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A design has been developed for a high field magnet for the ARIES-I reactor design. The
toroidal field magnet produces 21 T at the coil. It uses a tertiary Nb3Sn conductor. The
combination of a high aspect ratio design, advanced magnet design, and a bucking cylinder
structural design reduces toroidal field coil stress levels to -700 MPa. The stress level could
be handled in a steady-state reactor by industrially available steels.

1. INTRODUCTION
A major feature of the AIRES-I reactor is the

use of high field [1]. As such, design and
feasibility issues of the 21-Tesla toroidal field
magnet system are critical. We have developed a
high field magnet design that could reasonably be

extrapolated from present technology. The design
uses powder metallurgy Nb 3Sn superconducting

cables. The stress levels are kept at -700 MPa by
use of a high aspect ratio configuration and a

bucking cylinder configuration. We have been
guided in part by earlier design work on high field

tokamak power reactors [2,3].

2. DESIGN APPROACH

The design approach winds the conductor into
grooves within a plate in a manner similar to the

Westinghouse LCP [4]. A group of such plates are

made of a high strength steel alloy. Figure 1
shows a cross-section of the toroidal field coil.

Each coil consists of 22 plates. Instead of winding

all of the material in the magnet, only the

conductor requires winding. This approach eases

the fabrication by eliminating the stiffest material

from the winding process.
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FIGURE 1
TF coil cross-section.

Currently available Nb3 Sn alloys [5] are

capable of producing fields up to about 21 Tesla.

Other superconductors exist in the laboratory for
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use at higher field levels, but there is not full-scale
manufacturing experience. We concluded that
fields higher than 21 T, although feasible, would
require tape conductors. In particular, the best
results obtained with Nb3 (AI,Ge) have been in

tapes [6]. The sensitivity of the tapes to pulse
losses would lead to magnet quenching in the
event of a disruption.

The conductor in each toroidal field coil is
graded with Nb3 Sn used for the intermediate and

high field (a 6 T) regions and NbTi used for the low
field (< 6 T). The stabilizer is high strength Cu-Nb

[7].
The TF coils are supported against radial

forces by a bucking cylinder. Two structural shell
caps, located above and below the bucking
cylinder, support the out-of-plane loads on the
outer legs of the magnets as shown in Figure 2.
These caps are continuous in the toroidal
direction and have access ports to the divertor
targets both above and below the midplane. The
cap, the toroidal field coils, and the poloidal field
coils that are supported by the cap are all in a
common dewar. For maintenance, these caps can
be removed in one piece by relatively simple lift
operations. The cap shells are connected to the
bucking cylinder by a set of radial keys. There is
no transfer of vertical loads from the cap shells to
the bucking cylinder.

FIGURE 2
Schematic diagram of the TF coil external
support structure (bucking cylinder and cap
shells).

The coils were designed subject to the following
constraints: superconductor stability; quench

protection; superconductor strain (including
thermal); stress and strain limits in the
structure; and fabricability. Five grades of
conductor winding pack are employed. The

parameters of the TF magnet are summarized in
Table 1.

3. STRUCTUAL DESIGN

A relatively low stress for a 21 -T magnet is
made possible by some unique aspects of the

ARIES-I design. First, the high aspect ratio
increases the area over which the large Lorentz

forces are distributed. The ratio of the field at the
plasma to the field at the coil is also increased.
Second, the stress levels are reduced by using a
bucking cylinder and two structural caps. Third,
the use of plates facilitates the ability to use the
conductor (superconductor, stabilizer, and
sheath) as part of the structural material.

The coils are supported against radial loads by
a thick bucking cylinder, the thickness of which is
determined by the radial loads. The out-of-plane
loads generated in the inner leg of the magnet are

also supported by the bucking cylinder. The shell

caps support the out-of-plane loads generated.
Finite element models (FEM) were constructed

to analyze the ARIES-I magnets. The first
analyzes global loads while the second analyzes
the behavior of the magnet cross-section. Results

from the global model are shown in Figures 3 and

4. Figure 3 shows the von-Mises stresses in the

coil, while Figure 4 shows the stresses in the

support structure (bucking cylinder and cap
shell). Detailed finite-element analyses of the
magnet yield a maximum von-Mises stress of -700
MPa averaged over the midplane cross-section.
This takes into account the partial transfer via
friction of vertical loads from the toroidal field coil
to the bucking cylinder. The stresses in the

structure are -850 MPa. This level of stress can be
handled in a steady-state reactor by the
industrially available steels [8,91 or Incoloy 908
[10,11]. This material has been considered for the
ITER magnets.

