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PROPAGATION AND DAMPING OF MODE CONVERTED

ION-BERNSTEIN WAVES IN TOROIDAL PLASMAS

A. K. Ram and A. Bers

Plasma Fusion Center and Research Laboratory of Electronics

Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

In the heating of tokamak plasmas by waves in the ion-cyclotron range of frequencies

the fast Alfven waves launched at the plasma edge can mode convert to the ion-Bernstein

waves (IBW). We study the propagation and damping of these mode converted waves using

a ray tracing code which follows the fast phase and the amplitude of the electromagnetic

field along the IBW ray trajectories in a toroidal plasma. A simple analytical model is

developed which describes the numerically observed features of propagation and damping

of the IBW's. We find that along the ray trajectory of the IBW there is an upshift of the

poloidal mode numbers which can lead to the electron Landau damping of the wave. This

damping is dependent on the strength of the toroidal plasma current. From the properties

of the upshift of the poloidal mode numbers we conclude that the mode converted ion-

Bernstein waves are not suitable candidates for electron current drive.

PACS numbers: 52.50.Gj, 52.40.Db
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I. INTRODUCTION

The heating of tokamak plasmas by radio-frequency waves in the ion-cyclotron range

of frequencies (ICRF) has been of extensive experimental and theoretical interest in recent

years."'' ICRF heating has been demonstrated successfully on a variety of tokamaks

which, as a consequence, has led to an increased theoretical interest. During ICRF heating

the fast Alfven wave (FAW) is excited at the edge of the plasma and then propagates

towards the center of the plasma. In a plasma with two (a majority and a minority) ion

species, the FAW propagates on either side of the ion-ion hybrid resonance. For small ki

(the wave number parallel to the total magnetic field), a FAW launched from a region of

low magnetic field can couple to an ion-Bernstein wave (IBW) towards the high-field side of

the ion-ion hybrid resonance.4 However, fast Alfven waves incident from the high magnetic

field region undergo mode conversion directly to the IBW's.' While the propagation and

damping of the FAW at the cyclotron resonance and at the ion-ion hybrid resonance have

been extensively studied, little is known about the propagation and damping of the IBW

that is generated by mode conversion of the FAW. In this paper we study the propagation

characteristics of these mode converted IBW's in a toroidal plasma. Towards this end we

have developed a numerical ray tracing code for following the IBW's in toroidal plasmas.5' 6

In this code the full dielectric tensor for a hot, Maxwellian plasma 7 is used in a toroidal

geometry. The equilibrium configuration is prescribed and the code follows the amplitude

and the phase of the rays. The amplitude equation includes the effects of focusing' and is

similar to a code developed earlier.' Although we use our code to study the IBW it can

be used to study the propagation of waves of any frequency.

The numerical results for the IBW ray trajectories are used to construct a simple

analytical model that gives general guidelines about the propagation and damping of IBW's

in toroidal plasmas. Although the model is constructed by making simplifying assumptions

which restrict its domain of validity, nevertheless, we can make qualitative and quantitative

predictions which are verified numerically. The important features that follow from the

analysis are that the IBW's primarily impart their energy to electrons as the magnitude of

the poloidal mode numbers upshifts during their toroidal propagation, and that the spatial

location of this electron Landau damping is dependent on the magnitude of the plasma
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current. Furthermore, we find that the IBW's are not suitable for electron current drive.

Electrons with positive parallel (to the total magnetic field) phase velocities damp the

IBW's below the equatorial plane of the tokamak, while electrons with negative parallel

phase velocities damp the IBW's above the equatorial plane.

In trying to solve the complete problem of ICRF heating it would be necessary to

know the fraction of the total FAW power that is converted to the IBW. This is the

problem addressed by mode conversion theories.4 " 0 In this paper we do not attempt to

solve this problem. We are primarily concerned with the propagation properties of the

IBW and their dependence on plasma parameters. Furthermore, by starting the IBW ray

propagation after the mode conversion region we avoid all regions of resonances (cyclotron

harmonic, ion-ion-hybrid) and cut-offs (edge region of the plasma, mode conversion region)

where the geometrical optics approximations are certainly not valid.

The paper is organized as follows. In Section II we outline the equations used for

following the trajectories and amplitudes of the IBW rays. In Section III we describe

numerical results, obtained from the computer code, which are subsequently used in Sec-

tion IV to develop a general analytical picture of the properties of IBW propagation in

toroidal plasmas. In Section V we discuss the effects of including the focusing term in the

equation for the evolution of the electric field amplitude. The essential conclusions from

our numerical and analytical analysis are outlined in Section VI.

