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A stability criterion for energetic particle-alfven modes

R. Betti and J. P. Freidberg

Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, MA 02139

A stability criterion is derived for energetic particle-Alfven modes. The cri-
terion is valid for arbitrary aspect ratio, arbitrary 3, noncircular, axisym-
metric tori. The plasma is modeled by an MHD core plus a fully kinetic
Vlasov species of hot particles. Electron kinetic effects are neglected. In
spite of the complexity associated with the analysis of the Vlasov species, a
simple but exact stability boundary is derived. The criterion is very fluid-
like in nature, suggesting that accurate evaluation in realistic geometries
can be accomplished with perhaps only minor modifications to any one of
the existing ideal MHD stability codes.

I. Introduction

The effect of hot particles on MHD stability has received considerble attention in

recent years. Such instabilities are believed to play an important role in existing tokamaks,

for instance in the degradation of confinement arising from neutral beam excited m = 1

internal kinks (i.e. fishbone oscillations). They may also pose an important problem for

alpha particle confinement in future ignited tokamaks such as CIT and ITER (i.e. Alfven

gap modes).

The earliest theoretical studies of energetic particle-MHD instabilities involve the EBT

configuration where hot electron rings are used to stabilize pressure driven modes.1, 2 Under

certain conditions the hot electrons can create a stabilizing magnetic well while remaining

"rigid" against MHD perturbations.

The current theoretical interpretation of the so-called fishbone oscillations is that

they are m = 1 internal kink modes destabilized by trapped hot particles resonant at their

magnetic drift frequency. 3-6 These modes have been observed on many large tokamaks

and remain an area of concern regarding the performance of future devices.

Only recently it has been pointed out that highly energetic alpha particles in an

ignited tokamak can resonantly interact with the plasma core and destabilize Alfven modes.

Three classes of modes have been identified. Global Alfven eigenmodes (GAE) are low n,
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macroscopic perturbations whose real frequency lies below the lower boundary of the Alfven

continuum.7 - 13 Kinetic Alfv'n waves (KAW) are localized modes whose real frequency

lies in the Alfv~n continuum, and which are discretized by finite Larmor radius effects and

damped by a finite parallel electron response. 14 ,15 Toroidicity-induced Alfven eigenmodes

(TAE) are low n macroscopic perturbations whose real frequency lies in gaps in Alfv~n

continuum arising because of toroidal mode coupling.161 7 Under appropriate conditions,

each of these modes can be driven unstable by high energy alpha particles.

The instabilities just described have the common feature of a fluid-like MHD mode

driven unstable by a high energy kinetic species. The aim of the present paper is to find a

general stability criterion for those modes that exist in the stable part of the ideal MHD

spectrum, in particular Alfven waves. We therefore consider a model in which the core

plasma is treated as a single MHD fluid and the hot particles as a fully kinetic Vlasov

species. By treating the core as a single fluid the effects of electron Landau damping are

ignored. Since this is usually a stabilizing influence for the modes under consideration, we

obtain a conservative estimate for the stability threshold. The main result of the paper is

the derivation of an exact stability criterion valid for a general finite aspect ratio, finite #,

noncircular axisymmetric torus. The simple form of the criterion suggests a powerful means

for testing stability against resonant energetic particle driven Alfven modes in realistic

tokamak geometries using existing ideal MHD stability codes.

II. Model

Consider a plasma consisting of bulk ions, bulk electrons, and a hot kinetic species

such as alpha particles, or neutral beam ions. The electrons are assumed massless and

satisfy the following fluid equations

+V-n eve =0
at

ene(E + ve x B) + Vpe =0 (1)

Pe/n-I = const.
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At stated, electron Landau damping is not included in the model. To the extent that the

electron-electron collision time is short compared to the characteristic growth time, the

neglect of electron Landau damping is justified. In many realistic situations, however, this

is not the case. The use of fluid equations for electrons is thus primarily for simplicity,

and leads to a conservative stability boundary, since electron Landau damping is usually

a stabilizing effect for the class of modes under consideration.

The bulk ions are also modeled by fluid equations as follows

+ V. nivi = 0at

ov-
n 0m + vi = eni (E + vi x B) - Vp (2)

p /n7 = const.

