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Abstract

One-dimensional calculations are presented of plasma flow to multiple

objects larger than the ion Larmor radius, when their ion collection

presheaths overlap. Situations modelled include the effects of one Langmuir

probe on another probe lying on the same field line, and Langmuir probes

operated close to a limiter or divertor plate in the edges of magnetic

confinement experiments. The results allow quantitative analysis of the

operation of Langmuir probes and especially Mach probes for velocity

measurements, even when they are close to other structures. New analytic

results for inviscid plasmas, and numerical results incorporating shear

viscosity are presented. They show that Mach probe measurements in inviscid

plasmas experience strong perturbation by connection effects especially for

Mach numbers greater than about 0.5. Viscous plasmas are relatively more

weakly perturbed, although some distortions occur, especially for large

probes. Taking into account these distortions, the viscous model is found to

be able to fit recent experimental results.

[ PACS numbers: 52.4OHf, 52.7ODs]
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I Introduction

When objects with transverse dimensions larger than the ion Larmor

radius (p,) are introduced into a plasma, their ion collection is governed

by highly anisotropic processes. Ions flow freely along the field but can

cross the field only by drift or diffusive effects. Consequently, the

presheath, that is the guasineutral region of plasma perturbation due to the

probe or object, becomes highly elongated along the field. Ions are

accelerated, by potential gradients, up to the sound speed in the parallel

direction at the sheath edge; meanwhile the presheath is replenished by

cross-field diffusion from the outside plasma. The presheath elongates along

the field until cross-field transport becomes sufficient to balance the

sonic collection flow, as illustrated in Fig.l.

These processes govern not only the behaviour of the scrape-off layer

of tokamaks1 but also the performance of the diagnostics most widely used to

measure the scrape-off plasma: electric (Langmuir) probes of various types2

Therefore a detailed understanding of the presheath physics is extremely

important. Models that have previously been applied to understanding probe

behaviour have focussed primarily on "free" presheaths, i.e. ones that do

not extend all the way to the nearest solid object along the field but decay

away under the influence of diffusion. There are, however, many practical

situations which violate this assumption and in which the presheath connects

with some other probe or object along the field. For example, in a hydrogen

plasma with electron and ion temperatures, Te - Ti - 10 eV, magnetic field B

- 4 T, and transverse diffusivity D - Te/1 6 eB (the Bohm value), a probe of

radius a - 0.002m gives rise to a (free) presheath length of order LP -

csa 2 /D - 2m (cs is the sound speed). Often measurements 3 are made much
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closer to limiters than this 2 m distance, and indeed, specific experimental

studies of the effects of close disturber probes have been carried out

Free presheath models have been studied in some detail. If shear

viscosity is ignored, Stangeby5 has shown that one-dimensional fluid models

can be solved analytically even when there is parallel flow in the external

plasma. In addition Stangeby has applied kinetic one-dimensional sheath

calculations governed by particle sources6 to probe interpretation . More

recent work by Hutchinson, has shown, however, that shear viscosity is an

extremely important effect that is missing from these models. Its inclusion

at a level giving momentum diffusivity equal to particle diffusivity

decreases the ion collection current by about 30% in a stationary plasma.

This may be enough to account for some persistent underestimation of edge

plasma densities by Langmuir probes . More importantly, perhaps, this

viscosity increases the upstream to downstream current ratio from a Mach

probe" by up to about a factor of 4. In comparisons of one- and two-

dimensional fluid calculations9  and one-dimensional kinetic models1 2

Hutchinson and Chung have shown that shear viscosity is a far more important

effect than the difference between these various models2 . Since a priori

theoretical justification of the exact shear viscosity is difficult for the

turbulent processes we anticipate to govern edge transport, attempts have

been made to resolve the question by experiments' 1 5 . However, these

experiments often involve measurements relatively close to some kind of

plasma "dump" and in some cases the presheaths do connect to the dump.

Therefore questions arise as to whether they are a fair evaluation of

theories that are worked out for free presheaths.

Models of the scrape-off layer per se generally are compelled to deal

with connection effects, because the transverse dimension (scrape-off
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length) is itself determined by the flow to the limiters (or divertors).

