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Abstract

We present a study of plasma transport driven by externally imposed wave fields;
the transport arises from the induced chaotic particle dynamics. In particular, we
examine the guiding center motion of charged particles interacting with electrostatic
waves in a tokamak. This motion is described by a time-dependent Hamiltonian in a
four-dimensional phase space composed of the guiding center's three position coordi-
nates and its velocity along the magnetic field. As a specific focus, the work is applied
to electrons in lower-hybrid current drive (LHCD) fields. We examine the dynamics
for two cases: (i) a large ensemble of randomly phased waves, and (ii) a few large
amplitude waves. For case (i), we calculate the local quasilinear diffusion tensor in the
two-dimensional action space of the guiding center and compare it to numerical obser-
vations of the stochastic diffusion induced by the same spectrum of waves. An average
radial diffusion coefficient is estimated from the quasilinear tensor and we discuss its
scaling for typical LHCD parameters. In case (ii), we find enhanced radial transport in
the presence of waves whose corresponding wave-particle resonance conditions are si-
multaneously satisfied at a single point in action space. In the vicinity of this point the
radial excursions are not limited by the trapping width of the resonances. The mean
square radial deviation of an orbit from its initial average flux surface, a(t), is found
to obey a power law for long times, i.e. u(t) ot'y. When the amplitude of the waves
is small enough that their primary resonances retain stable fixed points (even though
the overlap criteria is satisfied), we find that y is below unity, indicating an anomalous
diffusive process; at larger amplitudes y 1. When the shear of the magnetic field lines
is taken to be zero, resonances can coalesce throughout action space. In the presence
of such a degenerate resonance we find that orbits will exhibit a "stochastic streaming"
in the radial direction.





I Introduction

In this paper we are studying the guiding center motion of magnetically confined charged
particles interacting with electrostatic waves in a plasma. As a specific focus, the work is ap-
plied towards describing the wave induced radial transport of electrons during lower-hybrid
current drive (LHCD) in a tokamak. During LHCD, electrons interact with the wave field
and experience stochastic accelerations along magnetic field lines. Radial transport follows
because the toroidal VB and curvature drifts are coupled to the parallel stochastic acceler-
ation. In addition, the perpendicular component of the wave field gives rise to a fluctuating
E x B drift which also leads to radial transport. This intrinsic wave induced transport may
be partially responsible for the observed anomalous confinement of superthermal electrons
during LHCD [1]. It is also important to consider wave induced transport when attempting
to control the wave induced current profile.

Guiding center motion is described by a time-dependent Hamiltonian in a four-dimensional
phase space composed of the guiding center's three position coordinates and its parallel veloc-
ity (along the magnetic field). The stochastic motion of guiding centers through prescribed
wave fields has been studied previously in two limiting cases: motion along the magnetic
field with no drifts [2, 3, 4], and drift motion without parallel wave driven accelerations [5, 6].
In each of these cases one can view the dynamics in a two-dimensional surface of section and
the relevant diffusive process is one-dimensional. In our recent work, the radial component of
the guiding center drift was coupled to a stochastic two-dimensional map which determined

the parallel motion [7]. We are generalizing these approaches by considering the dynamics

in a four-dimensional phase space. We use Littlejohn's Lagrangian formulation of guiding

center motion [8] to derive canonical coordinates for a tokamak equilibrium with an imposed

electrostatic wave field. Using the standard approach of classical mechanics, we obtain the

generating function which relates the toroidal coordinates to the action-angle coordinates of

a particle's unperturbed orbit (the case when the imposed wave field vanishes). One can de-

rive an explicit form for the action-angle coordinate transformation for circulating particles

in a low # circular tokamak. This is done by expanding the generating function to exploit

the fact that the deviation of an electron's orbit from its average flux surface is small com-

pared to the scale length of the magnetic inhomogeneity. Upon transforming the wave field

from toroidal coordinates to action-angle coordinates, it is written as a Fourier series in the

angles and each component is associated with a discrete curve in action space along which
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the wave-particle resonance condition is satisfied. Ignoring drift motion leads to the usual

resonance overlap criterion for the formation of a thick stochastic layer in a two-dimensional
phase space which describes the parallel motion. When the drift motion is included, the
stochastic process leads to radial transport. Generically, wave-particle resonance curves will
intersect at points in action space where the ratio of the unperturbed frequencies is a ra-
tional number (i.e. rational unperturbed KAM tori). We show that in the vicinity of these
intersections, particles can make large excursions in the radial direction. This leads to en-
hanced diffusion in the presence of a few large amplitude waves. Conventional quasilinear
treatments of transport in RF heated plasmas [9, 10] cannot account for such effects.

For LHCD, determining the wave field in the plasma from that launched at the edge is a
complex problem which has not yet been solved. Here we assume that there exists in the core
of the plasma some spectrum of electrostatic travelling waves which approximately satisfy
the local dispersion relation for frequencies above the lower-hybrid frequency. We consider
two examples. In the first example we calculate the quasilinear diffusion tensor in action
space [11] for the case of a broad spectrum of randomly phased waves; we compare this to
the diffusion observed by numerically following the exact, stochastic orbits. In the second
example we consider the stochasticity and radial transport induced by a few large amplitude
waves.

The paper is divided into six sections, organized in the following manner. Canonical
coordinates for the guiding center are derived in Section II. In Section III an explicit form for
the action-angle coordinate transformation is developed for circulating particles. In Section
IV general features of the guiding center's interaction with the wave field are discussed. In
Section V we consider quasi-linear diffusion induced by a broad spectrum of waves and in
Section VI we consider the case of a few large amplitude waves. Our conclusions are in
Section VII. In Appendix A we derive the canonical coordinates for a magnetized slab with
shear. Appendix B contains the guiding center equations of motion in toroidal coordinates.
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II Hamiltonian Guiding Center Formalism

Starting from the Lagrangian formulation of guiding center motion developed by Littlejohn

[8], we will derive canonical coordinates for an axisymmetric, time-independent equilibrium

under the effect of electrostatic waves. The Lagrangian is

L(x, k, u, i) = [-A(x) + ub(x)] -k - H(u, x, t) , (1)
m

where
1e

H = -u 2 + MB(x) + -k(x, t) , (2)
2 m

x is the three-dimensional spatial position vector of the guiding center, u is its parallel

velocity, and M is its magnetic moment divided by its mass. The vector potential is A(x),

B(x) is the magnetic field, and 4(x, t) is the scalar potential of the electrostatic wave-field.

Also b(x) = B/B and B(x) = IBI. If we let zi denote one of the four guiding center

coordinates, x and u, then the guiding center's motion is determined by the four Euler-

Lagrange equations,

-O .d (3)
dt aii azi

Since L is independent of it, one finds that &L/Ou = 0, so that u is in fact the parallel velocity,
i.e. u = b . k. The remaining three Euler-Lagrange equations determine the perpendicular

guiding center drift and the parallel acceleration. With a little algebra one obtains the

following equations of motion:

* = (B-)-l[uB* + b x ('MVB + V4)] , (4)
B* e

*= (- ) + MVB),()
B* m

where B* = B + (mu/e)V x b and Bg = b - B*. Since the magnetic moment is conserved,

we consider it a parameter and not a dynamical variable. This restricts us to the case

when the frequency of the wave field is much smaller than the gyro-frequency of the parti-

cles under consideration, a condition which is well satisfied by electrons in LHCD fields. It

is assumed that the electron Larmor radius is small compared to the perpendicular wave-

length of the electrostatic field. The amplitude of the wave field is restricted by the usual

limitations of guiding center analysis, which require both the parallel acceleration and the

E x B drift during a gyro-period to be small in the following sense: Jk +/P(w,.fB)J < 1
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and |mk21/(eB2)| < 1, where kl and k1 are characteristic parallel and perpendicular wave
numbers and wf is the frequency of the wave field (w,.f = 2 rf,.f).