II. RAY TRAJECTORY AND AMPLITUDE EVOLUTION EQUATIONS

The geometrical optics equations describing the propagation of rays through a spatially

varying, weakly dissipative plasmas are:"', 1

dk (8D/8r) d_ (OD/8k)
dt (8D/OW)' dt (OD/8w)

=H =-H
where D = D(k,w,r-) = det(D ), D is the hermitian part of the dispersion ten-

sor, D, describing the plasma, r is the position vector, k is the wave vector and w is

the frequency. The electric field along the ray is assumed to be of the form E(F, t) =

Re{ o(f) exp[iO (r, t)]} where E0 is assumed to be the slowly varying amplitude, k(r) =

V0, and w(r-) = -8/Oi. The magnetic field of the ray is then determined through
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Maxwell's equations. The t with respect to which the derivatives in (1) are evaluated is

the time along the ray trajectory. Thus, IV' It, where V4 is the group velocity of the ray, gives

the spatial distance travelled by the ray in time t. The equations in (1) are Hamiltonian in

structure with w = wk(1),r) (obtained by solving D = 0) being the Hamiltonian. 12 , 1 3,1

This is useful since one can perform point transformations from the Cartesian coordinate

system to some other orthogonal coordinate system without changing the form of the ray

trajectory equations (1). In particular, this is true for the toroidal coordinate system which

we will be using. In this system we define r = (r, 0, 0) where r is the radius measured

from the magnetic axis of the torus, 0 is the poloidal angle, and 4 is the toroidal angle;

k = (k,,m,n) where k,,m and n are the radial, poloidal and toroidal components, re-

spectively, of the wave vector. A relation that will be useful in our later analyses is that

connecting the toroidal wave vector components to the Cartesian components:

k1 = kB, + (m) Be + nB., (2)
r B R +rco.90 B

kI=k,+ +-k12 (3)
r R +rcosO

where A = (Br, Be, BO) is the magnetic field in toroidal coordinates, B = IBl, R is the

major radius of the tokamak, and k1l and k± are the components of k that are parallel and

perpendicular to A, respectively. The spatial variations in the density, temperature, and

the magnetic field components are included, in a WKB sense, explicitly in D through the

plasma frequency, the thermal velocity and the cyclotron frequency. The equations in (1)

give the variation in the (fast) phase, 0, of the electric and magnetic fields of the ray along

its characteristics.

The change in the amplitude of the electric field of the ray, EO is determined in the
=H

following fashion.6 The tensor D can always be diagonalized by transforming to a new

set of basis vectors such that:

=H
D = D, iigii + D2 i262* + D3 636*3 (4)
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where Dl, D 2 and D3 are the real eigenvalues and l, g2, and 63 are the corresponding

orthonormal, complex eigenvectors which form the set of new basis vectors. Then D =

det(D ) = DlD 2 D 3 . In this new representation we can write:

Eo = Al, + A2 62 + A4 (5)

Let us assume that along the IBW the dispersion relation D = 0 implies that D, = 0 while
=H

D2 # 0 and D3 3 0 (the nondegenerate cases). Since D -Eo = 0, it follows that A 2 = 0

and A3 = 0 so that il is the polarization vector of the IBW. The expressions for D, and

e^1 for the IBW are given in Appendix I. The evolution of the amplitude IA, I (the variation

of the slow phase of A, will be ignored) along the ray trajectories (1) is given by:'

dU V)Iw( ) ) H -

t+ U V - + : *A20 (6)

where U is the wave energy density and F is the hermitian part of the conductivity tensor.

It is important to note that the derivation of (6) is restricted to a weakly dissipative wave:

the dissipated power density (the last term in (6) ) is assumed to be of the same order as

the slow variation in the wave energy density." The derivative with respect to t in (6) is

along the ray paths given by (1). The relation between U and A, is:

U = iAl12  (7)

The second and third terms in (6) describe changes in U due to the convergence and

divergence of a bundle of rays and due to the absorption of wave energy by the plasma,
respectively. The exact form of the second term in toroidal coordinates is given in Appendix

II. In order to determine the second term in (6), it is necessary to evaluate the variation

of the dyadic Vk along the ray trajectories. These evolution equations are also given in

Appendix II. Consequently, the evolution of the amplitude, IA,I, requires the simultaneous

solution of the six ray trajectory equations (1), the wave energy density equation (6) and

the six equations for the dyadic Vk (Appendix II).

The ray paths in the phase space are completely determined by (1) for any initial

values of 9 and r. However, to determine the evolution of IA, I not only requires the initial
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value of 1A1 I but also the initial values of the variations of k with respect to f. These

values are trivial if the rays are launched in a vacuum where Vk is identically zero. In the

case of interest to us, the rays corresponding to an IBW are initiated somewhere inside the

plasma just after the mode conversion of a fast Alfven wave. There one can determine the

initial values of V only if the constant phase (i.e. constant 0) surface is explicity known.

Without this knowledge it is not possible to know exactly the initial values of Vk. The

construction of the constant 0 surface inside the plasma will require the evolution of the

known constant 0 surface at the antenna along the fast Alfven waves and through the

mode conversion region. This is further complicated by the fact that, since the excitation

frequency is below the plasma frequency, there is a cut-off region near the edge of the

plasma through which the antenna fields have to tunnel before exciting the propagating

fast Alfven wave. This whole process of constructing the constant lk surface, which is

beyond the mode conversion region and is the starting point for the IBW, is a formidable

one and beyond the scope of the present work. We shall be getting back to this point when

we discuss the effect of focusing on the evolution of A, along the rays.

III. NUMERICAL EVALUATION OF RAY TRAJECTORIES

The numerical code developed for solving the ray and amplitude equations is for

a toroidal plasma whose constituents are described by their full Maxwellian distribution

function.' The derivatives of the dielectric tensor elements have been explicitly determined

(and checked using Macsyma) in order to avoid any errors due to numerical differentiation.