Considerable effort has been devoted to multidimensional modelling of the

presheath using substantial computer codes1 8 . These codes have the obvious

advantage of being able to incorporate the many complex effects such as

magnetic field variation, recycling and atomic physics, and complicated

geometry. However, the codes are sufficiently complex and the number of

adjustable parameters so large that it is often difficult to sort out the

competing effects. There is therefore still interest in simplified models of

the scrape-off layer, particularly for the physical insight that they

provide. They have recently been reviewed by Stangeby and McCrackeni and a

detailed study of self-similar models has been presented by Gunther1 .

The purpose of the present work is to study connected presheaths using

one-dimensional fluid models with or without shear viscosity.
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II Formulation

We suppose that the ions can be adequately described by fluid equations

as follows:

V1 (nivl) - - V. (niv±) - S , (1)

VII(nimiv1ivi) + (ZTe+ -yTi)Vni -

- V±. (nimiv.Lvi) + V1. ( 7V2vj1) - Sm , (2)

nivi-- DVini , (3)

where ni is the ion density, v is the ion velocity, mi the ion mass, Z the

ion charge, n the shear viscosity, and D the cross-field diffusivity. We are

here adopting essentially isothermal electrons, and the ion temperature will

be taken constant, except that the factor y allows the sound speed to be

taken to correspond to locally adiabatic ion behaviour if desired, so that

we define cs - [(ZTe+-yTi)/mi]1/2. Calculations by Laux et al. 1 8 , using a

full ion energy equation, have shown that the errors involved in this

isothermal ion approach are small.

The fluid approach as a whole may be justified first by the observation

that for the typical example mentioned in the previous section, if the

density is taken as ni - 1019 m-3 , and Z - 1, the ion-ion collision mean-

free-path is only about 8 cm. Therefore the presheath is quite collisional

under these conditions. Second, even if the presheath were not collisional,

rather close agreement has been demonstrated between a completely

collisionless kinetic model of free presheaths and this fluid model 1 2 . Thus

ion-ion collisions (or the lack of them) constitute a minor effect. This

kinetic comparison also justifies, the omission of parallel viscosity from

equation (2). Ion-electron collisions, if they were appreciable, would

represent an important momentum source that is omitted. However, for our
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example the ion-electron collision mean-free-path is about 100m, which is

longer than most relevant presheaths. Thus we are justified, in most tokamak

cases in ignoring ion-electron collisions.

The essence of the one-dimensional approximation is to regard the

perpendicular divergences as sources, S and Sm, in essentially one-

dimensional (parallel) equations, as illustrated by Fig. 1. For the particle

(continuity) source, Stangeby1,5, 1 3 has used on different occasions S -

const. and S o n. Neither of these convincingly represents an approximation

to the transverse diffusion term. Hutchinson8 ' 9 has used a more physically

reasonable and systematic approximation of the transverse derivatives that

leads straightforwardly to

S- D (n - n ) , (4)
a

where no is the density in the outer plasma, n that in the presheath, and a

is the transverse dimension of the presheath (VI - 1/a). For the purposes of

calculating the flow to the probe in a free presheath, the spatial form of S

is not important because it determines only the longitudinal profile of the

presheath. However, in calculating connection effects the presheath spatial

extent is integral to the problem; therefore in the present context this

source choice is important.

The ratio of the momentum source, Sm, to S is important whether or not

connection occurs. Systematically approximating Eq.(2), using Eqs.(l) and

(3) leads to

Sm - Mi v S + (v - v)

(5)

- miV VII(n v) + D(n - n + - )mi(v - v)
a t id

where v refers to the parallel velocity inside the presheath (we drop the I
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suffix) and v that outside the presheath. We have here ignored spatial

dependence of n. The inviscid case, q - 0, has Sm - mivS. More generally, it

is appropriate to take q/nmiD - a to represent the ratio of the momentum to

particle diffusivity. Hutchinson" has advocated a value a - 1, but the

dependence of the results on a is of considerable interest.