We now transform the Lagrangian into the toroidal coordinates (0, 6, 0), where 4 is the
usual poloidal flux function and 0 is the toroidal angle. The coordinate 6 is chosen so that
V6 is perpendicular to both Vik and V. Also 6 increases by 27r upon one rotation around
a flux surface at fixed toroidal angle. Using these coordinates the magnetic field for a scalar

pressure MHD equilibrium can be written as [12]

B = g(0)VO+ F(4,O6)V6 , (6)

where the vector potential is chosen to be

A=4'VO-G(O,6)VO . (7)

These relations define the functions g(4), F(o, 6), and G(O, 6). It is straightforward to show

that the 6 average of 9G(VO,6)/180 is the tokamak safety factor q(4') [13]. Substituting (6)
and (7) into (1) the Lagrangian becomes

L=po4+pe9-H , (8)

where the momenta conjugate to 0 and 9 are

p4 = 0 + g(O)u/B ,(9)

and

pe = -G(O, 6) + F(O, 6)u/B . (10)

The system has been normalized in the following manner: the units of velocity are v, (chosen

to make the parallel velocity of order unity, i.e. v. ~ Wrf /k11) and the units of time are R,/v 0 ,
where R. is the major radius. The normalized Hamiltonian is

H = u2/2 + MB(0,6) + 4(V0,0,t) , (11)

where the electrostatic potential is normalized to mvo/e and the magnetic field is normalized

to B, (the toroidal field on axis). The constant M is now the magnetic moment of the guiding

center normalized to m/B,. Both 4 and G are normalized to mRv,/e, whereas F and g

are normalized to RB,. It is convenient to introduce the function G'(4', 6) = G( , 6)/8.

With the above normalization the functions g(ik), F(0,6), B(0,6), and G'(4',6) are all
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slowly varying in 0. Generally one cannot invert (9) and (10) to obtain 0 and u as explicit

functions of the canonical momenta. It is easy, however, to obtain the equations of motion

in the coordinates (pi, ,9, ), where pii = u/B. The results are shown in Appendix B.

The formalism is most similar to that of White [14] except that we have used an orthogonal

coordinate system to describe the tokamak geometry. In general, these results differ from

those obtained by Kaufman [11] because the parallel velocity in our formulation is not strictly

proportional to the time rate of change of the toroidal angle (as is the case when the guiding

center is following a magnetic field line).

In the absence of the electrostatic potential, the toroidal angular momentum, pk, and

the unperturbed Hamiltonian, H0 , are both conserved. (Note, H, = u2 /2 + MB(-, 9).)

Transforming to the action-angle coordinates of the unperturbed Hamiltonian is done by

following the standard procedure of classical mechanics [15]. The definitions of H, and po

are used to obtain pe as a function of 9, H0 , and p5. The poloidal action, Ie, is defined as

the area (divided by 21r) in the (pe, 9) plane enclosed by, or beneath a curve of constant H,

and po, depending on whether the orbit is trapped, or circulating. This is written as

I, J p,(0; H., p ) . (12)

The toroidal action, 4, is identical to pb. The canonically conjugate angle variables, (, and

are obtained from the generating function,

S(0,0, Ie, 4) = Jd'pe(O';H(II4),I4) + 4q , (13)

by differentiating with respect to the actions,
as 

(14)

where the subscript i denotes either 9, or 0. Also, the identities, po = 0S/09 and pk = OS/o4,

are recovered from the generating function. Note, that H is a function of the actions as

given implicitly by (12). The unperturbed frequencies for both the 9 and 4 motions are

.H 0 H-- *- 81 ;(I,I) . (15)

Physically, Q,, is the bounce (transit) frequency of a trapped (circulating) particle. f4 is the

bounce-average of , which is equivalent to QA4/2ir, where AO is the amount of toroidal

rotation during one poloidal orbit. In action-angle coordinates the Hamiltonian takes on the

form

H = H,(I) + <>(, , t) ,a(16)

where I = (Ie, 1,) and C (Ce, CO).
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III Action-Angle Coordinates For Circulating Elec-
trons

In this section we consider an ensemble of electrons in the vicinity of a specific flux surface
in the core of the plasma. Furthermore, we consider only circulating electrons since they

are primarily responsible for the absorption of the RF power during LHCD. We write the
functions g(ib), F(b,0), B(b,0), and G'(b,9) as power series in the inverse aspect ratio, e,

defined as r/R, where r is the radial distance from the magnetic axis:

g(O) = 1+0e2

F(O,9) = Oe2

B(O,9) = 1- e()cos9 + Ge2

G'(7k, 9) = q(Vy) + q1 cos + Oe2  (17)

The ordering in (17) assumes a low # circular equilibrium [13] and reflects the fact that the

ratio of the poloidal to toroidal field is of order e and modifications to the vacuum toroidal

field are of order e2. The safety factor q(O) is the poloidal average of G'(0, 9) and q1(V') is of
order e, as needed to satisfy the identity G' = (B -VO)/(B -V9). For example, if one ignores
the Shafranov shift of the flux surfaces, so that 0 = 7k(r), then qI(b) = -e(b)q(0). In a
self consistent toroidal equilibrium the shift of the surfaces must be included to correctly

determine q1(O) through order e. We ignore all terms of order e2 and higher.

To obtain an explicit form for the action-angle transformation we exploit the fact that

both B(O,9) and G'(0,9) are slowly varying functions of 0; i.e B = B(AO,9) and G' =
G'(Ab, 9), where A < 1. Physically, the size of A is obtained by considering the relation

between radial distance and the normalized poloidal flux, Ar = pe~A, where pe = mv,/eBe

and Be is the poloidal component of the magnetic field at r = r,. Typically pe is small

compared to the radial distance over which B and G' vary. We now consider a two parameter

expansion, in which both e and A are small. We consider A to be of order e, so that we keep

terms of first order in A, while ignoring terms of order eA and A2. For fast electrons in the

core of the plasma, A ~ pe/r, ~ 10-2, whereas e, ~ 10-1. Technically our expansion should

go to second order in e to consistently retain terms of first order in A. However, we shall
see that going to first order in A allows us to treat the important physical effect of magnetic

shear; going to second order in e would make things unnecessarily complicated. By ignoring

terms of order eA, we take e(O) ~ e, and qj(o) ~ ql0 , where the subscript denotes that each
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quantity is evaluated at the surface r,. The safety factor is of order unity so we expand it

to first order in A, i.e.

q(0) ~ q. + q~s.o , (18)

where s, is of order A and represents the shear of the magnetic field. Note that we have

chosen i = 0 at r = r. Using these expansions in (9) and (10) yields the canonical momenta,

P's = O'+u(1+EEcoso) (19)

pe = - d'G'(i',9)

= -q.(o + ) q l cos 9 . (20)
2

To the same order the unperturbed Hamiltonian is H, = u2/2 - Mco cos 9, where we have

dropped the additive constant, M. For well circulating particles, which satisfy M/H of

order unity or smaller, one obtains the following relations for u(8, Ho) and V,(8, H0 , p6):

u ~ it+ (ME/fI)cosO , (21)

?k~ - e(it + M/i) cos9 , (22)

where fi =_ V/T and =p4 - fi. The poloidal action is obtained by substituting (22) into

(20) and averaging in 9; ignoring terms of order e2 and EA one finds that

I,9 ~_ -qo - q0 . (23)
2

Noting that po = i4, we can write the unperturbed Hamiltonian as

H = fi 2 /2 = (1/2)(I4 - (I0)] 2  . (24)

From H0 it follows that Qk = it = q(4)[e; ignoring terms of first order in A would result

in q( l) ~ q,, so that the ratio of the unperturbed frequencies would be a constant. The

generating function in (13) can now be written explicitly to the required order

S(8,4,I4) =Ie6+I0+E oST(Ie,14)sin9  , (25)

where
q 2M

ST= qI+(1q+")I9+ M (26)
goeo (qo, + Ie)

One obtains Ce = 9 + eo(8T/Ie) sin 9 which is easily inverted through first order in e to ob-

tain 9 (6 - eo(IOST9/Ie) sin Ce. Similarly one obtains the relation 4 ~ 6 -E,(ST/84) sin (a.