While the code can be used for studying ray paths corresponding to any excitation fre-

quency, we have utilized it, in its entirety, for studying the propagation of mode converted

ion-Bernstein waves. Towards this end we have used parameters and profiles correspond-

ing to a large tokamak (JET-type1 ) as described below. It should be emphasized that our

choice of parameters is not intended to represent any particular experimental conditions.

However, the parameters are in the general range that is typical of present-day tokamaks

heated by externally applied RF power in the ion-cyclotron range of frequencies. Further-

more, these parameters are used to generate numerical results that guide the development

and check the predictions of simple scaling models which describe the observed behavior
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and can be extended to understand, in general, the propagation and damping of mode

converted IBW's. Furthermore, the code itself can be used to study ray propagation for

any sets of parameters and profiles other than the ones used in our analyses. We have as-

sumed an axisymmetric toroidal equilibrium so that the toroidal mode number, n, remains

constant along the rays. The magnetic field is assumed to be:

A = 0, B9 = 0.2 I, 1 - exp(-ar 2/a 2 ) BO B4_
r (1 - ezp(-aq))(1 + (r/R)cos)' 1 + cos (8

R

where I, is the plasma current in amperes, a. = a/ri + 0.5 15, ri is the radius of the q = 1

surface (q is the safety factor), a is the minor radius, and Bo0 is the toroidal magnetic field

on axis. The factor of 0.2 in the equation for Be is the conversion factor needed so that Be

is in Gaussian units when the toroidal current is measured in amperes and the distances

are measured in centimeters. The density and temperature profiles are taken to be:

ne,i = neo,jo 1 - , / T, = Teoexp(-r , T; = T 0 ( - r2(9)

where neO, nio are the electron and ion densities on axis, respectively, To, Tio are the

electron and ion temperatures on axis, respectively, and at = 2a,/3.15 For our numerical

analyses we have assumed a deuterium-hydrogen plasma with hydrogen density being 4%

of the deuterium density and both ion species having the same profiles with To = 1.7 keV.

Also, we assume that: n.o = 2.8 x 1013 cm-3, Teo = 1.8 keV, Bo0 = 2 Tesla, a = 125 cm,

R = 300 cm, ri = 50 cm, and that, without loss of generality, the rays start at 4 = 0. In

all the numerical runs, the rays are started from the high-field side of the mode conversion

region where the IBW is a propagating mode. The full dispersion relation is solved for

k,. at the starting point for given values of the poloidal mode number, m, and k1j. The

toroidal mode number, n, is determined from (2). The rays are followed using (1) and (6)

until either the wave energy density, U, is < 10' of its initial starting value, or the rays

have reached near the edge of the plasma. For the results discussed here we have excluded

the effect of the second term in (6), i.e. we have ignored the focusing/defocusing effects,
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but retained the damping term. The effect of the focusing term on the evolution of A, will

be discussed in Section VI.

Figure la shows the poloidal projection of the ray trajectories for three rays starting at

different locations with the wave frequency being w = 1.58 x 10'sec- 1. The lines labeled C

and I are the locations of the cyclotron resonance (w = 2Wcd = wch; Wcd and wch being the

cyclotron frequencies of deuterium and hydrogen, respectively) and the cold plasma ion-ion

hybrid resonance layers, respectively. The corresponding change in 4 as a function of wt

(the normalized time of propagation along the ray) is shown in Fig. 1b. The rays which are

started closer to the equatorial axis propagate further into the plasma, both radially and

toroidally, before the amplitude, 1A1I, as shown in Fig. 1c, damps away. The reason for

damping is the enhancement in Iml along the rays as shown in Fig. 1d. From (2) it is clear

that this increase in Iml gives an upshift in k1l. As a consequence, the Landau resonance

parameter for the electrons, yoe = w/ (V2 1 Ik vte) (vt, = V/.T,/m, is the electron thermal

velocity), as shown in Fig. le, decreases from being > 3 to ; 1 just in the region where IA, I
decreases substantially (Fig. 1c). Clearly this implies that the wave energy and momentum

have been transferred to the electrons. Prior to the time when electron Landau damping

becomes important, the energy density, U, does not change. The corresponding changes

in IA1I (Fig. 1c) are primarily due to the dispersive properties of the plasma as evidenced

in (7). The hash marks intersecting the ray trajectories in Fig. la indicate the point after

which Landau damping starts to affect IA1. This corresponds to wt ~ 293 for ray 1, while

for rays 2 and 3 this corresponds to the time when IA I reaches its maximum value.

Figure id shows that the rate of change of Iml increases as the starting position of

the rays is moved away from the equatorial plane. Furthermore, as is evident for ray 3,

the rate of change of Iml increases as the ray propagates away from the equatorial plane.

The change in the slope of m for ray 3 at wt ~ 900 (Fig. 1d) occurs just after the ray

crosses the mid-plane and rotates towards decreasing 0 (Fig. la). However, as is obvious

from Figs. la and 1d, once Landau damping becomes significant, the rate of change of Iml

is not affected by the poloidal rotation of the ray.

For rays started below the equatorial plane, the trajectories in the poloidal plane are

mirror images of the rays started above the equatorial plane. However, for the rays started
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below the equatorial plane, the toroidal motion (along 4) is in the opposite direction to

that for the rays started above the equatorial plane, and the increase in m is towards

positive values. This is a general feature of IBW's for all ranges of parameter values.

