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Abstract

A numerical investigation of ideal magnetohydrodynamic stability in finite aspect

ratio tokamaks with zero edge current density is carried out. It is shown that, assuming

a conventionally D-shaped cross section and a safety factor on axis greater than 2.1, both

n = oo and n = 1 modes are stable for any beta, even in the absence of any surrounding

conductors.
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One of the fundamental goals of the tokamak research program is to maximize the

ratio # of plasma kinetic pressure to magnetic pressure, that can be limited by the onset

of magnetohydrodynamic (MHD) instabilities. A significant advance in this regard was

the discovery of the second stability region for high toroidal wavenumber (n) internal

modes [1-6]. It was subsequently shown that it is possible to devise means of connecting

the high-,3 second stability region to the conventional low-# first stability regime [7-11].

One such way of access to second stability [7-10] requires a high safety factor, with its

magnetic axis value qo typically greater than 2. This necessitates an external control of

the current density profile in order to prevent its ohmic peaking, a possibility that has

already been demonstrated experimentally by means of noninductive current drive [12,13].

If qo can indeed be kept above 2, then a continuous trajectory, completely stable against

ideal MHD internal modes into the second stability regime has been theoretically predicted

in a conventionally shaped, finite aspect ratio tokamak [14].

The most serious obstacle to second stability scenarios is the low-n external mode

instability. Low-n modes normally are found to become unstable [15-171 when the ratio

OT = 407rfaB,/I (1)

exceeds a critical value of the order of 3, and do not show the second stability phenomenon.

In our definition of PT, a is the plasma minor radius, B, is the vacuum magnetic field at

the plasma center R,, It is the total toroidal current, and a system of units in which

aB/I is dimensionless and equal to (aB/poI)MKS is adopted. A conducting wall around

the plasma only slows the growth of these instabilities down to the characteristic resistive

diffusion time, and may not be a satisfactory answer to the external instability problem.

It should be noted however, that the majority of theoretical studies and virtually all the

experiments carried out so far have qo near unity. Also most theoretical investigations

(Ref. 14 included) of MHD beta limits have used flux conserving tokamak sequences. For

these the current density does not vanish at the plasma boundary and, as beta increases,

an increasingly large edge current develops while the magnetic shear remains constant,

which results in a strong drive for the low-n external instability. On the other hand the
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pioneering Versator II lower-hybrid current drive experiment [13] at high /, and high qo

showed no evidence of low-n external instability.

In this work it is shown that, assuming smooth and monotonic pressure and current

density profiles that vanish at the plasma edge and qo > 2.1 in a moderately D-shaped

tokamak of conventional aspect ratio (e = a/Re = 1/3), the n = 1 external instability can

be suppressed even in the absence of any conducting wall. A continuous path into the

second stability regime that stays thoroughly stable against all ideal MHD modes is shown

to exist. This result is consistent with a recent theoretical analysis of MHD stability at

high q [18]. Thus the same means (current profile control at high qo) that allow a stable

access to the second stability region for high-n internal modes can also stabilize the low-n

external modes. This opens the possibility of seriously contemplating high beta tokamak

scenarios that are completely free of macroscopic instabilities.

The theoretical results of Ref. 18 are based upon the invariance of the ideal MHD

equilibrium and stability equations under the scaling /, -+ ,,, 3 -+ A2/3, q -+ q/, in the

limit of large q. They can be summarized as follows. First, as q --+ oo and up to corrections

of order 1/q, all n-modes have the same stability properties. Second, if no access to second

stability for n = oo modes is possible even at large q, then the first stability beta limit

must be expressed in terms of invariant parameters under the above scaling and the Troyon

formula must be generalized to

OiT 5 CR(qo)/qo, (2)

where CR(qo) becomes independent of qo and n as qo -+ oo. If, on the other hand, a stable

access to second stability for n = oo modes exists at sufficiently high qo, then all n-modes

must also become stable or at worst have growth rates that decay like 1/qo as qo -- oo, for

any 3. By restricting ourselves to smooth pressure and current density profiles that vanish

at the plasma edge, the external kink instability drive is minimized at high q and the low-n

external modes become more internal-like. Thus a complete stabilization of low-n modes

can be expected provided the n = oc ballooning modes do exhibit a stable access to second

stability.