We thus have the following transformation equations:

6 ~ e[1+ 0 q* M _e6 sin (e (27)
qoIE0 ( qoIo + I#)2
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4) ~O - [q. - M 2If sin (e (28)
(q0i4 + I)

I9 q0M
+ e I+)- [ -+ I]ECosC . (29)q. (q.I0 + Ie)

The equation for 4 was obtained by substituting Ce for 9 in the order E term of (22). Using

these equations, the electrostatic potential can be transformed from the toroidal coordinates,

4, 9, and 4, to action-angle coordinates.

Let us briefly discuss the physics of various terms that arise in the above transformation.

The order e terms signify the toroidal effects, the parallel magnetic gradient and the curvature

of the field lines. These give rise to oscillations in both 9(t) and 4(t), as well as in the radial

coordinate 0(t), the latter coming from the combination of the VB and curvature drifts.

The order e oscillation in 4 vanishes when M 4,+ Ie/q, in which case the oscillation along

the field line from the magnetic mirror is just cancelled by the shrinking of the pathlength

as the particle rotates from the outside to the inside of the tokamak. For fast electrons

during LHCD the curvature effects will dominate since M will typically be much smaller

than the average parallel energy, H0 . The only order A contribution comes from the shear

of the magnetic field lines, i.e. q is not a constant so that the proportionality between 10e

and Ql depends on the poloidal action. We note that the order eA terms, which have been

neglected here, would be needed to properly treat trapped particles since it is these terms

that give rise to the toroidal precession of the banana orbit.

IV Stochasticity In Action-Angle Coordinates

During LHCD the RF wave-field is driven at a single frequency, W, by a source at the

edge of the plasma. We write the potential as 4 = Re{e(4,9,4)e"*}, where (k is a

complex function of the original toroidal coordinates. The electron dynamics is obtained by

transforming (c into the above action-angle coordinates. Since the transformed potential is

a periodic function of the angles, (a and (0, we can write it as the following Fourier series:

4 = Re{ Cn,i(I)e"i '(nC Wt)} , (30)
n,l

where Cn,1(I) is a complex function of the actions. We represent the transformation to

action-angle coordinates as follows:

0 = (0 + A(Ce, I) (31)
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6 = 9(ce, I)

P(C, 1) , (33)

where explicit forms for A, E, and T can be obtained by direct comparison with equations
(27)-(29). The Fourier coefficients are

C.,(I) = f e-iC9+inA(Ce)n(0((e, I), 'I(CaI)) , (34)

where
whn (0, ) = J e ~i" (c( , 7k , 0 ) . (35)

The wave-particle resonance condition is simply n9,6(I) + le(I) = w, which defines a

curve in the two-dimensional action space. For a single mode (i.e. a distinct n and 1) the

actions will no longer be conserved, but there will still exist two independent constants of

motion. These are easily found to be nIe - U0, wI0 - nH, and wIe - lH, where two of the

three are independent (note H is the complete Hamiltonian). The orbits in this case are

regular everywhere in phase space. For two modes it is easily shown that there will be only

one constant of motion, in which case the dynamics can be obtained from an autonomous

Hamiltonian with two degrees of freedom. Generally, there will be three or more modes and

no constants of motion. In this case there exists three types of motion[161: regular motion

on a KAM torus, stochastic motion across resonances in the region where they overlap, and

stochastic motion along resonances which are interconnected in action space (i.e. Arnold

diffusion).

Physically the unperturbed guiding center motion has two well distinguished time scales,

fast motion in the parallel direction (along the magnetic field) and slow drifts across the

field. In the case of LHCD, the basic mechanism for induced stochastic dynamics arises from

parallel accelerations caused by the waves. Ignoring the drift motion altogether will lead to

the usual resonance overlap criterion for the formation of a thick stochastic layer in a two

dimensional phase plane which describes the parallel motion alone. On a slower time scale

this is coupled to the drift motion enabling particles to shift their average radial position.

After a long time, particles can make large excursions perpendicular to the magnetic field,

which in turn effects a gradual change in the structure of their parallel dynamics. For

example, KAM curves in the parallel portion of phase space will gradually shift allowing

particles to move from one resonance to another, even when such a transition is prohibited

by motion in the parallel phase plane alone. The latter effect is Arnold diffusion.

9
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To separate the fast motion along the magnetic field from the slow perpendicular motion,
we introduce the following linear transformation of the action-angle coordinates:

4 = P1+P2

z1 = (

Z2= CO -q(e (36)

The new coordinates are z, and z 2, and their respective canonical momenta are p1 and P2.

Note, the generating function for this transformation is S(C, p) = (P1+P2)( - qop2Ce. Using

equation (24) and (23) and neglecting terms of order S2 (since so is of order A), one can write
the Hamiltonian as

2 2

H = + sop, +4 (pz,t) . (37)

Following from (30) the potential is

1 = Re{ Ck(p)e(klzl+k2Z2-Wt)} , (38)
k

where k, = n + l/qo , k2 = -l/qo, k = (ki,k 2), and Ck(p) = Cn,(I). If we take qo to be

a rational value then 4 is periodic in both z1 and z 2 (the periodicity length for z, is an

integer multiple of 2r depending on qo, and for z 2 it is 2irqo). In Appendix A we derive

this Hamiltonian for a magnetized slab with shear; the difference between a slab and a

torus is contained in the coefficients Ck(p) of the wave spectrum, which are determined by

equation (34) for a torus. From the Hamiltonian (37), we define the unperturbed frequencies

fl(p) = (Q1,f22), where

Q1 = P1 + sop 2/2 , (39)

f2 = SoP1P2 (40)

Because so < 1, the frequencies are generally well separated, f1 > f2, with f 2 vanishing

at the rational surface, P2 = 0. The resonance curves in action space are f(p) - k = w,

which are nearly parallel lines given by pi = w/ki. Two modes whose wave vectors, k,

correspond to the same kj, will have resonance curves which intersect in action space at the

point pi = w/ki and P2 = 0. When so = 0, S12 vanishes everywhere and these resonances are

degenerate, becoming a single straight line throughout action space. We will show below that

the intersection of resonance curves in action space and their degeneracy when so vanishes,

plays an important role in a particle's radial motion.
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Since the motion is fast in the (pi, zj) plane compared to the (p2, z2 ) plane, it is convenient

to define the "parallel Hamiltonian" as

p2
H1 = + Re{EAke(k1z1-*)} , (41)

Ak1 = Ck(p)eik2Z2 , (42)
k2

where we consider z2 and P2 held fixed in the determination of the resonant amplitudes, Ak1 .

(To obtain H from H, one sets the slow frequency, f2, identically to zero.) For given values

of z2 and P2 one can obtain a two dimensional surface of section for the parallel dynamics.

Since the motion is both periodic in z1 and in time, t, one can either view the dynamics

in the (pi, zi) phase plane at successive values in time spaced by 27r/w, or in the (H 1, t)

plane at successive values of z, spaced by the periodicity length. One finds that the motion

defined by H becomes stochastic in the region of overlapping resonances given by the usual

criterion

2( IAJ + AT) > wj- - - , (43)
V A

where the v and it are neighboring components of the ki spectrum and 4VIAskI is the full

trapping width of the resonance at pi = w/ki.

We now consider the radial motion obtained from the Hamiltonian in (37) by differenti-

ating with respect to the coordinate z2:

2 = Re{E B ei(kz-wt)} (44)
ki

where

Bk, = E ik2 Ck(p)eik2z2 . (45)
k2

We may also consider the quasi-static limit where Z2 and P2 are held fixed in Bk,, so that

the time rate of change of P2, as given by (44), is completely determined by the orbit zi(t),

which in turn is determined by the following:

zi = P1

= -Re{EikjAkaei(k"1z-)} . (46)
k,

Let us look at the radial motion of a particle trapped in the vicinity of a specific resonance.