An interesting effect takes place when the plasma current is reduced to 500 kA. This

is evident in Fig. 2 where the rays are started at almost the same location as in Fig. la.

Here the rays propagate much further away from the mode conversion region than in the

case of the higher plasma current before transferring their energy to the electrons. The

increase in Iml is found to be substantially (three to six times) larger than in the previous

case (Fig. id).

As the plasma current is reduced further, the rays tend to propagate further out

towards the edge of the plasma and may not damp inside the plasma. In the limit of

zero plasma current the rays do not damp at all inside the plasma but propagate straight

out to the edge region. Even in this case Iml increases substantially (almost at the same

rate as in the case of non-zero toroidal current) but, as is obvious from (2), there is no

corresponding change in k1j.

If we increase w to 1.93 x 10 8 sec- 1, the cyclotron resonance, w = 2 wcd, layer is closer

to the mid-plane. Here, for Ip = 2 MA, the essential features of the rays are similar to

those in Fig. 1. The only difference is that the rays propagate further out towards the edge

of the plasma before damping. However, if we reduce 4 to 500 kA it is clearly evident

from Figs. 3a and 3b that the ray which is started closer to-the equatorial plane (ray 3)

has not damped as it propagates out to the plasma edge. The amplitude, |A1 | along ray

3 continues to increase monotonically (Fig. 3b). This occurs in spite of the fact that Iml

increases to approximately seven times the value of Iml for ray 3 in Fig. 1d. The values of

Im( for rays 1 and 2 also increase to about seven times the values attained for rays 1 and

2 in Fig. 1d.

From the numerically generated results we arrive at the following basic properties

of the IBW propagation in toroidal plasmas. IBW rays started nearer to the equatorial

plane propagate longer distances away from the ion-ion hybrid resonance layer before they

damp (if they do damp at all) than rays started further away from the equatorial plane.

The distance of propagation increases as the toroidal current (or |Be|) is decreased. As
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the w = 2wed resonance layer is moved towards the higher field side the IBW's propagate

further out towards the edge of the plasma. The poloidal mode number, m, increases

towards larger negative values for rays in the upper half plane and towards larger positive

values for rays in the lower half plane. The increase in Iml occurs even when there is

no toroidal current (Be = 0). This enhancement in m and a finite toroidal current are

necessary for damping of the IBW. If the IBW's do damp, they impart their energy, through

Landau damping, to the electrons.

IV. ANALYSIS OF RESULTS

While the numerical results obtained above have been for the full dielectric tensor of a

Maxwellian plasma, some of the more important numerical observations can be understood

in terms of a simple dispersion relation describing the IBW. The simplified, approximate

dispersion relation for the IBW is given by (Appendix III):

DIE n2 + != 0 (10)a

where

222
ac) -n~ 2 _ Wd ( 7 :; 2-

Wcd Wcl&)

ai = -_2 2 (11)

w 2 c2
cd

and nl = ck11/w, n1 = ckh/w, wed and vtd are the plasma frequency and thermal velocity

of the deuterium ions, respectively, and 17 is the ratio of the hydrogen density to the

deuterium density. In the sub-sections below we use this dispersion relation to examine

some of the properties of the IBW and compare them with the numerical results of the

previous section.

A. Radial group velocity

From (10) the radial motion (group velocity) of the IBW is given by:
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dr (ODI/8k,) -2 (ck, 1 (12)
dt (ODr/Ow) = - wJ (ODr/aw)

where we have assumed that B, = 0. Using (11) we find that along the IBW:

6B 52 4 2

8DI 6 W Wcd 25+- 2
wcds -woi 2+ 1 - 4w + tpd(1+2-r7)]Ow 8 (w2 _ )(W 2 - 4W2 )2 W2

(13)

The difference between 2wed and w, relative to w, is approximately the ratio of the distance

of the IBW ray from the cyclotron resonance (where w = 2wed) to the major radius. By

ignoring this difference we assume that w ; 2wed along the IBW. With this approximation

it is easy to see that the right hand side of (13) is positive provided W2d > 3W2 d. This

indeed is the case for all the numerical results where the mode conversion region is near

the center of the plasma. Thus, the sign of k,. in (12) determines the direction of the radial

propagation of the IBW. Since the IBW propagates away from the mode conversion region

(towards the high B-field side), rays that are started on the right side of the mid-plane

require k,. to be positive while rays started on the left side of the mid-plane require k,. to

be negative, i.e. kdr < 0. This is also consistent with the fact that the IBW is a backward

wave. Consequently, for a ray which crosses the mid-plane k, will change sign as the ray

passes through the mid-plane. This is observed to be the case when we follow the IBW

with our numerical code.

B. Poloidal group velocity

The ratio of the radial group velocity to the poloidal group velocity is:

dr _(OD E/ok,) _k,.

d ~ (ODIBlOi) [1 (14)
I - -- a I B + I -
r 2  r IBI aI

Since, near mode conversion, kI1 and m are assumed to be very small it follows, from (3),

that Ik,.I ; Icj >> IkIlI. Thus, from (14), the radial group velocity is much larger than

the poloidal group velocity. This is evident from Figs. la, 2 and 3a where, initially, the

predominant group velocity of the IBW is in the radial direction. But, near the region
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where Landau damping starts to play a role, the poloidal group velocity becomes larger

than the radial group velocity. In this regime, our approximations for the dispersion

relation in (10) are no longer valid (Appendix III).