The equations are then rendered into normalized form by expressing the

velocity as a Mach number, M - v/cs, to obtain:

dn dM 1
dz dz - 0(n-n)

p

dn dM 1
d+ n M - (M - M) (n - n[l - a]) , (7)

p

where z is the parallel coordinate and again LP - csa2/D is the

characteristic length of the presheath. These are the equations that have

previously been studied9 for free presheaths. The boundary conditions are

that IMI - 1 at the sheath edges.
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III Uniform External Plasmas

If no and Mo are independent of z, then z can be eliminated and the

equations solved for n as a function of M by rearranging Eqs. (6) and (7) as

dn (n - n)M - (M - M)(n - n[l-a])

Lp d - 2  1 (8)

dM (Mo- M)(n -n[l-a])M - (n - n)

Lp a - 0 2 0 (9)
n(M - 1)

and dividing to get

dn (n - n)M - (M - M)(n - n[1-a])
dH (- M - M)(n - n[l-a])M - (n - n) (10)

For a free presheath, the point at infinity (if a o 0) corresponds to M - M,

and n - no and the equation for n(M) is integrated from there to M - 1,

corresponding to the sheath edge. Subsequently the spatial dependence can be

obtained by integrating Eq. (9) to get z(M) and hence implicitly M(z) and

n(z). Previous calculations have placed little emphasis on the spatial

variation since it does not affect the collection flux, for a free

presheath. For a connected presheath, however, the spatial form is vital.

Even so, a similar approach can be adopted as follows.

Consider a connected presheath, bounded at both ends by a probe and

hence with outflow boundary condition IMI - 1. Clearly if the distance

between the two probes, Lc say, is smaller than the characteristic length

csa 2 /D, then the density inside the presheath will everywhere be less than

no (the outside density) because as the connection length gets smaller there

is less and less length available to supply the cross-field flux which

balances the sonic outflow. Fig. 2 illustrates the situation. The mach

number ranges from -1 to +1 in the presheath because of the boundary
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conditions. Therefore there is still a point in the presheath at which M -

Mo. Call this point zm and the density there nm. If we know the value of m'

we can still solve the presheath equation by integrating Eq (10) from M - MH

to 1 and from M - -M0 to 1, obtaining n(M) for two halves of the presheath.

Then the spatial dependence can be obtained as before by integrating Eq. (9)

to get z(M) for these two halves and fitting them together at zm. This has

been done numerically using a straightforward generalization of the code

used previously9 . Fig 3. shows the results of this process for a specific

choice of nm and a and a range of M.

Thus we can solve the connected presheath problem for uniform M0 and no

implicitly in essentially the same way as for a free presheath, using simple

quadrature. We cannot specify Lc a priori, but must specify nm. However, by

studying the whole range of nm we cover the whole range of Lc. Results are

shown in Fig 4. It should be noted that the numerical scheme experiences

some difficulties with integrations exceeding a dimensionless distance of

about 10, which is why the results of Fig. 4 extend no further. This is

because of the proximity to singularities in the equations which magnifies

small numerical errors.

Inspection of Fig. 4 indicates the perhaps somewhat surprising result

that the sheath-edge density (and hence the probe flux) is less affected by

a limited connection length when the external flow velocity is away from the

probe than it is when the velocity is towards the probe. This appears to be

because the most important effect of the connection is to impose the

condition IMI - 1 at the boundary. If the external flow is already

substantially away from the probe, requiring it to flow away at the sound

speed is not such a big perturbation as it is if the distant flow is toward

the probe in the free case.
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In addition to these numerical results, a closed form analytic solution

for the a - 0 case has been obtained. This capitalizes on the well known

fact that the inviscid equations have the solution:

n
n- 2 m (1

1 + M - M M
0

independent of the spatial form of S. The integration to obtain z(M) has

previously5 been performed for the cases S - const. and S z n. It can also

be done for the present, more physical, case S ( (no - n), with no constant.

Substituting the solution (11) into Eq. (9) (with a - 0) and integrating we

obtain

-2 2 2 dM , (12)
P O (M - M M + N)(M - M M + 1)

where N - (no - non 0 . The integration may be done by partial fractions.

Putting M - 1 at z - 0 (so that we are treating a presheath on the negative

z side) we get after some algbra:

2N+2-M2  2M - M 2 - M
2 -arcta - arctan

Lp ](4N-M ) J(4N-M J(4N-M2
0

4 - M r 2M - M  2 - M
+ 2 arcta 2 - arctan 2

(4-M 0) (4-M 0) (4-M 

M 2 - M M -M M+N
+ ln 2 0 0 (13)

M -M M+l 1+N-M
0 0

This general expression yields useful simplifications in various limits

which we list here for convenience.