Ignoring all the non-resonant components of the spectrum, we consider only a single value
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of k1 . We chose to write Bk, = iklA, (f3eq ), where # and ( are both real. Substituting this

into (45) and using (42), one obtains

SEk k2Ck(p)eikz2
k, Ek2 Ck(p)eik22 

(4

If there is only one finite term in each of the sums over k2 in (47), then f = k2/k 1 and ( = 0.

In the generic case, the spectrum will contain more than one Fourier component, Ck(p), at

a given ki, so that will generally be non-zero; this corresponds to the intersection of two

or more resonances in action space. Without loss of generality, we can chose kjAk, = -a,

where a is real and positive. Ignoring the sums over k, in equations (44) and (46), they can

be written in the following form:

P2 = -aO sin (W +) (48)

# +asin'= 0 , (49)

where p = kizl - wt. The solution for P2(t) in terms of W(t) and pi(t) can be written as

follows:

P2(t) = P2(0) + (cos )pi(t) - (a3sin ) dt'cos (t) , (50)

where pi(t) = pi(t) - pi(O). Although 6p 1(t) is bounded by the trapping width of the

resonance, the integral over cos p(t) is clearly not bounded since for deeply trapped parti-

cles Jp(t) < 7r/2. In this case the equations predict a secular drift in P2(t), i.e. P2(t) ~

-(aosin )t for times long compared to the bounce frequency of motion in the resonance.

As particles approach the separatrix surrounding the resonance, cos W(t) is negative for most

of the time, so the drift changes direction. Generally, this secular drift cannot persist indef-

initely, since after some time the quasi-static approximation is invalidated by the secularity,

i.e. we no longer can consider z2 and P2 to be fixed in (47). In the specific case that sin = 0,

the secular term in (50) vanishes and the excursion in P2(t) is proportional to 6pi(t). Al-

though the solution in (50) is not valid for long times when the secularity is present, it does

show that the excursions in P2(t) are not generally restricted by the trapping width of the

resonance. This effect gives rise to Arnold diffusion along an interconnected "web" of reso-

nances when the amplitudes are too small to allow stochastic motion across the resonances

[16].
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V Quasilinear Diffusion During LHCD

When the spectral amplitudes of the wave field are large enough to satisfy the overlap crite-

rion (43), yet small enough that their corresponding trapping widths are narrow compared

to the width of the connected stochastic region, electrons in this region of phase space may

be expected to diffuse quasilinearly. The quasilinear diffusion tensor in action space is [11]:

D;,(p) = E }ICk(p) 2 6 (fl(p) - k - w) kik, , (51)
k

where the unperturbed frequencies, fl(p), are given in equations (39) and (40). (Note, that

we have written the scalar potential as the real part of a complex Fourier series (38), so

that its spectral energy is ICkI2/2.) Although D;,(p) is a singular tensor field it should be

smoothed out by coarse-graining action space because the resonances are broadened by their

trapping widths. Neglecting f2 2 compared to 11, we approximate the resonance condition

as p1 ~ w/k and coarse grain in pi by averaging over an interval whose width is larger

than the distance between resonances, but much smaller than the width of the stochastic

region. The coarse-grained diffusion tensor is a function of p; we will refer to this as the

local diffusion tensor. The off diagonal elements of the local diffusion tensor are necessary

in the Fokker-Planck operator to give the correct diffusion paths in p space. From (51) we

can obtain a global estimate of the radial diffusion coefficient, D, = (D 2,2(P))p, where the

averaging is over the entire stochastic region in p space. This global quantity is simply an

indicator of the magnitude of the radial diffusion process which is described in detail by the

local diffusion tensor. The quasilinear autocorrelation time, rq, is

ir (k1)
rql = - (52)

where (ki) is the average value of k, over the spectrum whose width is Akj. Assuming that

most of the spectral energy is located within the stochastic region, we may write D, in the

following way

D, a rI( E k2 Ck(p)2)P2  , (53)
k

where p, = w/ki when it appears in ICk(p)12 and the final averaging is only over P2. The

global radial diffusion coefficient is converted into physical units by multiplying the expression

in (53) by (v,/R,)p2.

To evaluate the local diffusion tensor (51), or the global radial diffusion coefficient (53),

we need to have an expression for the wave field inside the plasma. We consider that in the
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core of the plasma, in the vicinity of r., there exists an ensemble of waves propagating in

both the toroidal and poloidal directions and across flux surfaces. The potential is assumed

to be of the following form:

= Re{E am,nei(n+me+#..,.r-wt)} (54)
m,n

where Km,n is determined by assuming that ratio of parallel to perpendicular wave numbers

is fixed by the local dispersion relation for high frequency (above the lower hybrid frequency)

electrostatic waves. In particular, we take

k1l ~ (n + m/q,)R-

k M,n + (_)2) (55)

with k±/k 1 equal to the ratio of the local electron plasma frequency to the RF driving

frequency [17]. Typically the spectrum launched into the plasma from the wave guide array

is broad in n and vanishes outside the range n, <_ n < n 2 ; it is comparatively narrow in m

and centered about m = 0. Although the results of toroidal ray tracing [18] and toroidal

normal mode analysis (19, 20] show a significant upshift in the poloidal mode numbers of

the spectrum inside the plasma, we will initially assume that the spectrum in the core is

approximately the same as the spectrum launched into the plasma. In this case kii ~ n/R,

and we can estimate n 2 from the condition that the lowest phase velocity in the spectrum,

Wr Ro/n 2, should intersect the tail of the central electron distribution function at about

4 kT/mfIe, in order to drive sufficient current in the core of the plasma [21, 22]. For

a frequency (f,.) of about 2 GHz, in a 2.5 key plasma with a major radius of 1 meter,

this leads to n 2 ~ 150. In the following example we take n 2 = 150 and n1 = 100, with

am,n identically vanishing outside of this range. Furthermore, we assume am,n is finite only

for m = 0. We now transform the potential (54) into action-angle coordinates using the

transformation equations (27)-(29). We first note that r = r. + pe1/ and rewrite (54) as

4 = Re{ anein(+f)-t]} , (56)
n

where a = (ki/k1 l)(pe/R). Since the RF frequency is on the order of the ion plasma

frequency, we have k-/k ~ m-/me, so that a ~ mi/mAe,. When using (28) and (29)

to transform the combination (0 + ab), there will be a term of order e coming from the

transfomation of 0 and a term of order ea coming from the transformation of -0. Since a is

typically small we need only retain the order e term which comes from transforming 4, so
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we evaluate the potential at -0 ; -Is/q, (i.e. at an electron's average radial position). We

find that
M

S+ a I C6 + Cp2 - qoeo(1 - ) sin Ce (57)

where we have used the definitions of pi and P2 given in (36). Substituting (57) into (56),
one obtains the following relation for the Fourier components:

C, ([p) = aneiVC e -inqeo(1-M/p) sinC

= an(-1)'J (nqfe,(1 - M/pi)) e """2  , (58)

where JI is the ordinary Bessel function of order 1. Using the definition of k following (38)

we can change notation from Cn,l(p) to Ck(p).

First consider c, = 0, so that only the I = 0 coefficients in (58) are finite. Suppose we

can write Ian| in terms of a smooth function for nj < n < n 2 , i.e.

an = f(n)e i , (59)

where f(n) is smooth and the phases, n, are randomly distributed. The coarse-grained

diffusion coefficient, D 1 ,1 , which follows from (51) can now be written as

D1,1(pi) = -[f()]2 . (60)

When E = 0 the other elements of the diffusion tensor vanish because P2 is a conserved

quantity. It is convenient to chose

f(n) = 4(n )3/2 , (61)
n

so that D1,1 in (60) is a constant. Chosing the velocity scale, vo = wgRo/ni, so that w = ni

(i.e. t is physical time normalized to niw-]) we find that D1 ,1(p1 ) = (7r/2) 2 n2  = Do. Note,

that when 4% > (4n 1)- 2, the overlap criterion is satisfied for n 1/n 2  P1 < 1, outside of

which the diffusion coefficient drops from Do to zero.