C. Upshift of the poloidal mode numbers

The numerical results show that the electron Landau damping of the IBW occurs due

to an upshift of Iml which, in turn, for finite Be, leads to an upshift of kj. The change in

m due to the radial motion of the IBW is given by (Appendix III):

dm 4 w2  ,aine-~ cd _____ __

dr 3 k.V2td (R+rcos6)

The factor rsinO/ (R + rcosG) in (15) comes from the profiles of the magnetic fields given in

(8). Equation (15) yields a very interesting property about IBW's. Since, from (12), kdr <

0, the change in m is always towards negative values in the upper half poloidal plane, 0 <

O < 7r, and towards positive values in the lower half poloidal plane. Consequently, IBW's

in the upper half plane will shift towards negative parallel phase velocities before damping

on the electrons while those in the lower half plane will shift towards positive parallel phase

velocities before damping on the electrons. This is confirmed by the numerical solutions.

Thus, IBW's are not suitable candidates for driving electron currents in tokamaks.

From (15) it is evident that, in order to have the same enhancement in Iml, rays which

start closer to the equatorial plane will propagate farther than rays which start away from

the equatorial plane. Once an IBW moves away from the equatorial plane (15) shows that

Iml will increase at a faster rate. This is exactly as observed, for instance, for ray 3 in Fig.

id.

D. Electron Landau damping of the IBW

For finite B9 , an increase in Iml causes the electron Landau resonance parameter,

YOe, to decrease. Numerical results show that the IBW damps on the electrons when

yo. ~ 1. Below, we evaluate an approximate measure of the distance of propagation of

the IBW before it Landau damps on the electrons. This analysis is valid for rays which

propagate short distances (compared to the minor radius) and in a region where the plasma

parameters do not vary significantly over those distances.
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If we assume that IkI z Jk-L , Wpd/W >> Iniil then, from (10) and (11):

/8
_ d 3 8-2i ;6 2 7

Wk d 2+ 8 Wd (16)
Vt( 2+6 36 Vtd

where 6 = -wl (w - 2w), and we have assumed that w ~ 2 wcd (Appendix III). 6 is

approximately the ratio of the major radius to the distance of a point on the IBW ray

from the w = 2 wcd layer. Typically, we find that 6 > 10. Substituting (16) into (15) gives:

dm 3 2 'Wed ruin s

dr 96 Vtd R + rcos sign(kr) (17)

From (3):

dk1i 1 dm Be
d i r dr mB (18)

where we have ignored the variation of the magnetic field with respect to r and assumed

that, initially, InilI is small. Combining (17) and (18) gives:

edki 36 Wed sinG B9-1 8 3 td i sign (k,) (19)

By assuming that the right hand side of (19) varies slowly with respect to r, and that,

initially, kil = 0, then to obtain yo. ~ 1 requires a radial distance of propagation that is,

approximately, given by:

8 w IBI vid R (20)

We Be vt. sinG

This equation implies that the radial distance of propagation for the Landau damping of

the IBW depends on V/T-/T.. This is indeed confirmed by our numerical results. In Fig.

4 we have plotted the radial distance of propagation of the IBW as a function of wt for

three different scenarios:

(1) T.0 = 5keV, Tio = 5keV

(2) T.0 = 5keV, Tio = 3keV

(3) T.0 = 1.8keV, Tio = 1.7keV which is the same case as ray 2 in Fig. la.
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In all three cases the rest of the parameters and all the profiles are taken to be the same

as discussed in Section III. All the rays are for the case of w = 1.58 x 10'sec- 1 (Fig. 1)

and start at e = 0.077r but at slightly different radial positions since the mode conversion

region changes due to a change in temperatures. The rays are followed until yo. ; 1.1.

The corresponding radial distances of propagation, as measured from Fig. 4, for the three

cases are, approximately, 40.6cm, 29.6cm, and 42.5cm, respectively. These distances are

in the ratio of 1 : 0.73 : 1.06, respectively. However, for the three different temperature

scenarios, equation (20) implies that the distances of propagation for the rays to reach

yo, ~ 1.1 should be approximately in the ratio 1 : 0.77: 0.97, respectively. This is in fairly

good agreement with the numerically observed ratios of the distances of propagation. This

agreement is in spite of the fact that the rays propagate over significant distances that

seriously test the validity of the approximations used in deriving (20).

Thus, the radial distances of propagation of IBW's, before damping on electrons,

remain essentially the same if the electron and ion temperatures are increased but kept in

the same ratio. However, if the electron temperature is greater than the ion temperature

the distance of propagation decreases relative to the case when the two temperatures are

the same. Consequently, if electron heating occurs the damping of the IBW on electrons

will persist.

