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ABSTRACT

The nonlinear evolution of a helical wiggler free electron laser is investigated within
the framework of a macroclump model for the trapped electrons. The model de-
scribes the nonlinear evolution of a right-circularly polarized electromagnetic wave
with frequency w, and wavenumber k,, and slowly varying amplitude &,(z, t) and
phase 8 ,(z, t) (eikonal approximation). The model further assumes that the trapped
electrons can be treated as tightly bunched macroclumps that interact coherently
with the radiation field. The analysis is carried out in the ponderomotive frame,
which leads to a substantial simplification in both the analytical and numerical stud-
ies. As a first application, the nonlinear evolution of the primary signal is examined
when 98' = 0 (no spatial variation of the wave amplitude and phase). The evolu-
tion equations are reduced to quadrature, and the maximum excursion of the wave
amplitude a,, is calculated analytically. Subsequently, the nonlinear evolution of
the sideband instability is investigated, making use of the equations describing the
self-consistent evolution of the wave amplitude &, and phase 8,, which vary slowly
with both space and time, together with the macroclump orbit equation. In the
present analysis, the sideband signals are treated as perturbations (not necessarily
small) about a constant-amplitude (&0 = const) primary electromagnetic wave with
slowly varying phase 6'(z'). The coupled orbit and field equations are investigated
analytically and numerically over a wide range of system parameters to determine
detailed scaling properties of the sideband instability. The results of the present
analysis suggest that free electron lasers operating with system parameters corre-
sponding to the strong-pump regime [(f'/I, )'/4 > 1] are least vulnerable to the
sideband instability. Moreover, the nonlinear evolution of the sideband instability is
investigated numerically for system parameters corresponding to the Los Alamos free
electron laser experiment. In several aspects, the numerical results are found to be
in good qualitative agreement with the experimental results.



I. Introduction

There is growing experimental-20 and theoretical21-7 3 evidence that free-electron

lasers (FEL's)74- 80 are effective sources of coherent radiation generation by intense

relativistic electron beams. Recent theoretical studies have included investigations

of nonlinear effects 21-49 and saturation mechanisms, the influence of finite radial
geometry on linear stability properties,-' 5' novel magnetic field geometries for ra-

diation generation, 50 '5 -6 0 and fundamental studies of stability behavior.-' 72 Since

it is often desirable to operate an FEL as a high power radiation source in the high

gain regime, the nonlinear effects 21- 49 and saturation mechanisms are of considerable

practical interest. In circumstance where a sufficiently broad spectrum of waves is

excited, a quasilinear model has been developed by Dimos and Davidson21 to describe

the nonlinear evolution and saturation of the free electron laser instability. On the

other hand, when the spectrum of the excited signal wave is relatively narrow, a

simple trapping argument15 has been used to estimate the saturation level. Another

topic of considerable practical importance is the sideband instability'-" 21 -28 ,3 9-49

which results from the bounce motion of electrons trapped in the (finite-amplitude)

ponderomotive potential. It was first predicted theoretically by Kroll, Morton and

Rosenbluth39 that the bounce motion of the trapped electrons can lead to the un-

stable development of sideband signals. Numerical simulations40- 49 and experimen-

tal observations'-' subsequently demonstrated that sideband signals can grow to

a significant level. In analytical investigations of the sideband instability, both ki-

netic 21 - 23,84 and single-particle24,2, 39 models have been developed. Making use of the

Vlasov-Maxwell equations in the ponderomotive frame, Davidson21 investigated the

sideband instability for perturbations about a self-consistent kinetic equilibrium state.

In circumstances where the trapped electrons are localized near the bottom of the

ponderomotive potential, it was found that the detailed stability properties are rela-

tively insensitive to the form of the distribution of trapped electrons. In a subsequent

analysis, 22 the detailed dependence of the sideband instability on system parameters

was examined. Moreover, Davidson and Wurtele 24 have developed a single-particle

model (with appropriate statistical averages) to analyze the sideband instability in

the ponderomotive frame. The effects of the untrapped electrons have also been con-
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sidered.2" Riyopoulos and Tang2" recently developed a kinetic model to study the

sideband instability for general distribution of trapped electrons. The influence of

the sideband signal on the electron dynamics has also been investigated.27 Further-

more, Sharp and Yu2" have developed a kinetic model of the sideband instability in

which the transverse variations of the wave fields are calculated self-consistently from

Maxwell's equations. Recent studies of the sideband instability have also included a

self-consistent one-dimensional kinetic analysis by Yang and Davidson 4 in which the

detailed influence of the trapped-electron distribution on the sideband instability is

determined.