The ion model neglects Landau damping and finite Larmor radius effects. These are good

approximations for many situations of interest satisfying w/klvti >> 1 and pj/a < 1. In an

additional calculation not presented here, finite Larmor radius effects have been included,

and are shown to have virtually no effect on the conclusions deduced from the basic energy

relation derived in Section V. Hence for simplicity they are not included in the analysis.

The hot particles are treated as a fully kinetic, collision free species satisfying the

Vlasov equation
'9fa Ze

+ U Vfa + -- (E + u x B) V fa . (3)
at ma

This description is "more exact" (and more complicated) than the usual drift kinetic model.

Even so, the details of the kinetic theory will not be required to deduce the basic stability

criterion.

The model is completed by the addition of the low frequency Maxwell equations

B
V xE = --

at

V x B = poJ = poe niv; - neve + Z J ufadu (4)

ne = ni + Zna
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V-B=0

The overall model can be slightly simplified by introducing the MHD ordering at the

outset of the analysis. By assuming w ~ kIIva and pi/a ~ na/ne < 1, the model reduces

to

+ V -pv = 0 (5)

dv
P- JxB-Vp-Ze (E+u x B) fadu (6)

dt

p/p 7 = const. (7)

E + v x B = 0 (8)

d = 0 (9)dt

V x E - (10)

V x B =joJ (11)

V - B =0 (12)

where p = mini, = vi and p = pe + pi are the mass density, flow velocity, and particle

pressure of the bulk plasma respectively. Note that the momentum equation is an exact

consequence of the starting equations. Most of the simplifications arising from the MHD

ordering occur in the Ohm's law which reduces to the well known perfect conductivity

relation 18 Also, while %a is assumed small, the hot species pressure nraTa is assumed

comparable to the bulk pressure p.

The equilibrium and stability analysis that follows is based on the model given by

Eqs. (5-12).
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III. Equilibrium

The analysis begins with a description of the equilibrium. We consider a general finite

aspect ratio, finite 0, noncircular axisymmetric torus. The bulk plasma is assumed at rest

(i.e. v = 0) and most of the current is carried by electrons. The bulk pressure is confined

primarily by the J x B force. This is the usual MHD regime.

Focussing on the hot species, we observe that there are several equilibrium forces:

electric, magnetic, centrifugal, and thermal. While the Vlasov equation treats them all

exactly, in most situations of practical interest the centrifugal and electric field forces are

quite small. The hot species is confined by that portion of the J x B force arising from the

single fluid va x B force. In a purely collisionless plasma it is not possible to determine

how this force is divided between v,4 x B, and va, x B0 (where q and p denote toroidal

and poloidal respectively). A transport theory is needed to determine the apportionment.

Neoclassical transport theory suggests that poloidal flow is strongly damped by viscosity

while toroidal flow can persist for very long times in an axisymmetric geometry. 19

These arguments indicate that a reasonable choice for the hot species equilibrium

distribution function is

fa = fa(E, P4)

E = ma2 + ZeP(R, Z) (13)2

P4 = moeRu4 + ZeQ(R, Z).

Here the flux is related to the poloidal field by the usual relation Bp = VT x e4/R.

Similarly, E = -V4. In the MHD limit E = 0 for static equilibria (from Ohm's law).

Thus 4 = 0. Since E and P40 are exact constants of the motion, Eq. (13) represents an

exact solution to the Vlasov equation.

As a further simplification, it is assumed that f,, has the form of a rigid rotor

f M f( + QP4) (14)

where -f = const is the toroidal angular velocity of the hot species. (Note, with this sign

convenction 0 > 0.) This is an important assumption, critical in the derivation of the
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basic energy relation. The main justifications for rigid rotation are that (1) it produces

plausible profiles and (2) it is probably the most stable form of distribution function. Any

significant shear in the toroidal flow velocity represents an additional source of free energy,

capable of driving new Kelvin-Helmholtz type instabilities and complicating the behavior

of existing instabilities. The rigid rotor reduces hot particle plasma instabilities to their

most basic form. Note that fa is a general function of e + nO4, and not necessarily a

Maxwellian.

