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Abstract

A new numerical code that calculates the collective Thomson scattered spec-
trum with a completely arbitrary distribution function was developed to model
scattered spectra in ICRF heated and DT burning plasmas. Theoretical scat-
tered spectra from energetic ions in tokamak plasmas (TFTR, JET, and Alcator
C-Mod) are calculated. Calculated spectra for non-thermal minority He ions
in ICRF heated plasmas along with results from Maxwellian distributions are
shown. Also preliminary results of calculated spectra for alpha-particles with
slowing down distribution are presented.
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1 Introduction

A number of high power collective Thomson scattering experiments for measurements
of confined energetic ions in tokamaks are in the planning or conceptual design stages
which will depend heavily on theoretical calculations of the collective Thomson scatter-
ing spectral density function, S(k, w). In the past, S(k, w) has been calculated analyt-
ically for only a few velocity distribution functions, such as the Maxwellian. However,
plasma physics theory predicts that present and future tokamak experiments may have
ion distribution functions which will be highly non-Maxwellian and complex in nature
because of ICRF and neutral beam heating, and the presence of alpha particles in D-T
burning devices.

This paper will present a method to calculate S(k,w) semi-analytically for arbitrary
ion velocity distribution functions using Laguerre and Hermite orthogonal polynomials.
S(k, w) using the electrostatic approximation given by Sheffield is used as starting point
of the derivation[2]. S(k,w) will be calculated for theoretically expected ICRF heating
ion velocity distribution functions in TFTR, JET and Alcator C-Mod. The results are
compared with an analytic model using Maxwellian ion velocity distribution functions.

Also as a benchmark test, a subtracted Maxwellian distribution function which creates
an inverted velocity profile in the low velocity region, is used to calculate S(k, w) and
the results are compared with an existing analytic model[1]. And finally, preliminary

results are presented from the study on scattering in D-T plasma by modeling the

a-particle slowing down distribution.

2 S(k, w) in terms of expanded f(v)

The spectral density function, S(k, w), is needed in the theoretical calculation of Thom-

son scattered power [2]. Calculations of theoretical scattered power and signal to noise

ratio is presented in another article [3]. S(k, w) is defined as,

S(k, w) = - fe(kw) ' 2= Se + Si + i2 + ... , (1)VT( ne

where the fluctuation wave number, k, is,

k =k - ki 1 2k, sin (0/2), (2)

4



and k2 is the magnitude of the incident wave and 0 is the scattering angle between ki

and ks.

For a Maxwellian velocity distribution, S(k,w) is known analytically, but for more

complex distributions, S(k,w) is very difficult to calculate analytically. In order to

treat non-Maxwellian distributions, a general form of S(k, w) is derived by expanding

the distribution function in terms of the Laguerre and Hermite polynomial series. Hence

an arbitrary function composed of a series of Laguerre and Hermite polynomials can

be used to fit a known form of a given particle distribution function by calculating

the coefficients of the Laguerre and Hermite polynomial series. The initial distribution

function can be in either analytic or numerical form. This fitted distribution function

is then used to calculate S(k,w).

An arbitrary distribution function can be expressed as a sum of Laguerre, Lm(y), and

Hermite, H,(x), polynomials,

f(x,y) = Z{amnLm(y)H(x)e-YI2'e- 2/2, (3)
m ti

since these polynomials satisfy orthogonality conditions[4],

Lm(y)Ln(y)e -= 6'mn, (4)

and,

,Hm(x)Hn(x)e -2 = v/2"m!bmn, (5)

where 6mn is the Kronecker delta function. Taking advantage of these orthogonality

conditions, am . can be calculated,

am.= jgn(y)Lm(y)e-y/2dy, (6)

where,

w h ey )= g ( Y )f f ( X, y ) H (x ) e _ , 2 / 2 d x , ( 7 )

where f(x, y) can be any model distribution function. Maxwellian like distribution

functions typically can be accurately approximated by 10 to 20 am,. coefficients. Most

distribution functions modeled so far required at most a few hundred coefficients, which

represents less than 100 seconds of the Cray computing time. For a Maxwellian distri-

bution, only the a 00 term is needed and all other higher order coefficients are zeroes.
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Hence, by appropriately choosing the a00 term, the equations derived here become
exactly the equations for the Maxwellian case.