Assuming (61) and (59), and using (58), the quasilinear diffusion tensor for finite c, may

be written as follows:
12 k ki k-

Dij(pi) = DL - k j k lk(X) (62)
= (k1 + k2

where k1 = n 1/pi, k2 = -l/q,, X = eoqo(ki + k2)(1 - M/p1), 12 = n1qo(1 - p1)/i' and

11 = qo(ni - n 2pi)/pi. The limits on the I sum arise because k1 = n + l/qo = n1 /p 1 and an
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vanishes for n < ni and n > n2. Also the diffusion tensor is not a function of P2, because

we approximated the radial dependence of the RF field as ei-n. The diffusion tensor (62)

should be considered a local quantity defined in the vicinity of P2 = 0, where e = e,, and

q = q,. In Figure 1 we have plotted the elements of Di, 1/D, as functions of p1 by numerically

computing the sum in (62) for the case when ni = 100, n 2 = 150, q = 2, e, = .1, and M = 0.

It can be shown analytically that the central flat region of D 2,2 scales as De2/2. Figure 2

shows Dij for the same parameters, except that M = .2. We see that although D 1,1 is nearly

the same, D 1,2 and D 2,2 are significantly altered, since the factor (1 - M/p1) tends to reduce

the argument of the Bessel functions in equation (58). Physically, the oscillation along a field

line from the magnetic mirror tends to compensate for the shrinking of the parallel pathlength

as particles rotate from the outside to the inside of the torus. For these examples, the basic

scaling of the global radial diffusion coefficient, D,, is obtained by substituting k2 ~ kiE,

into (53). The resulting expression yields D, ~ D0 e2,. Clearly, if the poloidal mode numbers,

m, are large enough (as when they upshift due to toroidal effects on wave propagation) there

will be an enhancement in the radial diffusion coefficient over the above example with m

identically zero. One finds that for jml > qon the dominant terms in the radial diffusion

are obtained by ignoring the order E effects altogether; in this case D, becomes the usual

expression for E x B diffusion induced by a poloidal electric wave field. We note that the

E0 x Be drift is one order of e smaller than the drift induced via the parallel electric field

by coupling to the equilibrium VB and curvature drifts. Consequently, the E0 x Be drift is

ignored because we have truncated the action-angle transformation to first order in e.

The quasilinear diffusion can be compared to that observed by numerically following the

exact orbits of an ensemble of particles whose initial conditions are at the same point in

action space and uniformly distributed throughout the range of both angles. We introduce

the following diagnostic quantity:

dj, (t; po) - (pi(t)p1(t)) - (pi(t))(pj(t)) (63)
2tD(

where p(O) = p, and the angular brakets indicate an ensemble average. In Figures 3 and 4

we show di, 3(t; po) for 4, = 10-' and two different values of p'(O). The other parameters

are the same as given above for Figure 1. We can identify two time scales on which di,(t)

varies: the fastest is rc, the time required for the autocorrelation function of 1 1(t) to decay,
the slow time scale is rd, which is the time required for the ensemble to spread across the

stochastic region, or the diffusion time. The time rac can be distinguished in Figures 3 and

4 as the time it takes for the initial transient in di,j(t) to decay, i.e. roc < 1. The quasilinear
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estimate of r,, is given by r,; in (52) (for this example, w ~ (ki) and Aki ~ 50, giving
Tr,;~ .1). For times long compared to r.,, but short compared to rd, Figures 3 and 4 show
that di,(t; p.) ~ Dj (p1(0)) ID., where the quasilinear diffusion tensor is given by equation

(62) and is shown in Figure 1. The diffusion time for these parameters is quite long, on the
order of 104, because D, is so small (approximately 10-'). In Figure 3, one sees that the

transient portion of d1,2 (t) persists much longer than those of the diagonal components of

d1,(t). We note that in the case of Figure 3, we chose pi(O) = .8, which corresponds to the

central flat region of Di,,(pi) where D 1,2 nearly vanishes. When pi(O) is chosen towards the

outer portion of the stochastic region, where D1, 2(p1) is large, the transient portion of d1,2(t)

decays faster, as shown in Figure 4. From the Figures one can also identify smaller transients

in dig,(t) which take place on a longer time scale than r.,, but are still fast compared to rd.

This intermediate time scale, which we define as r,, can be identified as the time required

for the ensemble to spread in pi across the width between two neighboring resonances. The

time scale, r,, arises generically when analyzing diffusion in two-dimensional stochastic maps

with periodicity in only one direction, such as the Fermi map (231.

Having established the connection between the diffusion predicted by the local quasilinear

tensor and that observed numerically, it is interesting to go back and look at the scaling for

radial diffusion given by D, in (53). In terms of the average parallel electric wave field

E'= (m ) 2 (1 k212Ck(p)1 2 ) , (64)

we can write the radial diffusion coefficient in physical units as

Drad (ki)EI k2B(
"2f,f Ak1B2 k1 Be'

where Drad = D,(v/R,)p2 and the double brackets indicate an averaging over both the

spectrum (weighted by the spectral energy) and the radial coordinate. For (ki) ~ Ak i ,

f,f ~ 2 GHz and B, ~~ 5 Tesla, one finds that D,,ad (.1m 2/sec)E (((k 2 B0 /kiBe) 2 ),

where Ell is expressed in kV/cm. In the example problem, where we assumed that the

poloidal mode numbers were identically zero, the term enclosed by double brackets is of

order unity. For upshifted poloidal mode numbers, this term could be as large as (B,/Be) 2 .

Thus with large wave fields, Ell .1kV/cm, quasilinear scaling can yield an appreciable

RF induced radial diffusion. However at such large amplitudes, the typical trapping widths

of individual resonances are on the order of the width of the stochastic region and the

quasilinear approximation is invalid. For example, in Figure 3, <I>, = 10' corresponding to
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an Ell of about 10- 3 kV/cm and a trapping width (4Vf~) of about 1.3 x 10-2. Increasing

$, by two orders of magnitude results in a trapping width that is about one fourth of the

width of the stochastic interval in pl.

VI Stochasticity And Diffusion From A Few Large
Amplitude Waves

In this section we assume that the potential is given by (54), where m and n are the same

order of magnitude. Ignoring the order E piece of the action-angle transformation we write

the potential as

'= 'kcos (k -z + akp2 - t) , (66)

where ki = (n + m/q0 )/n0 , k2 = -m/(nq), ak = pe'm,n, and n, is some typical toroidal

mode number of the wave spectrum. The Hamiltonian has the same form as in equation

(37), where we have rescaled the coordinates z1 and z 2 by the factor n,; t is physical time

normalized to w- and the velocity scale is v, = w,. Ro/no. Noting that pe = vOB4/wceBe

and q0R,/r, = B0/Be, and using (55), one obtains

k kW,. B0{1 _ ( Bekll )2k2 ],L(7_K±WI~ B [k k 2 (67)
kllwceBe 1 BekI

Typical parameter values are: (ki/k1 )2 , 103, B#/Bo ~ 10, and Wce/,Wrf 102. Using

these one finds that ak ~ V10ki - k2. In the following we consider the stochasticity and

radial transport induced by just a few such modes, where the spacing between the k, mode

numbers is on the same order as k1 . In this situation the amplitude of the waves must be

large to satisfy the overlap criterion and the width of the stochastic interval in p, is on the

order of a few resonant trapping widths.