From Eq. (14) it is straightforward to show that the hot species number density and

current density can be written as

n fdu =- 1  dp(15)
c'U Zen dx

J, _ Ze ufadu = R eO. (16)

Here,

pa(x) = (u + QRe) 2 fadu (17)

is the hot species particle pressure and

x(R, Z)r=-manR2 (18)2Ze

Hereafter, we shall consider pa(X), or equivalently fc(e + nPO) to be a free function.

These relations are substituted into Maxwell's equation. After some simple manipu-

lations we obtain an MHD-like set of equilibrium equations given by

J x B - V(p +pa)+ manc 2 RVR = 0

V x B =poJ (19)

V - B =0 .

As expected, the hot species enters the momentum balance through an additional

pressure gradient force and a centrifugal force. For many practical applications both of

these contributions are small compared to the Vp term of the bulk plasma.
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Following standard procedures, it is possible to reduce Eq. (19) to a single Grad-

Shafranov equation for the flux I. This equation has the form

A*@ = -F poR2 +dp
TT \ dII dx/

F VIP x eo
B = --e + .R (20)R R

In Eq. (20) F(,@), p(%I) and pc(X) are free functions.

This completes the specification of the equilibrium problem. For the stability analysis

we shall assume that a solution has been found to Eq. (19) or equivalently Eq. (20).

IV. Stability

The stability analysis proceeds in a straightforward manner. In an axisymmetric torus

all perturbed quantities can be written as Q(R, Z) exp(-iwt - ino). For convenience the

analysis is separated into two parts, one involving the bulk plasma and the other the hot

species.

A. Bulk plasma analysis. The stability of the bulk plasma is very MHD-like. We

introduce the fluid displacement for the bulk plasma

y = -iw . (21)

From Eqs. (5)-(11), N, B, J, p, and p can be easily expressed in terms of e
= iw x B Ohm's Law

=V x (x B) Faraday's Law

J = (1/po)V x V x (( x B) Ampere's Law (22)

p = -V - (pa) Mass Conservation

Vp - ypV - Energy Equation

With these substitutions, the momentum equation reduces to

-w 2 p= xB+Jx B-Vp + F (23)
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where

Fa = -Ze (E+ u x b)fadu - Ze u x Bfadu. (24)

The close relationship to ideal MHD is apparent.

B. Hot species analysis. The one remaining quantity to be expressed in terms of

( is the perturbed distribution function fa. Using the well known procedure of integrating

back along the unperturbed particle orbits assuming Im(w) > 0, we find

= J_(E + u x B) - Vfadt'. (25)

For the rigid rotor distribution function

9fa
Vufa = a (mu + mJlReo). (26)

After a short calculation the integrand in Eq. (25) can be written as

(E + u x B) - Vfa = ma O [ (dI VP) - i(w - nn)(± u x B] . (27)

This leads to the following expression for the perturbed distribution function

fr = - Zef( _. V'I) - i(w - nfl)] (28)

where

=Ze f (u x B)dt'. (29)

The first term in Eq. (28) is a simple fluid-like contribution. The second term is quite

complicated, requiring an explicit integration along the complex unperturbed orbits.

The final form of the momentum equation is obtained by integrating the fluid-like

contributions arising from the hot species. Substituting the first term in Eq. (28) into

Eq. (24) yields

Z2 e 2Q( _ VT) u x B du = d 2 ( 1 - V)VAF. (30)

Similarly, the first term in Eq. (24) is evaluated as follows

-ZeJ(N + u x t)fadu = i(w - nf)Zenac, x B + V(d1 . V'T). (31)
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Substituting into the momentum equation [Eq. (23)] gives

-w2p = FM(C) + FK(). (32)

Here

FM(C) =j xB+J x B -V(#+p)+ f 2RVR (33)

with

dx

ia = -Ma dna (C_ . VI) (34)dx

The quantity FM(C) is the analog of the MHD force operator modified by fluid-like con-

tributions to the pressure and centrifugal force arising from the hot species. The quantity

FK() is a hot species kinetic addition to the force given by

FK(C) = -i(o - nf)Ze naC x B xB du. (35)

The kinetic complications are contained within the trajectory integral .

Equation (32) is the desired form of the momentum equation, expressed entirely in

terms of C.