From (20) the distance of propagation, before damping, is inversely proportional to

sinO and BE. The former dependence indicates that rays nearer the equatorial plane prop-

agate farther than those further away from the equatorial plane. The latter dependence

implies that increasing the toroidal current will decrease the distance of propagation before

damping of the IBW. This dependence on Be is borne out by the computations when the

rays do not propagate over very large distances before damping sets in. In the case of Figs.

la and 2, for ray (1), (20) would require that the IBW in Fig. 2 propagate four times the

distance in Fig. la. The measured ratio is approximately 3 : 1. We have usually found

that (20) gives values of distances of propagation which are within less than a factor of

two of the exact numerical results even when the rays propagate over distances which are

a significant fraction of the minor radius.
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E. Toroidal group velocity

The ratio of the toroidal to the poloidal group velocities of the IBW is given by:

d4 _ DIYB8n _1 ____k B___ Vi
- = DIB1, = k n 0 (1+-- (21)dr 8DI1k, k,11 (R+rcos) 2  (R+rcosO) |BI a,

where we have used the dispersion relation in (10). Since a, > 0 and k,.dr < 0, if n is

positive and k negative then (21) implies that the rays will propagate towards negative

values of q. This is the case in Fig. lb where kl becomes negative, as m quickly becomes

negative along the ray, and n was initially taken to be positive. Since we have assumed

that the plasma parameters do not depend on 4, n remains a constant along the rays.

Furthermore, from (21), the toroidal group velocity is small compared to the radial group

velocity. This is exactly as observed in Figs. la and 1b.

V. FOCUSING OF RAYS

For the numerical results considered so far we have excluded the effect of focusing of

rays on the evolution of the electric field amplitude, i.e. we have ignored the second term in

(6) when solving for IA, 1. This, as mentioned earlier, is due to our inability to construct a

surface of constant & from where the IBW's can be launched. In spite of this limitation, in

this section we briefly describe the effect of keeping the second term in (6) on the evolution

of IA1!.

In Fig. 5 we have plotted IA1 along the trajectories of rays 1 and 2 of Fig. la with

the second term included in (6). Here we have assumed that all the elements of the dyadic

Vk are initially zero. There are no significant differences between Fig. 5 and Fig. 1c. We

find that IA1I has a slightly larger value in Fig. 5 than in Fig. 1c, before damping, and

that the amplitude decays away somewhat earlier in Fig. 5 than in Fig. 1c.

In Fig. 6 we plot two rays in the neighborhood of ray 1 of Fig. la. The rays essentially

remain parallel to each other. However, as seen in Fig. 6, rays in the vicinity of ray 3 in

Fig. la are highly focused as they pass the mid-plane before diverging near the damping

region. This focusing of rays as they cross the mid-plane leads to the higher value of IA1 I
for ray 2 in Fig. 5 than in Fig. 1c, while for ray 1, which does not cross the mid-plane
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before damping, JA I in Fig. la and Fig. 5 are almost the same. The strong focusing of ray

3 near the mid-plane causes some numerical difficulties whereby our numerical integration

scheme does not converge properly. But, the evolution of IA1 I for ray 3 can be qualitatively

deduced from the above observations on rays 1 and 2. We expect that, for ray 3, IA1 I will

enhance substantially over that given in Fig. 1c, as the ray crosses the mid-plane, but,

once Landau damping takes over, ray 3 should damp close to the location shown in Fig.

la.

Thus, we conclude that, even when the second term in (6) is kept in the equation for

the evolution of IA1I, there will be no significant changes to the results already obtained

in Section III.

It should be pointed out that one can continue to solve (6) without including the

second term provided one follows the trajectories of a bundle of rays launched from an

initial surface. A change in the cross-sectional area at subsequent times would give a

change in the energy density, U, due to the focusing effect. The concurrent change in IAI
then can be calculated from (7).

VI. CONCLUSIONS

We have presented a detailed numerical and analytical study of the propagation of ion-

Bernstein waves generated by mode conversion of the FAW in ICRF heating of tokamak

plasmas. The poloidal mode numbers are greatly enhanced along the IBW's but the

Landau damping of the IBW's is dependent on the magnitude of the toroidal current (or,
equivalently, the poloidal magnetic field). If the mode converted IBW's damp, then they

Landau damp their energy on the electrons. However, these IBW's cannot drive electron

currents in the plasma since they impart their energy (and momentum) to electrons with

negative parallel phase velocities in the upper half poloidal plane and to electrons with

positive parallel phase velocities in the lower half poloidal plane. The damping of the

IBW is dependent on the ratio of the electron to the ion temperatures. The distance of

propagation of the IBW before it damps is inversely proportional to the square-root of

this ratio. Also, IBW's closer to the equatorial plane propagate longer distances before

damping than IBW's further away from the equatorial plane.
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APPENDIX I
-- H

The relationship between the hermitian part of the dielectric tensor, D , and the

anti-hermitian part of the conductivity tensor, = , is given by:

=H c2k2 = c 2 __ 47r A(MD = 2- I +-kk+--- (A1.1)

where I is the identity tensor. The eigenvalues, Di, D 2 , D3 , correspond to the three roots of

the cubic equation (in A): det - A7) = 0. By expressing D in terms of its elements

as in (10), the eigenvalues can be explicitly evaluated in terms of these elements.1" We

find, numerically, that for the parameters of the IBW satisfying the dispersion relation

D = DjD 2 D3 = 0, there exists only one eigenvalue D, which is zero while the other two,

D2 , D3 , remain non-zero. This eigenvalue corresponding to the IBW is given by:

