 1.5. This serves to

determine the ratio Rb/R.. The peak stress occurs at R = R. and is given

by

B 2
aT (R.) = -- (50)

ILO Rb - R2

The average stress is defined as FT = f aTdR/ f dR, and is given by

__ B2 (R&R 0FT = - ( - (51)
po Rb' - "-

Computing the ratio (rT (R.) /aI) = 77 leads to

- - =7 r(52)
R.

4.3.4 Intermediate form of the Volt-Seconds constraint

Combining the results just derived, setting TF = o,, and noting that Rb =

RO - a - b1 - c, the following form for the volt-seconds constraint is obtained.

(na2Bo) (In 8RO 7
q. anl/ 2 4

= ( )1/2 7 2 1/(2 1) 2 + 7 + 1 (Ro - a - bi- C)2 (53)

Substituting the values a, = 330 MPa, 7 = 1.5, k = 1.2 leads to

RO = a+b +c+ .4 (KBa) (54)
\ *
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4.3.5 Final form of the Volt-Seconds constraint

The final step in the calculation is the elimination of the coil thickness c

from Eq. (54). The quantity c is expressed in terms of V from Eq. (29), the

defining relation for the coil throat volume. Equation (29) can be written
as

c 2 - 2 (Ro - a - bl) c + = 0 (55)
27r (ra + b3 )

Solving for c yields

c=RO-a-b1- (Ro-a-bi )2 - V b 2  (56)
1 ~27r (na + b3)]

Substituting into Eq. (54) leads to the following expression for Ro

Ro=a+bi+0.4 (KaB + 1/2 (57)
q, - a +b3

Equation (57) is the desired relation, giving Ro = Ro (B, a, V, n, q.).

Substituting the calibration values on the right hand side gives RO = 2.1,

again indicating an accurate calibration between the simple model and the

CIT design used for calibration. Thus, in the full optimization the geometric

factor W is expressed as a function of V by Eq. (40) with R evaluated from

Eq. (57).

5 Results

The physics and the engineering are coupled through Eqs. (24, 25, 40, 57).

Eqs. (24 and 25) represent the ignition condition, and Eqs. (40, 57) charac-

terize the toroidal field and ohmic heating coils. The optimized desigs are

obtained by simultaneously solving Eqs. (24, 25, 40, 57) and by minimizing

the quantity

30



Table 3: The Parameters a, corresponding to Eq. (59) for various confine-
ment scalings

-= U(N, a, TI, III, W, Ro) (58)
Ph

Note that the kink safety factor q. and the elipticity K do not appear in

the above equation. Specifically q. and r are considered constant and in

the following results they have the values q. = 2.0 and K = 2.0. The four

parameters T1 , III, W, RO are determined from Eqs. (24, 25, 40, 54). In

turn the quantity P./Pn is minimized in the N, a space.

The first step in the solution procedure is the characterization of the

parameter W. In general the parameter W can be written as

W = C1 Rgl aa 2 B"I 4 I"K a (59)

By adjusting the parameters a, various confinement scalings can be sim-

ulated. Table 3 gives the values of the parameters a1 , a 2 , a3 , a 4 , a 5 for

Neo-Alcator, Goldston, Kaye Goldston, and ITER P-89[10] confinement

scalings. The form for the auxiliary power dependance is not included in

W. It is incorporated in the function F (see Eq. 7).

Another parameter that must be given is the coil throat volume V.

The coil volume is a constraint in the calculation and the optimization is

performed subject to a fixed coil volume. The results that follow correspond

to V = 25m 3 which represents the throat volume of the present CIT design.
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_ _ 1  a2  C 3  a 4  a5
Goldston 0.75 -0.37 1.0 1.0 0.5
Neo-Alcator 0.0 1.0 2.0 0.0 0.5
Kaye-Goldston 0.13 -0.49 1.17 1.24 0.28
ITER 0.1 0.3 1.3 0.85 0.5
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Figure 12: A plot of the quanity P./Pn versus the minor radius a, and the
total auxiliary power Pa versus a
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By considering Goldston Scaling (see table 3 for the appropriate param-

eters) the function P./Pa is minimized with respect to N within a range of

minor radii a. The minimum of the function Pa/Po is plotted versus a in

Fig. 12. Note that Pa/Po has a well defined minimum at a - 0.46m. Also

shown in Fig. 12 is a plot of the total amount of auxiliary power required

at ignition versus a. Note that at the optimum minor radius the required

auxiliary power is 2.4 MW. This small amount of auxiliary power required

for ignition may now be viewed as a justification for choozing to minimize

the quantity Pa/P0 .

Other important parameters characterizing the design are the the major

radius (R), the toroidal magnetic field on axis (B), and the plasma current

(I). These parameters are shown in Fig. 13 as a function of the minor

radius a. Also shown on Fig. 13 is the parameter B-r/R as a function of

minor radius.
Earlier work by Cohn[11,12] has also suggeted the possible advantage of

tokamak designs characterized by high magnetic fields. In particular Cohn's

work has shown the advantage of designs characterized by high values of the

parameter B 2a. Usually for B2a > 150 ohmic ignition is possible thereby

minimizing the adverse effect of auxiliary power on machine performance.