V. The General Energy Relation

Because of the rigid rotor form of the equilibrium distribution function, it is possible

to derive a simple and useful energy relation from the basic stability equation [Eq. (32)] by

multiplying by -C*/2 and integrating over the plasma volume. The left hand side becomes

W2 KM where

Km(C* = PI2dr . (36)

KM is the familiar MHD kinetic energy normalization.

The first term on the right hand side can be written as

bW ,)= - 1 C* - FM()dr. (37)
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6W is the MHD potential energy contribution modified by the fluid-like hot species con-

tributions. Following well known procedures for mindless MHD algebra, it can be shown

that the force operator FM( ) is self-adjoint. One specific self-adjoint form is given by

1 |~~B.-V~i 2 B3224B26W=- drYPIV- I2 ++--IV- +2_.1| 2  4B- 1 2
2 A0 AO ILO

4 2 n 2 d2 Pa 2 + Li VV P + PC + - JL : VVR2 (38)
4Z2 2 dXp 2R'2 ±1±vv(±P ) 2 1_

where n = (B/B) - V(B/B) is the field line curvature. The self-adjointness property

is important because it implies that 6W( *, ) is real even when is complex. A more

intuitive form of the potential energy can be obtained by a different sequence of algebra

i.IQ1 2 B2 YPV. 1 J11C
bW = dr { + IV _p|V- 2 _ 2h-* xB.Q 1

- 0 [V 2 12 + *L' _Sj2d *L - V2 (39)

where QI = (V x ((_ x B)]-L. In order, these terms represent line bending, magnetic

compression, plasma compression, kink destabilization, curvature destabilization, and cen-

trifugal destabilization.

The last term to evaluate for the energy relation is the kinetic modification denoted

by TK

TK - J* -FK( )dr (40)

where FK( ) is given by Eq. (35). The first part of TK can be written as

T = (w - n0)R1  (41)

with

Ri = Ze- xB)dr. (42)(42

R 1 is clearly a real quantity. The second part of TK has the form

T i(w - (u x B) 5 du dr . (43)
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This expression can be simplified by noting that from the definition of S

Ze*I - (u x B) iw** + DS* (44)

where

D* = (u -V + ZkuxB.V *. (45)
~~m

(2),

T() becomes

T2 T)W* 2 - i D5*] du dr. (46)

The last term in Eq. (46) can be further simplified by writing the complex quantity S as

= iO. Then,

i5DS* = !D(A2 + D2) - (ODA - ADC). (47)
2

Since D(&fa/e9) = 0 from the equilibrium relations, the contribution to TK) from the

first term on the right hand side of Eq. (47) is an exact differential which integrates to

zero over the phase space volume. Thus, the integration of iSD5* yields a real quantity.

T ) can now be written as

T =(w - nQ) R2 -J2du dr] (48)

where

R 2 = (ODJA -2DDO)du dr . (49)

Combining the contributions from Eqs. (36), (37), (41) and (48), we obtain the fol-

lowing energy relation

w 2KM=8W+(w-n l) [R- 52 8 2 du drl (50)

and R R 1 + R 2 is a real quantity. The final form of the energy relation is obtained by

writing w = w, + iwi with wi > 0, and setting the real and imaginary parts of Eq. (50) to

zero.

Li 2w -KM- + l f2du dr =0 (51)
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(w,2 - w?)KM - 6W - (w, - nOl)R + [(w, - nil)w, + w? ajg12du dr =0 .

Eliminating R yields

Iw - nn12 KM 2 2 _ 6W (52)
KM + Ka KM)

where

Ka = f - I 2du dr. (53)
2 6-r

Equation (52) is the desired form of the general energy relation.

VI. Discussion

A. General comments. Several interesting conclusions can be extracted from

Eq. (52). For simplicity, consider first the case with no hot kinetic species; that is, an

ideal MHD plasma. Equation (52) reduces to

6W
Iw12 _ K (54)

Km

If 8W > 0 for all allowable perturbations, then Eq. (54) exhibits an obvious contradiction

that is only resolved by recognizing that the original assumption wi > 0 must be violated.

In other words, when 6W > 0, the plasma is stable, consistent with standard MHD analysis.