After pressure and current profile optimization subject to our smoothness and zero
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boundary value constraints, whether or not a stable access to second stability exists de-

pends on the geometry of the plasma boundary. Generally speaking, stable access is possi-

ble if the geometry produces a sufficiently large favorable average magnetic curvature. In

Ref. 18 one example was shown where this is not the case and the second stability region

is not accessible, namely a large aspect ratio circular cross section. The or 5 CR/qo form

of the first stability limit was clearly demonstrated in that instance.

In this work we present a set of detailed numerical calculations at finite aspect ratio.

We consider two different tokamak cross sectional shapes, both with an aspect ratio A = 3.

The first one is a rather elongated ellipse without triangularity (K = 2.5, 6 = 0) for which

no access to second stability is possible due to its poor average magnetic curvature. The

second one is a moderately shaped D (r. = 1.6, 6 = 0.4), similar to the one considered

in Ref. 14 which allows stable access to second stability against n = oo modes for go

roughly above 2. The two flux functions used to specify the tokamak equilibria are the

pressure p(O) and the ohmic current joH(b) = (j -B)/(RoV4 - B) where (...) stands for

the conventional flux surface average and 4 is the toroidal angle. For both geometries we

consider the same profiles:

P = Po(1 - )3/2, (3)

jOH = jo(1 - ) (4)

where 0 is the normalized poloidal flux (0 < b 1). We vary po and jo to span a ef,

versus qo parameter space. While so doing, a is adjusted in such a way that the ratio of

the magnetic axis MHD safety factor qo to the cylindrical q. is kept constant. Here we

adopt the definition

q* = T(5)

where I, = 27rRcB, is the vacuum poloidal current, It is the total plasma toroidal current

and the line integral extends over the plasma boundary circumference. Therefore, by virtue

of Schwartz's inequality, q. is less than or equal to the edge MHD safety factor q., the

equality holding if IVO | were uniform around the plasma boundary. In our present study

we have set q./qo = 2.72. Since jo scales uniformly the current density profile, only a

relatively small variation in a is needed to compensate for beta effects. Through our
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study, with F3, ranging from 0 to 2 and qo ranging from 1 to 4, a is found to vary between

1.1 and 1.7. If we define the beta and poloidal beta parameters as

, 3 2pa /B3, 1(6)

1, P 87rPaS/Itf, (7)

where pa, is the volume averaged pressure and S is the area of the plasma cross section,

then we have

E#3, = g(r)q.,3T (8)

where g(F) depends only on the geometry of the plasma boundary. Therefore, for constant

q./qo, Ef, 3 is directly proportional to qo 3 T, hence ep, and qoOT scales are equivalent. A

first stability region limit of the form qofT <; CR reflects a linear relationship between ef3,

which is a global measure of the pressure gradient, and q./qo which is a global measure of

the magnetic shear, a result that can be expected to follow from local ballooning theory

[19,20].

The above described tokamak equilibria have been tested for stability against n = oo

ballooning modes and n = 1 external modes without any conducting wall. This numerical

study was performed using the PEST package of equilibrium and stability codes [21].

Equilibrium solutions and their ballooning stability were calculated on a grid of 64 flux

surfaces and 128 poloidal grid points around a flux surface, with constant poloidal arc

length spacing. This grid was refined by interpolation to 200 flux surfaces and 256 poloidal

grid points still equally spaced in arc length, before carrying out the n = 1 stability test.

The convergence of stability results with respect to the poloidal mode cut-off in the n = 1

trial function was verified.