It should be pointed out that presence of sharp cutoffs in a distribution function like
that of the slowing down a-particle distribution with no energies greater than the birth
energy requires many am coefficients to model, and gives rise to the Gibbs phenomenon
which causes erroneous results at the cutoff.

Using the arbitrary distribution function (Equation 3), a generalized form of the fully
magnetized spectral density function is derived. A full derivation is presented in the
appendix, and only the final result is presented here. Normalized variables are defined
in the calculation of the S(k,w) with an arbitrary distribution function are as follows,

Vvvj 2v 2
_ O il __ 2 1t= , y-I

where ol and a- = .2T Using these normalized variables and the arbitrary

form of the distribution function (Equation 3), the spectral density function is,
electron term

21 H Hn(V2C) e-t
S(k, o) = 7r He 2 leoi-ie(amn)e "(L(V, m)

EL i m n kli(le l)
ion term

+ r2 ZeffIHe1 Hn(v/2 I) eCI
+ 7r2ZefI 2 ZZZ E o2iUI3 (amn)3 Hn(£i e (l, m), (8)

CL , i m n

where,

£(l, m) j'dy e y/2j 2 (OyV)Lm(y) (9)

V('( M) 00 dy e-y/2jj2('3/y-)L' (y) (10)

1 n) e~2 Hn(v/t)

v ; - dt (t - CO

The Gaussian quadrature integration method was used to numerically calculate the

above integrals (Equations 9,10,11)[5]. The integrals of Equations 9 and 10 use 300

Gauss-Laguerre quadrature points, and the integral in Equation 11 uses 80 Gauss-

Hermite quadrature points. Note that for the lowest index order, Equation 9 is a

6



product of modified Bessel function and an exponent, Equation 10 is zero, and Equation

11 is the plasma dispersion function.

The screening function, H3 (k,w), is calculated as,

H3 (k,w) = 2/ 2w,
_Lm ni

a2 ) n! ___n

x { (, m)[2(/2)!+ Z((, n) - Z((, n - 1)]
2(n/2)! 2 2

+ [((o - C)Z(C, n)( 1(l, m) - V(l, m))]}, (12)

where J is the Bessel function of the first kind of order 1, and wpj is the plasma frequency

of jth species. Here, the jth subscript also includes the electrons. In the derivations,
the screening functions for all species, including the heavy minority ions are treated as

magnetized.

With enough coefficients, the fitted function should be identical to the given input func-

tion. However because of practical limitations of finite computing power, the number

of coefficients are truncated at some high order. Usually the lowest order coefficient is

most significant and the higher order terms become less significant. During the anal-

ysis, the coefficients were truncated when the ratio of the high order coefficient to the

zeroeth coefficient is less than 10'. It would be desirable to carry out the coefficients

to even higher orders, but round off errors in the integration routine become too large

and limit the calculation of the the coefficients to approximately 100 terms in Laguerre

space. With functions that decrease very slowly or that have sharp cutoffs, higher

order terms become more significant; and the coefficients decreases very slowly. Thus

modeling these types of profiles are very difficult.

Coefficients decrease much more rapidly in the Hermite space; after about 20 terms, the

ratio of the last term to the first term is about 10'0. Hence expansion in the Hermite

space poses no numerical problems.

3 Subtracted Maxwellian Distribution

Study of scattering from the ICRF heated plasma is the main focus of this paper;

however, no analytic form of S(k, w) currently exists, and no comparison can be made
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Figure 1, Contour plot of subtracted Maxwellian f(v) with y = 0.9, A = 0.5, and
F = 0.5.

between the numerical model and analytic theory. Hence benchmark test of the new

code using the new generalized form of S(k,w) was done with an existing analytic code

that uses the subtracted Maxwellian distribution. This analytic code was previously

used to compare with experimental data from the Tara tandem mirror device. A

detailed study of scattering in tandem mirror plasma with this model velocity profile

is presented by J. Machuzak [1].