The next point to note is that if a trial function is found that produces a minimum in

6W/KM whose value (bW/KM)min = 0, then the self-adjointness of FM( ) implies that

this trial function is an actual eigenfunction of the system with eigenvalue w, = Wi = 0.

This too is consistent with the well established stability analysis of ideal MHD.

Based on the above information it is tempting to conclude that w = 0 represents the

true stability transition. While this is a consequence of the standard analysis, it does not

follow from Eq. (54) alone. Specifically, if a trial function is found which makes 6W < 0,

there is no guarantee that Eq. (54) cannot be satisfied by w, $ 0, wi <; 0. Some additional

physics is required to establish this conclusion. In ideal MHD this physics is related to the

conservation of energy and the Energy Principle. In the case of a hot kinetic species, the

additional physics is related to the presence of resonant particles.
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The conclusions for the general case including a hot kinetic species follow in an anal-

ogous manner. We consider equilibrium distribution functions satisfying

ofa< 0 (55)

so that Ka > 0. If 6W (including the hot species fluid-like contributions) is greater than

n 2 Q 2 KM for all allowable trial functions, then Eq. (52) exhibits a contradiction, implying

that the assumption wi > 0 is violated; that is

6W> n22 (56)
Km

is a sufficient condition for stability. Note that Eq. (56) implies that there are no unstable

modes in the equivalent ideal MHD model without hot particles.

Continuing, for a trial function that minimizes 6W/KM with (6W/KM)min = n2Q2-

then the self-adjointness of FM( ) again guarantees that this is a true eigenfunction of the

system with eigenvalue Lo, = nil, wi = 0.

Therefore
(6W 22(57)

k KM min

is a marginal stability point. In a system with resonant particles, the eigenvalues are in

general complex, w, 5 0, wi 0 0. When (bW/KM)min > n 2 n2, the contradiction in

Eq. (52) implies that wi < 0. When (6W/KM)min = n 2 f12 , we have determined that

wi = 0; the eigenvalue is purely real. It is then plausible that when resonant particle

effects are included, a trial function which makes (6 W/KM)min < n 2 SI2 will lead to

wi > 0. We conjecture that modes stable in ideal MHD (e.g. Alfv6n waves) become

unstable in the presence of a kinetic species when (6 W/KM)min < n 2 f 2 . This conjecture

has been explicitly proven for a related, but slightly simpler system consisting of fluid

electrons and fully kinetic ions. 20 In terms of the standard terminology, the unstable mode

has w, > wi with w,2 6W/KM corresponding to a positive energy MHD wave. The

stability boundary w, = nfl, represents a transition from positive (w, > nfl) to negative

(w, < nl) dissipation, the latter giving rise to instability.
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Assuming the validity of this conjecture, then the condition

'SW
8_ > 2n2 (58)
KM -

is sufficient for stability in general and also necessary for Alfv6n wave stability.

It is important to recognize that our criterion does not obviously apply to modes

which lie in the unstable part of the ideal MHD spectrum, (SW/KM)min < 0, such as the

m = 1 internal kink mode with q(0) < 1. In many cases these modes exist only in the

unstable part of the spectrum, never exhibiting a discrete eigenmode with w2 > 0 for any

set of plasma parameters. Thus our description of the transition from a stable to unstable

phase through the critical point (bW/KM)min = n212 > 0 is not applicable. For this
21,22

reason one cannot recover the energetic-particle kink stability window at high /2,2 from

the basic energy relation.

Observe that SW appearing in Eq. (58) can be larger or smaller than SW for pure

MHD because of the inclusion of the fluid-like hot particle contributions. In the interesting

limit where the hot species 13a is small compared the bulk 0, these terms are negligible

and both forms of SW coincide. In this regime, Eq. (58) implies that a hot kinetic species

is always destabilizing. An ideal plasma requires SW > 0, whereas the addition of a hot

kinetic species, raises the lower limit on SW to SW > n 2 fl 2 KM.

If finite Larmor radius effects of the bulk ions are introduced, the conclusions remain

unchanged. This can be seen heuristically by replacing w 2 with w(w+w,*) in Eq. (32). Here

wi = k -VDi is the ion diamagnetic drift frequency. If w.i is constant in space, the general

stability criterion can be rewritten as 'SW/KM > n22 + nllw.i. Since ni ~ w*a > W*i

the additional term has virtually no effect on the threshold condition.