AlE = = a++- q2 (A1.2)
3

where:

[- 1/3

(A.3
P2 = (q1q2 - 3qo) -

with qo, q, and q2 given by:

go = - det (Y)

q, =Dii(D22 + D33 ) + D 2 2 D33 + D 2 - D 2 + D 2 (A1.4)

q2 =-trace D )

==HHere we have expressed D in terms of its tensor elements:

._ f Di D 12  D13
D = -D 12  D 22  D23  (A1.5)

D13 -D 23 D33 )
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The polarization of the IBW is:

il = fo f) (A1.6)
f2

where:

D 12 D13 + D 23 (D11 - ArB)

D13 (D 2 2 - Ar) - D 1 2 D 23

D' 2 + (D 1 - Ar) (D 2 2 - Ar) (A1.7)D13 (D 2 2 - AB) - D 1 2 D 23

1
fo + f12 +2)

These formulas for D, and 91 are used in (6) and (7) to solve for the evolution of the

amplitude of the electric field along the ray trajectories.

APPENDIX II

The relationship between the Cartesian and the toroidal coordinate systems is:

x = (R + r cos9) cos

y = r sinO (A2.1)

z = (R +r cosO) sin

and the relationship between the Cartesian and toroidal wave numbers is:

k. = k,. cosO coso - i sin
r (R + rcosO)

k, = k,. sinG + T cosO (A2.2)

k, = k,. cosO sin4 - sinG ain# + (R cos
t h(R + r cos)

It is then easy to show that:

.. -R- J -wki-) 1~)(23V -( k J 8xi (iOki (23
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where J = r(R + rcosB) is the Jacobian of the coordinate transformation, (Xi, 2, 3) =

(r, 0, 0), (ki, k2 , k3 ) = (k, m,n), and a sum over repeated indices (from 1 to 3) is implied.

In the above equation the derivatives with respect to xi correspond to the explicit and

implicit (through k) dependencies of w(k(r),rJ on zi. The above equation can be re-

expressed in terms of D(kI,,r):

V 8w(k(r), r) 1 1 8J OD + 8 2 D 82D OD/8ki

a1 ~ _D8w J x Oxi'Ow Dw }Ok /D/Ow J 8: k, 88k (A2.4){ 8 2D 8 2D 9D/Lki I Ok,]
+ kiOki 9kp8w OD/Ow f 8xi J

where, now, the derivatives with respect to xi correspond to the explicit dependence of D

on xi. In (A2.4) the evolution of 8kj/Oxi along the rays is the only quantity that needs

to be determined. This is given by:8

d (k 82w 82w 8k1  82w 8kj 82w Ok; 8k (A2.5)
di Ox j J zxi-Oxi 8z,81ck 8xi 8xikix 8ai 8k,8k 8xo Oxi

where, again, the derivatives with respect to xi correspond to the explicit dependencies, and

the derivative with respect to t is along the ray trajectories given by (1). The derivatives

of w can be replaced by derivatives of D by either using the following relations or applying

the chain rule to them:

&w 8D/8xi w 8D/8k (A2.6)
7xj D/Ow ' k ~ D/Ow

where all the derivatives are with respect to the explicit dependencies. Since V x k = 0,

there are only six independent elements of the dyadic Vk that need to be evaluated along

the ray trajectories by (A2.5). This completes the determination of the second term in (6)

corresponding to the focusing (or de-focusing) of rays.

APPENDIX III

The approximate dispersion relation is derived by expanding the dielectric tensor

elements for the Maxwellian plasma 7 to order (kip,)4 for all the plasma species. (Here
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a = (h, d, e) is the species index for hydrogen, deuterium and electrons, respectively, and

p, is the appropriate Larmor radius.) By further assuming that the hydrogen ion density

is very small compared to the deuterium ion density, that wp > W ~ Wed, and that the

density and temperature profiles are the same for all the species, we obtain the following

approximate forms for the required tensor elements:

Di ~ ao + ain2 + a2ni

iD12 ~ co + cin2 + C2n4

D 13 x d 1nj + d2n 3

D 22  ao + bi + b2 nI (A3.1)

iD23 ~ gin + 92n
2

D33 ~ 2 yI + yjoeZ(Yo,)

where:

ao = -n 2+ w1 p2d

1, W d dV_2  
+a1 =-w+wg2 w2 2 i -2d + w

b, = -1+ 2-w-~ O - 3w +wi 219cd d u~d e

2O 2

hi= -+1 d t(2 - 3w + w+ 2(1 + 7)w+(32

Ci = - d (-2w + 73)
2 w,2 } C d T 1 id + d -8Wd(3.2

= 1 *n(+ (w ) ( v+ 77) 1
1 (dW2 t

di = nil + -- sign (n-L d) (vi-, + 7vih)
2njj WWcd
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d2 = sign (nj) v) + v2 ~d

91= 1 sign(n±) opa -v + +V ++ (-v+v++(1+7)(2 + v)
2n 1  \WWd v id + Oh± 1h)O

92 = sign (n±) ( sI 3v - 4v + v
2nil Wd)C id~ V2df

In the above expressions:

W# = yo, Re

i = Re YZ(j,) dY-jZ(Y-.)