The subtracted Maxwellian distribution function used here is

f(vw,vii) = 1 e-("/ I 1)e( 1 Il) -ye I -,)e- 11" 11 1. (13)
(7rueoii)3/2 (l __ yA2 F)-

Parameters y, A, and F determine the depth and width of the hole in the low velocity

region. To model a loss cone in a tandem mirror, approximate parameter values of

-y = .9, A = .25, and F = 1 should be used. However, for benchmarking purposes,

-y = .9, A = .5, and F = .5 were used to compare how effectively the fitted expansions

model the given velocity distribution in both perpendicular and parallel velocity space.

Ions are modeled with the subtracted Maxwellian profile, and electrons are assumed to

be Maxwellian. Plasma parameters chosen model the Tara tandem mirror conditions.

Figure 1 shows the contour plot of the velocity distribution. And a plot of S(k,w)

spectrum is shown on Figure 2. Notice the enhanced signals in the low scattered

frequency regime for the subtracted Maxwellian case in comparison to the Maxwellian

case. With larger value of y (very close to 1.) the hole in velocity space becomes deeper,

and the scattered signals are even more enhanced.
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Figure 3 is a comparison of results from the subtracted Maxwellian analytic code and

the numerical code using the fitted velocity profile. For this calculation, the numerical
code used 60 by 10 matrix of am coefficients. Results from the two codes match very
closely, and even higher degree of accuracy can be expected if the amn coefficients

were carried out to higher orders. Also, when the Maxwellian velocity distribution is

modeled, the numerical results match exactly with the analytical results.

4 ICH Velocity Distribution

The new code can be used to model scattering in ICRF heated plasmas. Calculations
are carried out for three experimental cases corresponding to the TFTR, JET and
Alcator C-Mod tokamaks. S(k,w) was calculated for 2% He' ICH distributions and
plotted in Figures 6 through 8 along with 2% He3 Maxwellian calculated spectra.

The bulk ions and electrons were assumed to be Maxwellian. Near the top and bot-
tom positions of the tokamak where the tip of the He' particle banana orbit is in the
ICRF resonance layer, the He' distribution is believed to be approximately anisotropic
Maxwellian peaked primarily in v1 space. Near the midplane of the tokamak, the ICH
distribution is believed exhibit a 'rabbit ear' feature due to conservation of energy and
angular momentum as the particles travel along the banana orbit. An approximate

analytic equation, describing this 'rabbit ear' distribution at the edge and anisotropic
Maxwellian distribution at the banana orbit tip, is used in the calculations [6]. This

equation was used to model the 'rabbit ear' ion velocity distribution to in the calcula-

tion of S(k,w). To calculate the S(k,w) from a Maxwellian distribution, an analytic
expression of S(k, w) was used in the calculations.

The ICRF heated He' distribution used is,

f(W,) = Cfjm(W)[exp( I ' )+exp('I . )], (14)

where

4(= ( V) 1 1 - ".~iI -i W

1- lqBmin
WCmHC3
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\4A(-")(1 + (W/Wc)3/2)'

Z2 j Enj(Zj/Aj)1oghi
(A= nlogA '

W = 1/2mHe3V2,

Wc = 14.8AT{(Z),
Ai

A. = exp(-WTtaiI).

Here, Ttaii is the characteristic temperature of the energetic ions as described by G.
Hammett[6], Bmin is the field strength at the location of scattering, 1q is the harmonic

heating number, 1L = 0.5mHe3v2 BH, BH is the field at the heating location, w is the

heating frequency, A is the atomic mass number, and Aj is the Coulomb logarithm

number for the j-j collision. The normalization constant, C, is determined fromr the

following integral,

1 = jdWd (W,(). (15)

For the above ICH distribution function, coefficients up to m = 60 and n = 20 indices

were needed to fit to the arbitrary function (see Figure 4). The values of higher order

amn coefficients decreased in magnitude very fast when compared to the a00 term and

required only a small number of higher order coefficients.