Due to the complicated evolution of the electron distribution, most studies of

nonlinear FEL behavior rely on numerical simulations. For the sideband instability,

which involves both spatial and temporal variations, many periods of the ponderomo-

tive potential need to be included. Consequently, the CPU time required in numerical

simulations can be very long. In this paper, we present a simplified nonlinear model

of the sideband instability in which all of the beam electrons are trapped in the pon-

deromotive potential. Furthermore, the trapped electrons are assumed to be tightly

bunched into coherent macroclumps. Although, the "macroclump" model is ideal-

ized, the field evolution and the nonlinear motion of the macroclumps are determined

self-consistently [Eqs. (40), (41) and (43)] within the model. Moreover, within the

framework of the macroclump model, several analytical results are accessible, and the

numerical analysis can be carried out in a straightforward manner to determine the

nonlinear evolution of the system.

The present analysis is carried out in the ponderomotive frame, which leads to

considerable simplification in the orbit equations [Eqs. (14) and (15)] and in the

detailed investigation of the sideband instability.2 1- 23 ,7 3 ,74 ,8 4 Moreover, the model has

a conservation relation [Eq. (20)] which, when transformed to the laboratory frame,

corresponds to energy conservation.

The theoretical model and assumptions are described in Sec. II. A tenuous,

relativistic electron beam propagates through a constant-amplitude helical wiggler

magnetic field with wavelength A = 27r/ko =const, and normalized amplitude

aw = eB./mc 2ko =const [Eq. (1)]. The model neglects longitudinal perturba-
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tions (Compton-regime approximation with 60 : 0) and transverse spatial varia-

tions (8/Ox = 0 = &/8y). Moreover, the analysis is carried out for the case of a

finite-amplitude primary electromagnetic wave (w,, k,) with circular polarization and

slowly varying normalized amplitude a.,(z, t) and wave phase 8(z, t) in the eikonal

approximation (Eq. (2)]. A detailed investigation of the sideband instability simpli-

fies considerably if the analysis is carried out in the ponderomotive frame21 -23,73,74,84

moving with axial velocity v,, = w.,/(k, + ko). In the ponderomotive frame ("primed"

variables), the nonlinear evolution of a,(z', t') and 6'(z', t') is described by Eqs. (5)

and (6), and the electron orbits evolve according to Eq. (14). A conservation relation

[Eq. (20)] associated with the self-consistent evolution of the electromagnetic field and

the electron motion is readily derived from Eqs. (5) and (14). It is shown in Sec. II B

that the conservation relation in Eq. (20) implies energy conservation [Eqs. (31) and

(38)] in the laboratory frame. In Sec. II C, the macroclump model is introduced.

In this model, all of the beam electrons are trapped in the ponderomotive potential.

Furthermore, the trapped electrons are assumed to be tightly bunched into coherent

macroclumps. The nonlinear evolution equations (5) and (6) for the amplitude and

the phase of the electromagnetic wave are thereby simplified and reduce to Eqs. (40)

and (41).

In Sec. III, the nonlinear evolution of the primary signal when 8/l1' = 0 (no

spatial variation in wave amplitude and phase) is investigated within the framework

of the macroclump model. The assumption 8/1l' = 0 readily reduces the evolution

equations (40), (41) and (43) to the ordinary differential equations (46)-(48), which

can be further reduced to quadrature [Eq. (60)]. Assuming A,O = 0 and ' = 0

in Eq. (62), the maximum amplitude excursion A,,m.. is calculated analytically from

Eq. (60). Except for a constant scale factor of order unity, the maximum amplitude so

obtained is the same as the estimate of the nonlinear saturation amplitude obtained

in the high-gain Compton regime7 5 using a simple trapping argument.

The basic framework for studying the sideband instability is established in Sec. IV.

In Sec. IV A, the self-consistent quasi-steady equilibrium state is described by Eqs. (68)

and (69). The evolution equations (77)-(79) for the sideband signals, which are treated

as perturbations about the quasi-steady equilibrium state, are derived in Sec. IV B.
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In deriving Eqs. (77)-(79), no a priori assumption is made that the perturbations
have small amplitudes compared to equilibrium quantities. The linear stability prop-
erties for small-amplitude perturbations about the primary signal are summarized in
Sec. IV C, and the nonlinear saturation of a single sideband is estimated analytically

in Sec. IV D.