The parameters BrEIR and B2 a are equivalent for the case of Neo-Alcator

scaling and for operation under a fixed Murakami parameter nR/B.

The plasma current I decreases from 10 MA at a = 0.6m to 7 MA at the

optimum a = 0.46m. This decrease is a consequence of the decrease in the

plasma minor radius a. Note that, even though the total plasma current is

low at the optimum design point, the designs should not be considered low

current devices since q. has been set at the MHD stability limit (q. = 2).

In Fig. 13 the parameter W = BrE/R is also plotted as a function of

the plasma radius a. Note that the parameter BrEIR is maximized at the

optimum radius a.

Similar results are obtained for other scalings. For the ITER scaling

the optimum Pa/PO and the corresponding major radius, plasma current,
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Figure 13: Clockwise from top are plotted the major radius R, the toroidal
magnetic field B, the optimized performance parameter BTE/R, and the
plasma current I as a function of radius a
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Table 4: Summary of the optimized design parameters for Goldston, Neo-
Alcator, and ITER scalings

and magnetic field are plotted on Fig. 14. Note again thet there is a well

defined miinor radius a at which Pa/PO is minimized. However, for the

ITER scaling the optimum is obtained at a different point. On table 4 the

parameters representing the optimized design for Goldston, Neo-Alcator,
and ITER confinement scalings are summarized.

6 Conclusions

The volume averaged plasma power balance gives the characteristics of the

global plasma behavior. Since the transport of heat is governed by the

global energy confinement time rs, and because of the large number of

scaling relations for rE there is no agreement on the choice of an appropriate

parameter which can represent the plasma performance. In this chapter it

was shown that by introducing the parameters W, II, and N the behavior

of the plasma can be characterized within a small range of W. In general

W ~ 15 is required for ohmic ignition regardless of the type of confinement

scaling. Also values of W less than 5 are not desirable since the auxiliary

power required for ignition at these low values of W become very large.

Next by minimizing the parameter P./P0 optimized and ignited designs

are obtained. By minimizing the ratio of auxiliary power to ohmic power,
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Goldston Neo-Alcator ITER
a (m) 0.46 0.39 0.82
R (m) 2.4 2.39 2.58
R/a 5.2 6.0 3.1

B(T) 15.5 17.0 10.5
I(MA) 7.0 5.5 13.5

Pa (MW) 2.4 0.5 8.3
T1 (keV) 8.5 5.0 5.7

N1  0.75 1.1 0.99
B7rE/R 11.2 21.5 6.83
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Figure 14: Clockwise from top left: The optimized parameter P./PQ, the
major radius, the plasma current, and the magnetic field as a function of
plasma minor radius corresponding to ITER scaling
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subject to a constraint of fixed toroidal field coil volume, designs are ob-

tained for various forms of the parameter W. For Goldston and Neo- Alca-

tor type confinement scalings, designs were obtained indicating the posible

advantage of high aspect ratio and high magnetic fields. In particular the

optimization results in geometries with aspect ratio ~ 5 and with toroidal

magnetic fields in the order of 15 Tesla. These designs are further charac-

terized by low total plasma currents while the required auxiliary power is

also small. Optimization under ITER scaling results in configurations with

loweraspect ratio and thus lower toroidal magnetic field.

APPENDIX A

1022 T ___i

F.(T) = T(e~')''jv(t )~t - d

T(jn1+vnv 1+0
1+ V/" + VT (1'Co = 0.3479 1Z l.vT +K 2

1 + 1.5+ VT

C. = 2.91671 + un + 'T
VT

Cb = 0.1104 +Vt+VTZ.
1 + 2vn + .5vT

C, = 1 .0 5 6 3 1+vn+VT
K

vn, and vT are parameters which determine the shape of the density and

temperature profiles. In the calculations presented vn = vT = 1. ov is given

in m 3 /sec.
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subject to a constraint of fixed toroidal field coil volume, designs are ob-

tained for various forms of the parameter W. For Goldston and Neo- Alca-

tor type confinement scalings, designs were obtained indicating the posible

advantage of high aspect ratio and high magnetic fields. In particular the

optimization results in geometries with aspect ratio - 5 and with toroidal

magnetic fields in the order of 15 Tesla. These designs are further charac-

terized by low total plasma currents while the required auxiliary power is

also small. Optimization under ITER scaling results in configurations with

loweraspect ratio and thus lower toroidal magnetic field.

APPENDIX A

1022 T 3y (d
Fa(T) = T(2&+)P j v(T 1 0d

1+±n~ + + +2 2
C. = 0.34791 + 'n+VT n-) Z.ii

1 + 1~+V

C, = 2.91671 + 'n + vT
VT

Cb = 0.1104 Z+Vn+VT
1 + 2v, + .5vT

C. = 1. 0 5 6 3 1+Vn+VT

v,,, and vT are parameters which determine the shape of the density and

temperature profiles. In the calculations presented vn = VT = 1. uv is given

in m 3 /sec.
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