We first consider the case of just three modes, since for fewer modes than this there

will always exist at least one constant of the motion. In particular we take: 4% = t, for

k = (1.5, -. 5), (2, -1), and (3, -1), where 4', is real and positive. Recall that the resonance

condition is fl(p) - k = 1, where the unperturbed frequencies are given in equations (39)

and (40). Since f1 2 < f0, the resonance condition is p, ~ 1/kl, so that the resonances for

these modes occur at pi = 1/3, 1/2, and 2/3, respectively. Each point in the (p2, z 2 ) plane

can be associated with a two-dimensional parallel Hamiltonian as defined in (41). We see

that Ak, I = -%, where Ak, is defined in (42), so that the overlap criterion in (43) is satisfied
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when 4, > 1.7 x 10-1. The (pi, zi) surface of section for the parallel Hamiltonian is shown

in Figure 5 for the case when q, = 2 x 10-1. Since |Ak, is independent of P2 and z2 , the

parallel surface of section is similar at all points in the (p2, z2). We now let the coordinates

P2 and z2 evolve according to the complete Hamiltonian dynamics, as opposed to being held

constant in the above two-dimensional surface of section. For example, Figure 6 shows the

time series, p1(t) and p 2(t), of a typical stochastic orbit when I" = 10-2. In this case p 2(t)

shows a fast stochastic variation superimposed upon a slow meandering. Focusing in on

the fast stochastic motion, one can see that it is directly correlated to the p, time series.

We showed in Section IV, following equation (50), that for motion in the vicinity of any

non-degenerate resonance the excursions in p1 and P2 are proportional by the ratio of k1 /k 2.

Since this ratio varies as the orbit jumps stochastically from one resonance to another, the

overall time series for the two actions will not be proportional. Averaging over the fast

stochastic variations one sees that the mean of P2 tends to wander, whereas p, is confined

to the region of overlapping resonances. Varying the shear parameter, se,, does not have a

significant effect on either the p, or P2 time series in this example.

We now add a fourth mode to the spectrum in the above example. The additional mode

is chosen in such a way as to create a degenerate resonance. In particular we take: (% = (1

for k = (1.5, -. 5), (2, -1), (2, 0) and (3, -1), where D, is real and positive. For the set

of modes in the first example, the resonance curves were non-degenerate, in the sense that

each Ak, was composed of only a single mode in the sum over k2. On the other hand, in

the present example, the resonance curves for the two modes with equal k, components,

(2,0) and (2,-i), intersect at the point p = 1/2 and P2 = 0. In the limit of vanishing 112 ,

the resonances for these two modes coalesce throughout action space creating a degenerate

resonance at p1 = 1/2. We define 4bd as the potential obtained by explicitly adding the two

degenerate modes. Using the notation k = (ki, k2 ) and k' = (ki, k') for the two degenerate

modes, one can write 'Id as follows:

I = 2'4, cos cos (kizi + &P2 + Ik2z2 - t) , (68)

where
(k2 - k2) (a, - a)(69)

2 2

I2 = (k 2 + k')/2, and a = (ak + ak,)/ 2 . The amplitude of the degenerate resonance is

2tI cos 1I, which depends on a particles position coordinates in the (p2, z2) plane as given

by V in (69). For the four mode example, the (pl, z1) surface of section of the parallel
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Hamiltonian is shown in Figure 7 for two different positions in z2 at P2 = 0 and with

§, = 2 x 10-. In Figure 7a, the amplitude of the degenerate resonance vanishes because

i = 7r/2 and the phase space is dominated by the remaining two resonances at p1 = 1/3

and 2/3. At this value of 4 , the trapping widths of these resonances do not overlap and

we see that they are seperated by phase spanning KAM curves in the surface of section. In

Figure 7b, the degenerate resonance has nearly the same amplitude as the other two and

the overlap criterion is satisfied forming a thick layer of stochasticity. At larger values of

§., greater than about 7 x 10', the trapping widths of the pi = 1/3 and 2/3 resonances

overlap. In this case a stochastic layer in parallel phase space is seen at all values of P2 and

z2 -

We continue our analysis of the four wave example by looking at the time series deter-

mined from the four-dimensional Hamiltonian. Figure 8 shows a typical stochastic orbit for

§, = 10-2 and s,, = 0; we see that p2(t) and z2(t) exhibit fluctuations about a uniform

average drift. The origin of this streaming motion is related to the degenerate resonance

as explained in Section IV following equation (50). The direction of the stream depends on

the initial conditions in the (p2,z 2) plane. It is possible to show that the streaming motion

progresses along a line in the (p2, z2) plane, because 0 in (69) is approximately conserved

by the Hamiltonian dynamics with zero shear. This can be determined from the equations

of motion by using the potential Td given in (68) and ignoring the additional contributions

of the two non-degenerate waves to the total potential; one finds that '0 is proportional to

P1(t), so that with p 1(t) bounded to the region of overlapping resonances the streaming must

approximately conserve 0. In addition the streaming can move in either direction along a

line of constant t9 depending on the the initial value of 79 in '4d. When shear is included,

the streaming motion cannot persist since V is no longer approximately conserved. Figure 9

shows the time series for the same initial condition as in Figure 8, but with s, = 10-2. We

see that p2(t) moves stochastically in a random walk fashion. As soon as P2 becomes appre-

ciable, the time dependence of z2 is dominated by the linear frequency (i.e. i 2 ~ S 2 , where

Q2 = SoP1P2). We note that the excursions in P2 are no longer approximately proportional

to the excursions in pi, as was the case in the example with three non-degenerate resonances

(see Figure 6). In fact we can see directly by comparing the p2(t) time series in Figures 6

and 9, that the radial excursions are significantly enhanced by the presence of intersecting

resonances.

For stochastic orbits, the power spectra of the p, time series obtained from the four-
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dimensional Hamiltonian are the same as those obtained from the two-dimensional paral-

lel Hamiltonian. The parallel Hamiltonian provides a useful way of visualizing the actual

parallel dynamics which is really a projection onto the (pi, zi) plane of motion in a four-

dimensional phase space. Regular orbits, or "sticky" orbits initially near invariant surfaces

of the parallel Hamiltonian are significantly altered by the four-dimensional dynamics. In

the four-dimensional case the invariant surfaces seen in the Figure 7 no longer isolate por-

tions of the (pi, z1) plane. For example, chosing an initial condition in the small primary

island of the degenerate resonance at p1 = 1/2 (see Figure 7b), we know that in the two-

dimensional case the orbit remains regular and is confined within this structure. Figure 10

shows the time series obtained from the four dimansional Hamiltonian for the same initial

condition. We see that after many oscillations the orbit becomes stochastic. Although the

orbit appears quasi-periodic while it is trapped in the island structure, only a small amount

of Arnold diffusion is required for the orbit to escape into the stochastic region of the (p1, z1 )

plane. Consider the same initial condition, but now with so, = 0, as in Figure 11. In this

case, although we see aperiodic behavior in pi(t), the orbit never escapes the island, during

which time it streams uniformly in the (p2, z2) plane. It is also interesting to compare the

time series in p2(t) for two stochastic orbits, one at higher amplitude, as previously shown in

Figure 9, and one at lower amplitude, as in Figure 12 (both with finite shear). In the lower

amplitude case the motion is characterized by sharp jumps in P2 intermingled with smaller

scale fluctuations; basically the orbit spends long periods of time in the vicinity of each of

the resonances as it stochastically moves from one to the other; when stuck in the vicinity

of the intersecting resonances (i.e. the degenerate resonance when s', vanishes), the orbit

makes a large excursion in P2. At larger amplitude the relative sharpness of these excursions

fades, since the overall stickyness to any particular resonance is reduced.