In the limit N - 0 corresponding to a free presheath (nm - no)
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2m - ml 2 - M
- - ./(2-M ) arctanj - arctanL a rtn(4-M) {(4-M2]

0 0

+ ln|M| + (M - ) ln -M - in M2 M+ (14)
0 0 0 - ,

In the limit M0 - 0, corresponding to stationary external plasma

- - - -N r tn - arctan{}] + 2 [arctan(M) - . (15)

And in the limit where both N and M0 -+ 0

- - - 1 + 2 arctan(M) - . (16)

This last expression illustrates one of the problematical features of the

inviscid free presheath, in that asymptotically M - 1/|z|, while no-n - 1/z2

at large distances. Thus the M perturbation has a greater extent than the n

perturbation. This is even worse for negative MH, where Eq. (14) shows that

M never changes sign and therefore never reaches Mo, a fact that has been

discussed before9 .
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IV Nonuniform External Plasmas

The solutions developed in the previous section are relevant to cases

where the external plasma parameters are independent of the parallel

component, z. As such they may reasonably be taken to model, for example,

the presheath between two adjacent probes of the same size, or a simple

scrape-off layer itself (in so far as a one-dimensional treatment of this is

appropriate). However, if we are interested, for example in the behaviour of

the presheath of a probe close to a larger perturbing object, limiter,

disturber or whatever, then that presheath does not see a uniform external

plasma. Instead it sees as its external plasma the internal plasma of the

larger object (we hereafter call the larger object the "dump", for brevity).

Fig. 5 illustrates the physical situation. Naturally, the dump plasma has

variation over a longitudinal distance of order its characteristic length Ld

- csd 2 /D, where d is the effective transverse dimension of the dump's

presheath. Although this will be longer than the probe's presheath, L,

(since d > a by presumption) there may nevertheless be substantial plasma

variation over a distance LP especially if the probe is close to the dump.

Therefore we are interested in modelling presheaths for which the external

parameters, no and Mo, are functions of z.

For such situations the equations cannot be integrated for n(M) in the

manner of the previous section. Instead we must solve the equations in z-

space with boundary conditions and no(z) and M0 (z) specified.

A one-dimensional code has been written to obtain this solution. The

code uses the numerical methods described by Patankar 2 0 . The momentum

equation is expressed in convection-diffusion form and advanced by a hybrid

difference scheme. (A parallel viscosity term is included but in the present
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work the coefficient is set to a negligible value so that the scheme is

essentially an upwind difference scheme). The continuity equation is

advanced by a pressure correction scheme accounting for compressibility.

This scheme is thus essentially similar to that employed in the much more

sophisticated code of Braams16 . A nonuniform mesh is employed on the domain

0 s z s 1, setting zi - 3ui - 2u1 and uj - i/imaz for i - 0, 1, ' max

This then gives optimum resolution of the slope singularity at the

boundaries (subscript s : sheath-edge), where it can be shown that (n - ns)

- liz - zs .

The time-dependent equations are iterated to convergence, which then

represents the steady state solution. However, a problem arises because the

upwind difference scheme is only 1st order accurate21. It is found that for

the specific case a - 1, MO - 0, and LP - 0.1, which separates the two

boundaries sufficiently that the presheaths are free and so the flux is

known from previous work (viz ns/no - 0.352), the code obtains an edge flux

larger by 1/imax. Thus for 101 mesh points there is an error of about 3%.

Although this is not too severe a problem for the mesh of size 101 used in

the present work, it would be a substantial error for a mesh any smaller. A

simple expedient has been found to provide (apparently) second order spatial

accuracy while retaining the stability benefits of the hybrid scheme. The

equations are iterated to convergence, but then the residual error in the

momentum equation is calculated using central differences. This residual is

added to the momentum equation as a (fixed) correction source and the

equation iterated to convergence again. Since the first stage need not be

pursued to a high degree of convergence, this two-step process takes little

additional computing time.

Comparisons have also been carried out between the code results for a -
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0 and the analytic results of the previous section. These show negligible

discrepancies; although some care must be exercised to avoid density errors

in the distant presheath in cases with very small L ,, because of the

difference in velocity and density perturbation distance mentioned in the

previous section. The discrepancy in the collected flux is negligible even

if such errors are not avoided.