The stresses in the outer leg of the TF magnet
are larger than in the inboard leg, especially in
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Table 1
ARIES-I Conductor Design Parameters

Magnetic field (T) 21.04
Pack current (kA) 100
Maximum voltage (kV) 20
Number of coils 16
Ripple on axis (%) 0.15
Ripple on edge (%) 1.49

Thermal contraction (293 K to 4 K):
Superconductor 2.0 x 10-3
Stabilizer 2.9 x 10-3
Plate 2.0 x 10-3

Case 3.0 x 10-3
Insulation 2.0 x 10-3

Conductor detail:
Grade 1 2 3 4 5
Maximum field (T) 21.1 18. 14. 9. 4.
Critical current density

(10 8A/m 2 ) 2.4 4.98 12.5 35.5 46.5
Critical temperature (K) 4.6 6.5 9.1 12.4 6.6
Radial build (cm) 3.8 4.0 4.4 5.0 5.1
Plate thickness (cm) 1.85 3.28 4.30 4.84 4.96
Conductor height (cm) 2.10 2.30 2.70 3.30 3.41
Superconductor fraction 0.433 0.269 0.128 0.032 0.038
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FIGURE 3
Equivalent von-Mises stresses in the toroidal
field coil for high-P equilibria (in-plane and
out-of-plane loads included). Stress levels in
MPa.
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FIGURE 4
Same as Figure 3 but for the external
support structure.

the region that is not supported by the cap shell.

In this region, space is not at a premium. This

region should be reinforced to bring the stresses

down.

The shear stresses from the out-of-plane loads

have a maximum of -150 MPa assuming that the

cap shell is 0.20 m thick. In order to minimize the

weight of the cap shell, we have iterated the

thickness of the cap so that the stresses are

approximately 600 MPa everywhere. It may be

possible to decrease the weight even further by

making the cap shell as a shear truss.

4. CONDUCTOR
Figure 5 shows the upper critical magnetic

field, Hc2, as a function of temperature for various

low temperature superconductors [12). Only two

of these superconducting materials are available
commercially today: NbTi and Nb3 Sn. Other

materials, however, have much higher Hc2(T) and

may be attractive for high field tokamaks in the

long term. The most promising of these materials
are Nb 3Al and Nb 3(Al,Ge).
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FIGURE 5
Critical field versus critical temperature
for several low temperature superconduc-
tors.

The conductor in the highest field region of the
ARIES-I magnet is multifilamentary Nb3Sn.

Numerous techniques exist for producing binary
and ternary Nb 3Sn. In general, each technique

attempts to provide good mixing between the Nb

and the Sn, and high temperature (~7000 C) heat
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treatment for growth of the superconducting
phase. The best high field Nb3Sn-based

superconductor has been produced by powder

metallurgy (P/M) processing [5].

5. PULSED LOSSES, STABILITY, AND

QUENCH PROTECTION
Pulse losses in the TF system are dominated by

hysteretic mechanisms. The total pulse loss

energy in the TF system during a full scenario

(startup, burn, and shutdown) is 1.1 MJ. This

energy can be absorbed adiabatically and is easily
removed during the burn or shutdown periods.

The fraction of the conductor envelope of the

helium in the high field grade is 7%, and while

the bulk of the magnet is at a bath temperature of

4.2 K, the inlet helium temperature of the first row

is subcooled to 3.8 K. The lowest energy margin is

140 mJ/cm 3 , a value that while not conservative is

sufficient for stability. The energy dissipated in a
disruption at the location of the minimum energy

margin is 30 mJ/cm3 . Everywhere else in the

magnet the difference between the energy margin

and the energy dissipated in a disruption is

larger. Therefore, the toroidal field magnet will

not quench in a disruption. The energy dissipated
in the toroidal field coil in a current-conserving

disruption is -1 MJ (during the flattop).

The stabilizer requirements are dictated by
quench protection and not by stability. In the
ARIES-I magnet, the allowed stabilizer current

density is increased by two mechanisms:

increasing winding pack current which becomes
feasible in the plate geometry; and halving the

effective stored energy per coil by adding an extra

layer of electrical insulation between-the center

plates in each coil. Each half-coil is then driven by
a separate power supply and current lead. Thus,

although there are 16 coils mechanically, there

are 32 coils electromagnetically.

6. POLOIDAL FIELD DESIGN

The design of the PF magnet system does not
share the feasibility and development issues of the
TF system. The PF conductor in ARIES-I is an
internally cooled, ternary Nb 3Sn.

The total pulse energy loss in the PF system is

1.6 MJ for a normal scenario. It was found that

the temperature margin of the PF system is

everywhere greater than 0.5 K, and the energy

margin exceeds 0.5 J/cm3 . The total energy

dissipated in the PF during either a flux-

conserving or current-conserving disruption is

S 300 kJ. Similarly to the TF coil, the PF system

will not quench with a disruption.

7. CONCLUSION
We have analyzed the difficulties associated

with construction in a high field magnet. We

conclude that using present-day materials that

exist in the laboratory (both structure and

superconductor), it is possible to design the

magnets for a 21 T superconducting tokamak

reactor.
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