The nonlinear evolution of the sideband instability is investigated in Sec. V. Fol-
lowing a general description of the numerical approach (Sec. V A), the evolution equa-

tion (77)-(79) are solved numerically for three sets of illustrative parameters [Cases I,
II and III in Secs. V B and V C]. Two situations with different initial conditions are

considered in Secs. V B and V C. In Sec. V B, the nonlinear evolution is determined

numerically for small-amplitude initial conditions with wavenumber equal to that of

the fastest growing mode. It is found in the numerical calculations for the three cases

that the fastest growing mode, after an initial transient stage, grows exponentially

with growth rate predicted by the analytical estimate in Sec. IV C. Moreover, the

saturation amplitude is found to agree with the lower bound estimated in Sec. IV D.

Cascade processes are examined in Sec. V C for the situation where the initial pertur-

bations consist of sideband modes with wavenumber AKf, = AK,/2. Here, AKn1 is

the normalized wavenumber of the fastest growing mode. During the evolution, the

nonlinear terms in Eqs. (101)-(103) generate harmonics of the initial perturbations.

Included in these harmonics is the fastest growing sideband mode. For Cases I and

III, which correspond to the strong-pump regime and the weak-pump regime, respec-

tively, it is found in the early stage of evolution that the initial perturbations with

wavenumber AK' = AKk1/2 grow exponentially. However, before the sideband mode

with AK' = AK/2 can experience a significant growth, the fastest growing mode,

which is excited by harmonic generation, has achieved a large amplitude. The fastest

growing mode eventually causes the saturation of the sideband instability and dom-

inates the long-term evolution of the system. On the other hand, for Case II, which

corresponds to intermediate pump strength with (Q' /F)6/4 = 1, the initial pertur-

bations with wavenumber AK' = AK /2 grow without interference from the fastest

growing mode, until they saturate at an amplitude comparable to the equilibrium

amplitude a' of the primary signal wave. Moreover, the fastest growing mode with

AK' = AK,,, which started with very small amplitude, evolves through harmonic
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generation due to the strong influence of the large-amplitude sideband mode with

AK' = AKA1/2. It is also found that the long-term evolution for Case II involves

many modes with comparable amplitudes interacting with one another.

In Sec. V D, the nonlinear evolution of the sideband instability is examined nu-

merically for system parameters corresponding to the Los Alamos free electron laser.'

The dimensionless pump strength in this case is (n'B/I,)'/4 = 21, and the maxi-

mum growth rate occurs at normalized wavenumber AK 1 = 1.195 x 10-2 - 1/84.

The initial conditions in the numerical calculation correspond to small-amplitude

perturbations consisting of the first six Fourier components, i.e., AK' = m/252,

m = 1, - - -, 6. Following the time evolution of both the upper sideband signals and

the lower sideband signals for the first six Fourier components, it is found that the

lower sideband signal with wavenumber AK' = 1/84 corresponds to the wavenum-

ber AKGf of the fastest growing mode. This mode experiences a large growth and

achieves a power level comparable to the initial power in the primary signal. The

power level of the primary signal, however, decreases from its initial value when the

sideband signals grow to an appreciable level. Furthermore, the relative power spec-

trum P(Aw), which is proportional to the amplitude-squared of the Fourier transform

of a;(zo, t) defined in Eq. (112) at z = zo in the laboratory frame, is obtained numer-

ically in Sec. V D. It is found that a large peak in the sideband spectrum develops

at a frequency which is downshifted by 2.2% from the frequency w, of the primary

signal. This agrees qualitatively with the spectrum observed in the Los Alamos free

electron laser experiment.5 The numerical calculation also shows, in good agreement

with what has been observed in other numerical simulations, 5 44 that the presence of

the sideband signals increases the efficiency of radiation generation for a untapered

wiggler field.
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II. Theoretical Model and Assumptions

A. Basic Equations and Assumptions

The model consists of a tenuous relativistic electron beam propagating in the z

direction through a constant-amplitude helical magnetic field with vector potential

A.(x) = -(mc 2 /e)a.(cos koz,. + sin koz8,). (1)