This code can, of course, reproduce the results for cases where the

external plasma is uniform, and do so with specified L,. Fig. 2 was in fact

obtained with this code. However, a perhaps more interesting problem to

study is when the external parameters vary with z. To be specific, the

problem chosen for study here is the behaviour of a probe in the presheath

of a larger dump. The dump plasma is supposed to obey the same equations,

with the same transport coefficients, and itself to reside in a wider plasma

of density n. uniform, and M. - 0. Thus, the spatial variation of the dump

plasma is just a solution of a uniform external plasma problem, but with a

different transverse dimension, d. This plasma then constitutes the external

plasma for the solution of the probe's presheath. For present purposes we

take the dump to possess a free presheath. Therefore the spatial variation

of the dump plasma is determined by the value of the viscosity, a, and the

characteristic length, Ld = csa 2 /D.

It is helpful to have an explicit parametric form of the dump plasma

profile, and therefore an analytic fit has been obtained to the results of

numerical calculations. Expressions of the following form are fitted to the

calculated dump presheath

n(x) - n. [ 1 - exp(an + bn/xI + cnIlxl) ' (17)

M(x) - - x exp(b,Jx| + cvlxl} , (18)

where x is the normalized distance, z/Ld, The fits are extremely good,
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giving, for example, less than 4% error (< 0.025 absolute error) over 3!2

decades in v for a - 1, and even better accuracy for (n.-n). The

coefficients for a - 1 and 0 are given in table 1. For intermediate values

of a an interpolation of the coefficients linear in Ia is used between these

sets, and gives reasonable fits.

In order to calculate the behaviour of a probe in a plasma of this

form, two runs of the presheath code are used, for each position. The first

models the presheath connecting the probe to the dump: the downstream side

of the probe (since the velocity in the dump plasma is towards the dump).

This is the connected presheath, whose length is fixed as the separation

between the probe and the dump. The second run models the upstream side of

the probe, where the presheath is free. In this case the length modelled is

taken to be long enough that the boundary condition at the end of the

computational domain does not affect the near solution. The external plasma

variation is taken, in both cases, to be given by the appropriate form of

Eqs. (17) and (18) as illustrated in Fig. 6.

The key quantity of interest for probe behaviour is then the flux into

the sheath, which is equal to the sound speed times the edge density.

Results are given in tables 2 and 3 and plotted in Figs. 7 and 8 for the

edge density normalized to n., and the ratio of the upstream to downstream

fluxes. These are given as a function of the dimensionless distance, x,

between the probe and the dump in units of the dump presheath characteristic

length (z/Ld) and the velocity and density (M0 (x) and no(x)) at the probe

position are noted. Three representative cases are calculated for the ratio

of the probe characteristic presheath length to the dump characteristic

length:
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L 2
L - . . (19)

d d

The largest value of L corresponds to a - 0.45 d (L - .02), a probe about

half the transverse size of the dump. The smallest represents a probe one

tenth of the size of the dump.

A remarkable observation is that the upstream flux observed is almost

completely independent of both L and the distance x. A partial understanding

of this fact may be obtained by considering the small and large x limits. As

x -+ 0 the probe becomes part of the dump and so its upstream collection

should be just that of the dump, i.e. that of any probe in a plasma

characterized by n, and M.. On the other hand, as x -+ - the probe is

unaffected by the dump, and so again it just collects from the external

plasma, n., M.. That intermediate values of x should give also the same

value is not obvious a priori, but is observed in the calculations. Actually

the x - 0 upstream collection is not exactly equal to the free presheath

value in the calculations, even though physically it should be. This is

because our model separates the probe and dump presheaths and does not

account for the fact that the probe presheath becomes part of the dump

presheath and therefore ought to participate in the transverse sources that

determine the dump presheath. That the discrepancy is only - 10% for a - 0

and even less for a - 1 indicates roughly the error involved in these one-

dimensional approximations. Differences in upstream collection between the

different L cases are so small (< 1% typically) that we tabulate the

upstream flux only for the L - 0.2 case.