There is an important practical consequence that follows from Eq. (58). If one is pri-

marily interested in accurate threshold conditions rather than growth rates, then Eq. (58)

implies that these conditions can be determined in realistic geometries using pure fluid

codes. The complicated particle orbits do not explicitly enter the threshold conditions.

For example, in the regime /3a < , one can run, with perhaps some modifications, one

of the well established ideal MHD stability codes such as PEST, ERATO, or GATO. The
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lowest eigenvalue w . can be calculated (and may be positive or negative) and then

compared to the value of n 2 f2. The threshold condition occurs when w, =n2

B. Applications. The stability criterion given by Eq. (58) can be applied to the

problems of the GAE7-1 3 and TAE16,17 modes. To make comparisons with the existing

literature, we must determine the relationship between S and w*, (the perpendicular

diamagnetic drift frequency). We define w*a = k -VD where

1 BxV'Idpa
VD = B x (VPa - manaRVR) - xeVT dx

ZenaB 2  ZenaB2 dx

k = nV + d' , (59)

F(T) = RBO, and 0 is an orthogonal poloidal angle. The Jacobian J is related to Bp and

0 by the usual relation J = 1/(Bp - V). Note that k is defined for any value of n but

can only be unambiguously intepreted as the wavenumber for localized modes. A short

calculation yields

w*a = nil. (60)

Perhaps unexpectly, we see that wea, which is proportional to the perpendicular dia-

magnetic drift velocity, is related to the macroscopic angular velocity f which is predom-

inantly in the parallel (i.e. toroidal) direction. This result is reconciled by observing that

the momentum equation for the hot particles implies that the macroscopic fluid velocity

and diamagnetic drift velocity are related by va = VD + (vil/B)B where og is a free

function. For the rigid rotor distribution function it can be shown that v11 = -fF(@)/B.

This leads to vp = 0 and o = -IR.

Consider now Alfv6n wave eigenmodes driven unstable by high energy alpha particles.

There are two main classes of modes to consider. Global Alfven eigenmodes 7-1 3 (GAE)

are low n, macroscopic perturbations whose real frequency lies beneath the minimum of

the shear Alfv6n continuum: w2 < min(kOfv). These modes have been found to be

strongly stabilized by toroidicity via coupling to electron Landau damped sideband modes

resonating with the shear Alfven continuum.13 Since our model does not include electron
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Landau damping, the GAE would presumably remain unstable in a torus if wr < w a.

Even so, in terms of growth rate, the GAE is a much weaker mode than the toroidicity-

induced Alfv6n eigenmode16,1 7 (TAE) which is the second class of modes to consider.

The TAE mode is a low n macroscopic perturbation whose real frequency lies in

a toroidally induced gap in the Alfv~n continuum. In the absence of electron Landau

damping, (which is often not the dominant stabilizing effect), Van Dam et al 20 have shown

that in a large but finite aspect ratio circular tokamak, a sufficiently sharp alpha pressure

gradient is required for instability: w*a > KWA where wA = k1l (ro)va(ro) and ro is the

radius corresponding to the gap. The constant K is of order unity and depends upon the

choice of the equilibrium alpha distribution function. For a Maxwellian and a slowing down

distribution K = 1 and K = 1/2 respectively. This threshold is in general agreement with

our basic stability criterion if we note that w2 = 8W/KM for the gap mode. However, our

criterion predicts K = 1 for all distribution functions. The discrepancy is due to different

definitions of w~a. In our criterion the critical w*c is always given by w a =W/KM.

However, the value of nQ = w*, varies as the alpha particle distribution function changes

while holding certain macroscopic quantities fixed (e.g. total number of alphas, total alpha

energy, width of the alpha profile, etc.).

Van Dam et al show that the TAE mode may be of serious concern to the ITER

project. Their initial calculations predict that ITER will be stable for a slowing down

distribution. However, the safety margin is quite small. Other distribution functions,

as well as finite aspect ratio, finite [, and noncircularity could quantitatively change the

threshold. This suggests that an accurate threshold calculation, based on Eq. (58) and the

procedure described immediately thereafter would indeed be a worthwhile endeavor.
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