Figures 1 and 2 display the marginal stability curves. The r. = 2.5 elliptical shape

does not allow a stable access to second stability and the curves shown in Fig. 1 represent

the first stability region beta limit. For qo < 1.8 the stability limit against n = oo modes

is determined by the violation of the Mercier criterion in the center of the plasma, which

causes a sharp drop of the critical beta. This Mercier instability could be avoided with

a flatter central pressure profile. What is of interest to us though is the behavior of the
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marginal stability curves at large qo. There we observe how the critical qo#T for n = 1

and n = oo approach each other and tend to a constant as qo -+ oo, in agreement with our

theoretical expectations [18].

The picture changes dramatically when we consider the K = 1.6, 6 = 0.4 D-shape.

In this case the n = oo mode experiences a stable access to second stability for qo > 2.1

and the n = 1 mode remarkably follows suit. This behavior can be explained by our

theoretical finding [18] that at sufficiently large qo all n-modes must approach equivalent

stability properties. Any residual external kink features (necessarily of higher order in

1/qo) that might make the n = 1 mode different from the n = oo mode are suppressed

by our choice of a zero edge current density profile with smooth gradient, toghether with

our prescription of increasing beta at constant q./qo. This means that, for a fixed qo,

p, is increased while keeping the plasma current constant, which results in an increasing

MHD safety factor qand an increasing edge magnetic shear that contribute to suppress

the kink instability drive. In fact it is interesting to note that, on the high beta side of

the stability diagram, the n = 1 mode is more stable than the n = oo mode. This is

because, in this region of parameter space, the n = oo stability criterion is first violated

in the vicinity of the plasma edge where the magnetic surfaces tend to lie in the first

stability side of the local s - a diagram [22], since the edge pressure gradient must vanish.

The fact that the edge magnetic shear increases with , tends to push those magnetic

surfaces further into the local first stability region and makes their local access to second

stability difficult. This causes some degradation of the overall n = oo stability (compared

for instance to a flux conserving scenario where the magnetic shear is frozen and the second

stability region is more readily reached), but is very beneficial for the n = 1 mode. Figure

2 indicates that there is room for some optimized scenario where, by increasing somewhat

the plasma current as beta rises, the n = 1 and n = oo marginal curves are brought closer

toghether to obtain a larger global second stability domain. In any case, for the profiles

studied in this work, the domain qo > 2.1 is completely stable against n = 1 and n = oo

modes. Given that our equilibria have finite magnetic shear and favorable average magnetic

curvature throughout, we can assure that all intermediate n-modes are also stable. In fact

we have tested the sequence with constant qo = 2.25 against the n = 2 mode and found
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staying to the right of the marginal stability curves of Fig.2, completely stable trajectories

can be envisioned from zero-beta up to the equilibrium beta limit. The equilibrium limit

has been observed when cs3, approaches 2, its signature being a rapid increase of the

edge safety factor q, and increasing difficulty for the equilibrium solver to reach numerical

convergence. The highest beta stable equilibrium obtained at IE3, = 1.97 and qo = 1.75,

has f = 8.75%, OT = 11.50 and the more relevant figure of merit from a theoretical

standpoint qo 3 T = 20.13. The 3 figure is comparable to the maximum values obtained in

the conventional first stability regime at low q (high current) [23], but higher values can

be expected after some profile optimization. The OT and qoOT are much higher than any

encountered in the first stability region. This regime of high 3, very high 3,, relatively low

current and complete macroscopic stability may offer a new and exciting way of tokamak

operation if the required current profile control and auxiliary heating prove feasible. The

fact that non-inductive current drive is an essential condition, toghether with the large

amount of bootstrap currents expected at the characteristically high poloidal beta values,

make such regime very compatible with steady state tokamak scenarios thus adding to its

appeal.
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Figure Captions

Figure 1. Stability diagram for n = oo ballooning modes and n = 1 external modes with-

out conducting wall, in a finite aspect ratio tokamak with elliptical cross section

and zero edge current density.

Figure 2. Stability diagram for n = oo ballooning modes and n = 1 external modes

without conducting wall, in a finite aspect ratio tokamak with D-shaped cross

section and zero edge current density.
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