Calculated results of scattering from the Alcator C-Mod plasma is shown on Figures 5

and 6. Results for TFTR and JET are shown on Figures 7 and 8, respectively. Figure

5 is a case with 0, the angle between k and BT, very close to 90 degrees to resolve the

features of electrostatic ion Bernstein waves. The bulk deuterium ion feature dominates

in the low end of the spectrum. The electron feature dominates in the high frequency

end, as described by the first term of the Equation 8. The lower hybrid peak is evident

at the high end, which is only observable for near perpendicular scattering angles to

the magnetic field, as made evident by the lack of the lower hybrid feature in Figure 6

where 4 is 70". At the low frequency regime of Figure 5, enhancement of the spectrum

due to ion Bernstein resonances can be observed. Note that even the He3 spectrum

exhibits resonance features (< 1.5GHz), although its contribution is negligible when

compared to the bulk ion and electron features. He' feature is dominant at the mid

frequency regime between 2 to 4 GHz and is enhanced by the lower hybrid feature.
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Figure 4: Contour plots of the 'rabbit ear' distribution: figure (a) is the input analytical
distribution, and figure (b) is the fitted numerical distribution using m = 60 and n = 20
coefficients.

Scattering at 4 of 70' on Alcator C-Mod, TFTR and JET are shown on Figures 6,
7 and 8, respectively. A 4 of 700 was chosen to avoid the ion Bernstein and lower

hybrid resonances and yet be still close to 900 to see the effect of the 'rabbit ear'

distribution function. S(k, w) curves are drawn for the cases with no He3 present,

2% Maxwellian He', and 2% ICH distribution function He'. S(k,w) of ICH He3 is

about an order of magnitude less in signal strength than the case with Maxwellian He3

for all three calculated cases. By examining the velocity space of the 'rabbit ear' ICH

distribution function, this observation can be reconciled. At R,, the major radius of the

tokamak plasma center, the ICRF is tuned to match w6, the ion cyclotron frequency,

and strong perpendicular heating occurs. However, as these ions move in their banana

orbits toward the outer midplane, the magnetic field is less, and v1 decreases due

to conservation of magnetic moment, and v11 increases due to conservation of energy.

Therefore, a 'rabbit ear' in velocity space occurs near the midplane of the plasma due to

a depletion of high energy ions at v11 - 0. A high temperature Maxwellian distribution

would include these ions, and consequently, the scattered power would be greater for

a Maxwellian distribution function since there are more ions in the v11 - 0 region of

velocity space compared to the ICH distribution function. If the scattering geometry

were aligned to examine velocity space along the 'rabbit ear', then closer agreement

with a Maxwellian distribution function is expected.
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Figure 5: S(k,w) for Alcator C-MOD: 4= 89.5*
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Figure 6: S(k,w) for Alcator C-MOD: 4= 70.00
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Figure 7: S(k,w) for TFTR: 4 = 70.0*
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Figure 8: S(k, w) for JET: 4 = 70.00
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The high frequency regime of the S(k, w) is affected by the bulk electron feature, and

it is sensitive to the a parameter (a = 1/kAD). This parameter is 8.11 for the present

scattering calculation in TFTR and 3.25 for JET. Note that the electron feature is

at least one order of magnitude greater for the JET case than for the TFTR case.

Although the increase in the electron feature brings up the total S(k, w), the sensitivity

to the He3 feature is decreased because the total scattered spectra is dominated by the

electron feature. Hence, it is desirable to be in a regime where a is as large as possible

to better resolve the He' feature.

5 a-particle 'Slowing Down' Distribution

A D-T burning plasma with fusion a-particles was modeled with the new code. As a

benchmark, a comparison was made with an existing code that analytically models the

a-particles with a slowing down distribution. Since the presence of a sharp cutoff in the

distribution cannot be modeled, the slowing down distribution was modeled without

the cutoff at the a birth energy. Hence the calculated scattered spectra from this model

will have no roll off at the frequency corresponding to the birth energy, but the overall

shape up to the cutoff should be similar to the results from the benchmark analytic

model.

The slowing down velocity distribution is

0 ,V > V",

F0/(v' + v')v< ,

where F, = 3/[47rln(1 + (v./vc))], vc = 0.09o,, v. = (2E./M.)'I2 and EC = 3.5MeV.