To assess the radial transport induced by the waves, we consider the evolution of an

ensemble of initial conditions. The ensemble is initially located at a specific P2, Z2 , and pi,

but uniformly spread in z1 across a region of stochastic phase space. In particular we have

chosen 1280 initial conditions at P2 = 0, z2 = 7r/2, p, = .43, and 0 < z1 < 4ir corresponding

to a stochastic strip in the (pl, zi) surface of section. The ensemble is allowed to evolve in

time according to the equations of motion. The mean of the distribution, P2(t), and the

variance, G(t), are defined in the usual way: P2 (t) = (p2 (t)) and 0(t) = (p2 (t) 2 ) - (P2(t))2,

where the angular brackets denote ensemble averages. We will first discuss the results with

finite shear (s = 10-2). For long times, the mean is stationary and the variance grows
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SPECTRUM k = (kl,k2) _ _ 7 _ _

Three Waves
k = (1.5, -. 5), (2, -1), (3, -1) 10-2 1.0 5 x 10-6
Four Waves
k = (1.5,-.5), (2,-i), (2,0), (3, -1) 10-2 1.0 1 x 10-4

2 x 10-3 0.9 5 x 10-6

Table 1: Results for three wave and four wave examples; o.(t) ~ oetl, where a(t) = (P2(t) 2) -

(p2(t)) 2. When -y = 1 the radial motion is a random walk and the diffusion coefficient in
physical units is u,rffjp2. Additional parameters are s,, = 10-2 and ak = (10k 2 - k2)1/2
following equation (67).

proportional to a power of time, i.e. o(t) ~ ait'. By "long times" we mean long compared

to the time required for the ensemble to spread over the stochastic interval in pi and long

compared to the time required for the ensemble to mix throughout the range of z2. On

the other hand, the time cannot be so long that the ensemble has spread beyond the range

of the local shear, i.e. 8s,(1p2 1) < 1. In this sense, the observed power law behavior for

o(t) is not truely asymptotic, but rather it is applicative only over a range of times. Note,

that ak > so so that for "long times" the ensemble has typically spread over a region large

enough to sample the fast variation of the wave field with respect to P2. For "long times"

the results are independent of the ensemble's initial conditions, as long as they are located

in the stochastic region of the (pi, zi) plane. For the four wave spectrum at large amplitude

(., = 10-2), we find that y = 1.0 and a, = 1 x 10-'; a(t) is shown in Figure 13, where the

linear regime (i.e. a = ot) is for t/27r 10. When y is unity, the motion in P2 is a classical

random walk with a diffusion coefficient of o,/2. At smaller amplitude (,, = 2 x 10-3), the

exponent in the power law for a(t) decreases; y = 0.9 and o, = 5 x 10-. Comparing this to

the initial three wave spectrum, where there was no degenerate resonance, one finds a sharp

decrease in the radial transport: for example at b, = 10-2, -y = 1.0 and o-, = 5 x 10-. The

results are summarized in Table 1. For the four wave example with t, = 102, if we take

pe - 10-1m for energetic electrons and ff, ~ 2GHz, the radial diffusion in physical units

(o-irfffp2) is about 1 m 2 /sec.

In the four wave example, the results with s., zero are dramatically different because

of the streaming orbits. In general, we observe either the entire ensemble, or part of it,

streaming along a line of constant V in the (p2, z 2 ) plane. For example, at k, = 102, in

the case with zero shear we see P2(t) ~ it, where the magnitude and sign of It depend

on the ensemble's initial value of V. For an ensemble initially at V = 7r/4, we find that
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p - -3 x 10". Compare this to the case with finite shear shown in Figure 14; for a short

time p 2 (t) streams negatively at a relatively uniform rate, at t/27r - 250 the slope of p 2(t)

abruptly changes sign and it streams positively until t/27r z 500, after which it breaks into

a fluctuating state with no average time rate of change. The effect of shear is to make 2(P)

finite for orbits which move away from the rational surface at P2 = 0. In Figure 15, we

show the ensemble averaged variance in z2 as a function of time for the case with s, = 10-2.

(The variance in z2 is defined as (z 2(t) 2) - (z2(t)) 2). The long time dependence of the z2

variance is a power law with an exponent of 3. This power law is predicted by integrating

i2 - SoP1P2 with pi - constant and with P2 - tv-t, as given by the effective random

walk in P2, and then squaring to form (z2(t) 2 ). When the shear is zero, the variance in z2

ceases to spread after an initial transient which corresponds to the spreading of the ensemble

throughout the stochastic region in pi. In the lower amplitude case, <I) = 2 x 10-3 , Figure

16 shows two distributions in P2 of ensembles initially started at P2 = 0 and allowed to evolve

until t/2r = 10': one is for s, = 10-2 and the other for so = 0. While the case with shear

shows an evenly spread distribution function (whose variance is growing as to-9 ), the case

with zero shear shows a long negative tail. This tail forms because of the fast streaming

motion of particles which get stuck in the primary island of the degenerate resonance in the

(p1, zi) plane, since at this amplitude the primary resonance still retains a stable fixed point

as shown in Figure 7b. In the four-dimensional dynamics, a particle's motion in the (P2, z2)

plane, allows it to pass in and out of such islands. Thus, even though all initial conditions are

chosen in the stochastic region, the island gradually acquires a small population of steaming

particles.

VII Conclusions

The Lagrangian formulation of guiding center motion provides an elegant and powerful

method for deriving canonical coordinates in toroidal geometry. Although an explicit trans-

formation between toroidal coordinates and action-angle coordinates cannot generally be

obtained, it is possible to obtain an approximate transformation by exploiting the fact that

the deviation of an electron's orbit from its average flux surface is small compared to the

scale length of the equilibrium magnetic inhomogeneity. The straight forward expansions

used in the text provide an explicit representation for the Hamiltonian in action-angle co-

ordinates that is valid for circulating particles in the vicinity of a given flux surface. This
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is given by the unperturbed Hamiltonian in (24) and the transformation equations, (27)

through (29), which are needed to obtain the wave field in action-angle coordinates. In the

action-angle representation both the wave induced E x B drift and the radial motion that

arises from the coupling of the wave induced parallel acceleration to the equilibrium toroidal

drift, occur at the same level of description, i.e. they simply result in different components

of the wave field's action-angle spectrum. Once the poloidal electric field of the wave is large

enough (approximately fml > eqn), the dominant mechanism for radial transport is the wave

induced E x B drift.

The unperturbed frequencies, Q.(I), and f2e(I) of the action-angle coordinates are nearly

proportional except for a small term which arises due to the shear of the magnetic field lines.

A simple linear transformation defined by (36) yields a new canonical coordinate system,
(p, z), whose unperturbed frequencies satisfy the ordering S1(p) > f2(p). The frequency

p2(P) vanishes at P2 = 0, which corresponds to some rational q surface in the plasma. The

Hamiltonian expressed in (p, z) coordinates, as given in (37), describes the dynamics in the

vicinity of this rational surface. Because of the seperation between f1 and Q2, the four-

dimensional phase space naturally divides into two coupled two dimensional phase planes:

(p1, zi) and (p2, z 2 ), where the motion in the first plane is fast compared to the second.

Holding the coordinates P2 and z 2 fixed, we define an effective two dimensional Hamiltonian,

H11, as in (41). The stochastic threshold determined by H11 occurs when the wave spectrum

satisfies the usual overlap criterion, as given by (43).

For a broad spectrum of randomly phased waves, with closely spaced resonances whose

trapping widths overlap, we have measured the stochastic diffusion in p space and compared

it with the local quasilinear diffusion tensor evaluated for the same spectrum. For wave

fields large enough that the quasilinear radial diffusion becomes appreciable, the trapping

widths of individual resonances extend over a large portion of the stochastic region. Our

initial investigations of this large amplitude regime indicate a dramatic reduction of the

radial diffusion in comparison to the quasilinear value; more numerical work is needed to

determine the scaling of the radial diffusion with respect to the wave amplitude. We are

currently considering the case when the wave modes are not randomly phased and the field

is represented by a spatially localized wave packet.