Y~ja =

where j = (0,1,2), and Z is the plasma dispersion function. In the expression for D3 3

we have retained only the electron contribution as that greatly dominates over the ion

contributions.

In the initial propagation region of the rays where electron Landau damping is not

important, ID 331 is much greater than the magnitude of any other tensor element. This can

be easily determined from (A3.1) and (A3.2). Then we can approximate the determinant
=

of D by:

D D1 1 D 2 2 + D12

P a2ni + ain I + ao (A3.3)

where the a's are given by:

ao = a2+ c2a a0 + 0

a, = ao (a, + bi) + 2coc, (A3.4)

a 2 = ao (a 2 + b2 ) + alb, + cl + 2coc 2

The dispersion relation, obtained by setting D = 0, then gives two branches of n21. One

of them corresponds to the fast Alfven wave and the other to the IBW. Away from the

mode conversion region, where the two roots of n 2 are real, we find that the IBW is well

represented by the dispersion relation:
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DIEW W n + (A3.5)
a2

This can be further approximated into a simple form by replacing a, and a 2 by their most

dominant terms in (A3.4). By realizing that:

= Wpd Vid << 
(A3.6)

w2 C2
cd

we find:

DIEW n 2 (A3.7)
a,

The mode conversion region is to the high field side of the w = 2wed = 'ea cyclotron

resonance layer. The IBW becomes a propagating mode on the high-field side of the mode

conversion layer. Consequently, the plasma dispersion functions in the dielectric tensor

elements for the ions are asymptotically expanded and only the leading order non-vanishing

terms are kept in ao and a,. This gives:

2 / w2

ao = 1 - nu 2 + ~d w 2-r w2 2 ch (A3.8)
,= 2 _ 2 - W2 _ W2

Cd ch)

We have checked the solution to n2 for the IBW obtained from (A3.7) and (A3.8) and

find it to be in fair agreement with solution for the IBW obtained from the full dispersion

tensor used in the computations for the ray trajectories. Thus, (A3.7) and (A3.8) become

the basis of our analysis of the propagation of IBW and are used in Section IV.

The change in m due to a change in r along the ray trajectory is given by:
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dm _ (ODIBIae)
(8DIB/k,)

n( n O-k rain

k,. \w (R + rcoso) kBI /(R + rcoG) 2

2 6)2 +6+k83) (W2 _R2) 13) n BO
/ 13\2 K2 72 2 6 (R +rcoO) JBI ful

1 W,2 262211 rin
+ -2 (2+77) - -b(16 - 7i) - 5-1--2 c2  39 8 (R + rcos)

(A3.9)

In deriving (A3.9) we have made the following additional approximations:

W W 8 W 1
+ -, e_ _ 1 (A3.10)W - Weg W + WCj 31 w + 2wcd

which is the same as approximating w by 2wcd in the above expressions. Equation (A3.9)

does not lend itself to an easy analysis. However, important aspects of the change in m

with r can be determined by keeping the most dominant terms in (A3.9). This is done

by realizing that c < 1, 6 > 1 and Wpd > w. Then, (A3.9) reduces to equation (15) in

Section IV.
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FIGURE CAPTIONS

Figure 1a: The poloidal projection for three rays initially all started at 4 = 0 but with:

(1) r = 61.94 cm, 0 = 0.157r

(2) r = 55.63 cm, 0 = 0.077r

(3) r = 54.07 cm, 0 = 0.017r.

Here w = 1.58 x 10 8 sec-1, 4 = 2 MA, nj = 0.1, the normalized poloidal mode

number: cm/wa = 0.01, and the rest of the parameters are as given in the text. C is

the location of the w = 2wg resonance layer and I is the location of the cold plasma

ion-ion hybrid resonance layer. i = rcosO, g = rainO.

Figure 1b: The toroidal angle, 0, along the rays of Fig. la. wt is the normalized time along the

rays.

Figure 1c: The amplitude, IA1 along the rays of Fig. la. Here the initial amplitude is assumed

to be one.

Figure 1d: The poloidal mode number, m, along the rays of Fig. la.

Figure le: The Landau resonance parameter for the electrons, yo,, along the rays of Fig. la.

Figure 2: Same as Fig. la except that 4 = 500 kA and the rays are started at:

(1) r = 55.69 cm,6 = 0.157r

(2) r = 50.46 cm,0 = 0.077r

(3) r = 49.18 cm,0 = 0.017r

Figure 3a: Same as Fig. 2 except that w = 1.93 x 10 8 sec- 1 and the rays are started at:

(1) r = 17.86 cm, B = 0.87r

(2) r = 15.24 cm, 0 = 0.91r

(3) r = 14.52 cm, 0 = 0.997.

Figure 4: The variation of r along three rays with all parameters being the same as in Fig. la

except that initially 0 = 0.07ir for all the rays and:

(1) r = 50.07 cm, To = 5.0 keV, Tio = 5.0 keV

(2) r = 53.36 cm, To = 5.0 keV, Tio = 3.0 keV

(3) r = 55.63 cm, Teo = 1.8 keV, Tio = 1.7 keV

Figure 5: Following JA 1 I along rays 1 and 2 of Fig. la with the effects of focusing included in

the equation for the evolution of IA 1.
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Figure 6: Poloidal projection of the rays in the neighborhood of rays 1 and 3 of Fig. la.
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