However as mentioned, the slowing down velocity distribution was modeled here with-

out the birth energy cutoff in the numerical model. The benchmark analytical model

uses the 1-dimensional form of the above slowing down distribution which takes the

birth energy cutoff into account[7]. Calculated spectra for JET and TFTR cases are

shown on Figures 9 and 10, respectively. The two models show reasonably good agree-

ment, except for the absence of a roll off at 3 GHz for the numerical model. Also as a

comparison, spectrum calculated by Hughes [7] is also shown on Figure 9, which closely

agrees with the analytic model. Calculated results for the TFTR case is shown on Fig-

ure 10. Again, except for the absence of roll off in the numerical model, the analytical
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and numerical models show reasonably good agreement. A third spectrum modeling

the a-particle with a 3.5 MeV Maxwellian distribution is also shown in Figure 10.

Confined a-particles may have more flat, and possibly even inverted distributions [8].

With the numerical model, it is possible to model these distributions and calculate

the scattered spectra. Again, the model may not give us a completely accurate results

due to numerical limitations, but it may give us new semi-quantitative insights into

scattering in a burning plasma. This analysis of scattering from confined alpha particles

with distribution function other than the slowing down velocity distribution of Equation

5 will be performed in the future.

6 Conclusion

The calculation of the collective Thomson scattering spectral density function has been

enhanced by the development of a theory which can accommodate arbitrary velocity

distribution functions. Prior to this work, collective Thomson scattered spectra could

be calculated for only a very few simple distributions which could be analytically solved,

such as the Maxwellian distribution.

The ICH distribution function which models minority HeO ions present at the midplane

of tokamak plasma was used to calculate the scattered spectra. The spectral density

function with this distribution indicates a decrease of an order of magnitude in scattered

power from that of a simple isotropic Maxwellian distribution function of the same

temperature for the orientation of the scattering wave vector to the magnetic field

considered in this report. This should improve the prospects for detecting fusion alpha

particles during ICH.

The analytical form derived here is adequate for the ICH distribution function, but

is inadequate, at present, for the slowing down distribution function because of the

sharper cut-offs in velocity space. Numerical modeling is limited by the round off

errors in the calculations of high order terms. Hence input distributions with very flat

slopes or sharp cut offs that require many terms in the expansions are difficult to model

adequately.
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Appendix: Derivation of S(k, w) with Fitted f(v)

Derivation of S(k, w) along with Hj, following the electrostatic approximation as out-
lined by J. Sheffield [2], is given here. H, the susceptibility for jth species is given
by

r d 4ire2 n0  __________

Hj (k, w) = dv4 2  J ( - i - (16)-o M ik2I w -- kjjvjjj- M - i-

v* is Sheffield's notation in cases where f,,j is independent of 4. If the velocity is
separated into v: and v11 components with respect to 4, then H can be written as

27rf oo w2 . J1(k i)[kii + 1
Hj (k, w) = o d viLdvj do .1 Lj kj (17)J V VJ k2  w - kili - - i-y

Define following normalized variables and constants,

2v 1  2v
t _ , y - a2011i L

V 2Q kjjoj'

where,o 1 and ou are perpendicular and parallel thermal velocities, respectively. And,
defining an arbitrary distribution function in terms of Laguerre, Lm(y), and Hermite,
Ha(t), polynomials,

f(t,y) = E{amnLm(y)H(t)e-Y/2- 2 /2, (18)
m ni

and substituting it for f,, into the above equation,

H3 (k,w) = 2r dy- d- xk2 Jo 4Jo f d V12

J 2 (O3 Vx) V2k 8 4
E k- W2 + f(t, y) (19)

7rwp2,, 2 0 IWI,

= 23/2 k2 I _di dy E 1 j mN') x (20)
m n I W- L -

f 2kj1 Lm(y)e-y/2d H(t)e-t2/2 + M H.(t)e2'/2 Ld r(L-y/2
dt HI I a2 1

19



SH,(t))e-_2/2]

' Lm(y)e -y/2]

= [-tHa(t) + 2nH_-(t) e_ 2/2

= 1Lm(y)+ L

and redefining t' = t/Id and introducing C, then

H3 (k,w) O>jo E amndt'fdyZ 2 X'2k 2  mLi n k0 -1[t C
{ L(Y) [_2t'Ha(V/t') + 2VdnH 1 (dVt')] +

i; H(V-t') - Lm(y) + L.(y)] e-Y/2 2.