For the case when stochasticity is induced by a few large amplitude waves, we find that

the radial transport is greatly enhanced when the wave-particle resonance curves intersect
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in action space. When resonances do not intersect, the excursions in P2 are always nearly

proportional to the excursions in p1, where the latter are bounded by the trapping widths

of the resonances. When resonances intersect, excursions in P2 are greatly enhanced, even

though the stochastic motion in p, looks very similar. Without shear, the intersecting

resonances become degenerate and we find that stochastic trajectories stream in the (p2, z2 )
plane. At large amplitudes, an ensemble of trajectories, initially at the same point in the

(P2, z2) plane and spread throughout the stochastic region in the (pi, zi) plane, will stream
at a uniform rate, i.e. (P2(t)) ~- pt, where a depends on the initial condition in the (p2, z2)
plane. At lower amplitudes, where the primary resonances of the parallel Hamiltonian still

retain stable fixed points, some trajectories in the ensemble get trapped by the degenerate

resonance; their corresponding streaming motion creates a long tail to the ensemble's radial

distribution, as shown in Figure 16. With small but finite shear, the streaming motion does

not persist and the resulting transport in P2 is diffusive; in the large amplitude case we find

a diffusion coefficient of about 1 m2/sec (see Table 1). At lower amplitudes the transport

is slower than would be given by a classical random walk. In general we find that after an

initial transient, the growth in the mean square of P2 is proportional to a power of time; at

lower amplitudes the exponent is below unity. We are currently in the process of obtaining

the scaling of this relation with respect to wave amplitude.
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Appendices

A The Sheared Slab

Here we derive canonical coordinates for a magnetized slab with shear. The vector potential

is chosen to be
2

A = B,(xy - 2i) ,(70)

so that the magnetic field is

B = B,( + x ) (71)

where L, is the length scale of the shear. Substituting these into the Lagrangian in equation

(1) one obtains the canonical momenta:

Pz = U B - , (72)
B(X) 2T

py = X(1 + su B"), (73)B( )

where the Hamiltonian is

U
2

H = - + MB(X) + 4)(X, y, z, t) .(74)
2

The units of velocity are v, and the units of time are w- 1 , where we = eB,/m. The units of

distance are p,, defined as Vo/Wce, and s = p0 /L, < 1. Noting that u = Pz + sp2/2 + Os 2 ,

and B(x) = 1 + Os2, by ignoring terms of order s2 one obtains

Ho = e + sp 2  (75)
2 2

which is the unperturbed Hamiltonian in equation (37). The potential 4(x,y, z, t) can be

written in the canonical coordinates most simply by exchanging x for py and ignoring terms

of order sff/Ox, which arise through equation (73).

Note, the unperturbed Hamiltonian system is invariant under the following scale trans-

formation: z = aZ, y = bY, t = aT, p, = (a/b)Py, and p. = Pz. The equations of motion in

the lower case and upper case variables are identical if one rescales the shear parameter as

S = (a/b)2s. The scale used in the text is obtained by making the assignment b = qor 0 /po

and a = R,/po, where upon we may interpret Z as zj, Y as z2, and the parameter S as s,,.
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B Guiding Center Equations in Toroidal Coordinates

Here we obtain the equations of motion in the coordinates (p1j, -0, , 0), where pj = u/B. By

directly applying the Euler-Lagrange equations to the Lagrangian in (8), where pe and p,

are functions of ik, 9, and pgj, one obtains the four equations of motion:

=J-H[(G'- plIF') + FOH (76)

[(1 + pg')H - g O (77)

+9I (G aIo~
Ail=- +~[ 1pg') M+ (G' -plIF') ]H (78)

OH OH
F1[-] , (79)

where

.= F(1+pjjg')+g(G'-pjjF') (80)

The prime superscript indicates differentiation with respect to ' and the Hamiltonian, H,

is considered a function of p1j, 4, 9, and 0, as given by

H = p12B2(1 , )+ MB(4,9)+ <(4,9, 4, t) . (81)

. is the Jacobian of the coordinate transformation from the canonical momenta pe and po

to the non-canonical coordinates 4 and pII.
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1.0 -

Di,1
Do

.5 Pi .2

.005
.025 -

Dl, D212
Do Do

0

-.030.

Pi 1.2 .5 Pi 1.2

Figure 1: Elements of of quasilinear diffusion tensor, Di,(pi), determined from equation (62)
for the following parameters: n, = 100, n 2 = 150, q, = 2, e. = .1, and M = 0. For e, = 0,
D1,1 = D, for a range of p, (n1/n2 5 p1 5 1) outside of which it vanishes; in this case the
other elements of Dij are zero for all pi.
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Figure 2: Elements of Di,,(pi) for the same parameters as figure 1 except that M = .2.
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1.10

di,1

.45
560

-.0030 .0050

di,2 d2,2

-.012 , .0022
60 5 t .

Figure 3: Elements of the diffusion diagnostic, d1,(t; p.), defined in equation (63), where the
parameters are the same as in figure 1 and 4, = 10-'. The ensemble of 1280 particles was
initially at p1(O) = .8 and P2(0) = 0. (t is physical time normalized to njw-j').
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Figure 4: Elements of di,(t; po) for the same parameters as in figure 3 except that p1(O) = 1.0.
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Figure 5: Surface of section, (pi, zi), of the parallel Hamiltonian for three waves with 1 =
2 x 10-, P2 = 0 and z2 = 7r/2. The wave-particle resonance conditions are satisfied at
p1 = 1/3, 1/2, and 2/3. Each initial condition is marked by an "X".
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t t/2ir

U t/27r

Figure 6: Stochastic time series, pi(t) and P2 (t), for three waves with ,
(t is physical time normalized to 'f)

10-2. and . = 0.
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(b) .8O
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zi/27r

zi/27r

2

2

Figure 7: Surface of section, (pi, zi), of the parallel Hamiltonian for the four wave spectrum
with degeneracy. The surface of section is shown at two values of z2: (a) z2 = 7r and
(b) z2 = 7r/2, where in both cases P2 = 0 and 4, = 2 x 10-. The wave-particle resonance
conditions are satisfied at pi = 1/3, 1/2, and 2/3, where the pi = 1/2 resonance is degenerate.
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Figure 8: Stochastic time series, Pl(t), P2(t), and Z2(t), for four waves with -(D,, 10-2 and
s,= 0. (t is physical time normalized to W-f)
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Figure 9: Stochastic time series, p1(t), p2 (t), and z2(t), for four waves with 4, = 10-2 and
S. = 10-2. (t is physical time normalized to W-j).
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Figure 10: Time series, pI (t), p2(t), and z2(t), for initial condition in primary island of figure
7b with s = 10-2. (t is physical time normalized to W-j).
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Figure 11: Time series, p1(t), p2 (t), and z2(t), for initial condition in primary island of figure
7b with a,, = 0. (t is physical time normalized to w-1).
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Figure 12: Stochastic time series, p1 (t) and p2 (t), for four waves with '', = 2 x 10-3 and
s, = 10-2. (t is physical time normalized to w-j).
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Figure 13: Log-log plot of the radial variance, u(t), versus time for four waves with 4 = - 10-2
and s,, = 10-2. The ensemble was orginally localized at P2 = 0. (t is physical time normalized
to w-1).
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Figure 14: The ensemble average of P2, P2(t), versus time for the same parameters as in
figure 13. (t is physical time normalized to w-j').

43



5.0

log&

0

1 log(t/27r)

Figure 15: Log-log plot of the ensemble averaged variance in z2 , r (z2(t) 2) -(Z2(t))2

versus time for the same parameters as in figure 13. (t is physical time normalized to W-j).
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Figure 16: An ensemble of 1280 particles is initially localized at P2 = 0 and spread in the
stochastic region of the (pi, zi) plane, given by the surface of section in figure 7b. The
distribution of the ensemble, f(P2,t), is shown at t = 27r x 10 for two different cases: (a)
'g = 10-2, and (b) so = 0. The dashed line marks P2 = 0 and the area under each curve is
equal to the total number of particles in the ensemble.
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