The downstream flux is, of course, a strong function of x. It decreases

as x decreases because (i) no is decreasing (ii) MH is increasing and (iii)

connection to the dump is increasing. From the diagnostic viewpoint, (i) and
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(ii) are the factors that a probe would like to measure, in order to

establish the plasma density and flow pattern near the dump, for example.

The connection effects constitute a perturbation of the measurement from

what would be obtained if the probe presheath were free. For the a - 1 case,

inspection of Fig. 7 indicates that the downstream current density to a

probe with presheath length L (in units of the dump's presheath) at a point

x is very roughly equal to what would have been observed with an

infinitesimal probe (L - 0) at a point closer to the dump by a distance L,

i.e. at x - L. This algorithm obviously breaks down for distances closer

than L, but it gives a plausible physical summary of the connection effects.

A similar summary can be formulated for the a - 0 case, except that the

shift corresponds to about 3L, presumably because the effective length of

the presheaths (both dump and probe) are longer (for M) in units of Ld.

The flow measurement, using the ratio of upstream to downstream probe

currents is most affected by the connection. The importance of the

connection for Mach probe interpretation is shown in Fig 8. where the ratios

are plotted against velocity (M0 ), together with the theoretical ratio for a

free presheath at the same velocity. (For the a - 1 case we use the

expression R - exp(M/Mc) for the free ratio, with Mc - 0.41 9. For the a - 0

case the analytic result R - (2+M)/(2-M) is used). These show, for example,

that if a - 1 the use of the free presheath curve for interpretation of Mach

probe data gives negligible error up to almost M - 1 when using very small

probes (L - 0.01); for larger probes, an error of less than 20% in M will

occur up to about M - 0.7 for L - 0.05, but for L - 0.2 the error is about

30% up to about M - 0.4 and rapidly increasing above that. On the other

hand, if a - 0, even a very small probe (L-0.01) experiences greater than

20% error above M - 0.5 and progressively worse for larger probes.
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V Experimental Comparison

Recent experiments by Chung et al14 investigated the behaviour of a

probe in the flow pattern of a dump. The intention of the experiments was to

try to establish what is the best value of a in typical Mach probe

experiments by a comparison of the results with theory. Since independent

velocity measurements were not available, the authors attempted to obtain

self-consistent fits to the data of calculations that modelled both the

probe and the dump presheaths with the same theory and a. This process

seemed to indicate that a viscid (a - 0.5) approach was better. However, the

fits were relatively poor. This was attributed to the connection problem,

which was not modelled, since free-presheath theory was used. It seems that

these experiments ought to be closely approximated by the present theory and

so we present here a comparison with the experimental results.

In comparing with the experiments, the diffusivity, D, which determines

the length scale of the entire problem, is taken as an adjustable parameter,

in the same manner as Chung et al. The ratio of probe radius to dump radius

in the experiments was 6.5/16, which we will take as reasonably modelled by

L - 0.2. (Close enough to the nominal value (6.5/16)2 - 0.17). Then we

compare the theoretical upstream/downstream ratio with that observed in the

experiments, but with the parallel length scale (effectively Ld) as an

adjustable parameter. Fig. 9 shows an overlay of the theoretical lines for a

- 1 and a - 0 and the experimental points.

The fit of the a - 1 theory is remarkably good, within experimental

uncertainty over the whole range. The fit is much better than could be

obtained using the free-presheath analysis. On the other hand, the inviscid,

a - 0 theory cannot fit the data within experimental uncertainty, even with
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the connection effects included.

This comparison provides evidence both that the present results are

capable of explaining experimental observations and also that viscid (a - 1)

modelling is essential.

It may be noted also that upstream collection current independent of

distance from the dump was observed in the experiments, in good agreement

with the present results.
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VI Discussion

The models of section III, using uniform external parameters, are

appropriate for one-dimensional modelling of simple scrape-off layers,

although generally the scrape-off layer is considered to adjust its

transverse length scale (the scrape-off length) in such a way as to balance

the collection flux, whereas we have been speaking as if that length, a,

were fixed. An important contribution of the present work to scrape-off

layer modelling is to provide solutions that use more physical transverse

source both in terms of its n-dependence (oc no - n) and in terms of the

viscosity.