Using the fact that (0 - Cj = and defining Amn a epeamn,k~j.,1 10,x

H11(k,w) = 27rw2 -y/2An-L'2' jd2e3//2et 1 2
AnI L' [t e-e ]

(21)

2 H ,_( V t') +

(22)[Co - C]H.(f2t') [Lm(y) - L' (y).

Rearranging the integrals in the equation,

=Am E 2 dt x

[ H( V2t') 2- H 1 (V2t')] f dye-y/ 2J(jv/y)Lm(y) +

(odtH n(V-t')e _t'2

jdyJ(fjVy/) Lm(y) -LL'(y).

a dy ey/2)J,2 (# -)L.(y),

Sfdy e(-y/ 2 )J( 3 y)L'(y),

- t-d'2lH(rt')

20

Using,

H, (k, w)

Define,

(23)

£(l,m)

f'(l,nM)

Z(Cu, n)

(24)

(25)

(26)

' 2j L. (y) [-H,,, (,42t)
01 2 2Ili



And using the relation,

00o t - 0

J dt' e-*2Hn(V2t)-00

0 n odd
= n n even,

(M2)

27r3/2w
2 2 E A.

x a 2 , m) [ 2(n/2)! + CZ(C, n) - 2 Z(C,n-1)22

+ [Co - Ci]Z(, n) L(1, m) - £'(l, m)) }.
With E, J?2(x) = 1 and,

Ie-/2Lm(x)dx = 2(-1)',

then

27r3/2w 2.

k2(72 E E A,Ij m nI

x

0,2_Lj r
q2 _(1, M) Z (Cl, n)

Ili 2
- Z( ,n - 1)

+ [[o - LZ(, n)( L1, m) - £'(l, m))] }
Spectral density function for a two component plasma is given as:

S(k, w) = 2 lim 11- H, 12 - dv E, J?2(kp.)fo.(v)
SkO = 2f 1 (w - kilvil - 1Q,)2 + y2

+ Z IH. 12 / dv Em J,2n(kipi)foi(v)
CL H

2
1 o (w - kiivil - mf2) 2 + -y2

where EL is the dielectric function,

EL = 1 + H,(r, w) + H;(K, w).

21

and,

+ C , ' ,de-2 H.(V2t')
0-00 e - 0

then,

(27)

H3 (k,w)

(28)

(29)

H3 (k, w)

(30)

(31)

(32)

(33)



Using the same substitutions as Ha(k, w), then

S(k, w) = 2lim 1 - - 2,7r J0 2L dy 0 dt x

j12 (p.eV-) EZy Z(a ~ Lm(y)H (t)e-y/2e-_
2 /2

(amn) - -11.) 2 + 32

Noting that (w - klv 11 - = - t'] 2, then

S(k,) = 2lim dt x

Z J1
2 (1ex.y) Z (amn), Lm(y)Hn(t)e/e2/

i mn k -C -t'] + 2

+ z - 27r f dyj -dtx

j 1
2 (0 VY) ZZ(amn)iLm(y)H(t)e -y/2-t2/2

m n kr v(i -t'] 2 + 2

Hn 2 2 xr

S~~~~k,~I w) = 2lie - 2rd

+ Z! 7~eZ(a)yx

-YL 6LOII m 4 f.V

jd 0 ye- ) 2J ( amny) Lm(y) Hd, H( 2t')e 2 (-t2)

S - t' + j

Using the relation,

j12 ( -) ) (.L ()2 =, 
(32)

22 1 t



the spectral density function becomes

H.2 (vI2(i) e~ M)S(k, w) = 7r2 1 -- E E(Am). "'L(lm)
F-L Tn n k11,1l

7r2Z Y (Amn) Hn( ) e- L(,m). (37)

fLm n I ~ o'l

With multi-ion species, the spectral density function is,

He H2 _eC2
S(k,w) = 7r2 1- (Amn) H.(V L)e (lm)

EL m n kloeg

+ 7r2 Zeff E (Am)Hn(1(v ) e<f L(lm). (38)
CL M n I \j\\'
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