For probe analysis, on the other hand, section III applies convincingly

only to probes of the same size, on the same field line. For independent

probes in tokamak edge plasmas perfect alignment would be rare. However,

probes with relatively small parallel separation could be constructed with

the necessary alignment. One possible advantage that might be useful for

such probes, measuring the ends of a strongly connected presheath, is that

their collection appears to be less influenced by viscosity. However, it is

not completely clear that the one-dimensional model is reliable in this

respect.

The calculations of section IV, accounting for the spatial variation of

the external plasma, should be useful for interpreting probes in the shadow

of limiters or divertors. The appropriate transverse scale length to use for

d, is presumably the scrape-off length. Therefore the results should model

probes that are smaller than the scrape-off length by factors of roughly

0.45, 0.22, and 0.1. In the last case, viscid plasmas experience only very

small perturbations due to connection.

20



There is perhaps some question whether scrape-off plasmas have spatial

forms exactly similar to the dump. Moreover, experiments seem to indicate

that under some circumstances the infilling of the downstream presheath is

substantially faster than might be expected based on the diffusivity

characteristic of the whole scrape-off plasma3 . However, futher theoretical

and experimental work is necessary to determine this.

All the present results must be accompanied by the caveat that the one-

dimensional approximation requires verification by two-dimensional

calculations. Past comparisons have shown the one-dimensional approximation

to work very well. However, it is possible that the agreement would not be

so good for connected presheaths as it is for free. In addition, various

other important factors are omitted from the present model, such as:

magnetic field variation along the presheath, ionization, charge-exchange

and other atomic effects, and spatial variation of diffusivity and

temperature. These omissions can only be rectified by further, more

elaborate modelling, but the present simple model appears to have most of

the essential physics to understand the behaviour of the connected

presheath.
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Cn

-0.434 -1.112

cv

-0.638 -1.810 -0.370

0 -0.690 -1.622 +0.096 -1.091 +0.041

Table 1. Coefficients for the fit of the presheath spatial form, Eqs.

(17) and (18), for the viscid, a - 1, and inviscid, a - 0, cases.
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Figure Captions

Fig 1. Schematic diagram of the physical situation to which the one-

dimensional model of the connected presheath corresponds.

Fig 2. Variation of density and Mach number in a connected presheath.

(Actual values for this case: MO - 0.2, L - 1, a - 1).

Fig 3. An example of a set of presheath shapes, calculated by integration

of the equation for n(M); with nm - 0.7 and a range of values of flow

velocity, MH. (a) n(M) solutions; (b) Mach number, M(z), with M0 ranging

from 0 to 0.95 in steps of 0.05; (c) Density for the same M0 range. The

distance is dimensionless, normalized to Lp.

Fig 4. Compilation of the results of integrations like those in Fig 3,

showing the sheath-edge density (and hence the collection flux) as a

function of the total connection length between the two boundaries (in

normalized units) for a flow velocity ranging from -0.9 to 0.9 in steps of

0.1. (a) a - 1. (b) a - 0.1.

Fig 5. Schematic illustration of the presheath configuration of a probe

in the neigbourhood of a larger perturbing object (the "dump").

Fig 6. Example of the solution for a probe in the shadow of a dump. (a)

The downstream, connected presheath, computed with the domain 0 5 z 5 1

corresponding to -0.4 s x < 0, the distance of the probe from the dump being

0.4 in units of Ld. (b) The corresponding upstream, (effectively) free
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presheath, with computational domain 0 5 z 5 1 corresponding to -8.4 5 x 5

-0.4 in units of Ld. In both cases a - 1, and Lp/Ld - L - 0.2. The external

values, MO and no, are shown as dotted lines.

Fig 7. Normalized downstream collection current density and velocity as a

function of normalized distance from the dump for three different ratios of

probe presheath length to dump presheath length L - Lp/Ld. (a) a - 1 (b) a -

0.

Fig 8. Upstream to downstream current ratio for a Mach probe in the

shadow of a dump for different presheath length ratios, L. (a) a - 1. (b) a

- 0.

Fig 9. Fit of the theoretical models to experiment. Points and the shaded

area are the data of Chung et al. [ref 14, fig. 11(a)]. Solid line is the a

- 1 theory, which fits the data well. Dashed line is the a - 0 theory (over

normalized distance 0 to 6), which cannot be made to fit. Dotted line is the

free presheath fit (for a - 0.5) of ref 14, which also shows substantial

discrepancies.
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