Here, -e is the electron charge, mc2 is the electron rest energy, AL = 27r/ko =const

is the wiggler wavelength, the wiggler magnetic field is B. = V x A,, and a, =
eb./mcko is the normalized wiggler amplitude. The present analysis neglects longi-

tudinal perturbations (Compton-regime approximation with 64 0), and transverse

spatial variation (8/8x = 0 = 9/8y). In addition to the static wiggler field in Eq.(1),
it is assumed that a primary electromagnetic wave signal with right-circular polariza-

tion has developed with vector potential

A,(x, t) = (mc2/e)a,(z, t){cos[k~z - w,t + S,(z, t)]a,

- sin[k,z - W't + 6,(z, t)e,}, (2)

where the normalized amplitude a,(z, t) and wave phase 6,(z, t) are treated as slowly

varying (eikonal approximation), and the corresponding electromagnetic fields are

given by B, = V x A,, and E, = -(/c)8A,/&. The present analysis is carried out

in the ponderomotive frame moving with axial velocity

v, = w,/(k, + ko), (3)

relative to the laboratory frame. In the ponderomotive frame it is found that the

transformed energy -yj(t') is approximately constant, with d'-j/dt' ~ 0 in the eikonal

approximation. This simplifies considerably the treatment of the electron orbits in the

combined wiggler field and the finite-amplitude primary electromagnetic wave. 21-23,73,74,84

The ponderomotive-frame variables (z', t', -y') are related to the laboratory-frame vari-

ables (z, t, -y) by the Lorentz transformation

z = -yP(z - VPO)

t' = -y,(t - VPZ/c2),

l' = e()y (VP,/MC2 4)
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where y, = (1 - V2/c2)-/2 is the relativistic mass factor associated with the trans-

formation, y'mc2 = (m 2 c4 + c2 p, + c2p2 + P2 , ),1/2 is the mechanical energy, and

the components of momentum (p',, p', p') are related to the velocity v' = dx'/dt' by

p' =y'mv'.

In the ponderomotive frame, the slow nonlinear evolution of d.(z', t') and 8'(z', t')

is described by 24

2w' + k 2 ' a = 47re2a. sin(9j + S') (5)

+ k' C2__ 19 2 o('. 6(& k'c 2 8 = 47re2a,,, 1 cos(6 + S')\2 . +TV W, 19Z) M \,

where the real oscillation frequency w' and wavenumber k' are related by the disper-

sion relation 24

C2k'2 + re 2 1 1(7)

In Eqs.(5)-(7), E -*- -) denotes a statistical average, and the axial orbit 6O,(t') =

k 'z(t') and energy -1,(t') of the jth electron solve24

d2  c2 k' 2a
d ,2  + c Im[a, exp(i's, + i8')]

c2 k' aw f (8 1 dz' 8
= WRe exp(i Z 3,) + 2 dt' -t') [a. exp(i, (8)

and
d a (8

eI= -- /t [d., exp S') (9)

In Eqs.(8) and (9), the wavenumber k' of the ponderomotive potential is defined by

k' = (k, + ko)/y,, (10)

and the relativistic mass factor -yj is defined by

S2 = 1 + (p'y/m 2c 2 ) + a2, + d, - 2aRe[a. exp(i9O,. + i')] (11)

in the ponderomotive frame. In obtaining Eqs.(8) and (9) from dp',j/dt' = -mc 28yj/8z

and d-yj/dt' = 8-j/8t', we have neglected , < 1 + a, in Eq.(11). Moreover, it is

assumed that all electrons have zero transverse canonical momentum, i.e., P's = 0 =

P1 .
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There is some latitude in specifying the precise operational meaning3 9 of the sta-

tistical averages < E - - - > occurring in Eqs.(5)-(7). For present purposes, let us

assume that the orbits zj(t') and -1j(t') have been calculated from Eqs.(8) and (9)

in terms of the initial values zj(0) and yj(0). Then the simplest definition of the

statistical average < Zg ... > over some phase function '( 9 ,(O),-yj(O)) is given by

1 \ 2wdOO' I
P(L,(0), 11Y(0)) = o dG(2r)(i ) (12)

Here, A' is the average density of the beam electrons in the ponderomotive frame, and

G(00, -yb) is the (probability) distribution of electrons in initial phase 0' and energy

-y. Moreover, L' = 27r/k,' is the basic periodicity length in the ponderomotive frame.

Equations (5)-(9) constitute a closed description of the nonlinear evolution of the

system. In this regard further simplification of Eqs.(8) and (9) is possible by virtue of

the assumption of slowly varying wave amplitude and phase (eikonal approximation),

i.e.,

k', > [i.,exp(if,)]~l [h, exp(if,)] . (13)

In particular, to lowest order, it is valid to neglect the local temporal and spatial

derivatives on the right-hand sides of Eqs.(8) and (9). This gives the approximate

dynamical equations 24

d2 c2 k'2 a
d0., + , Im[. exp(iO', + iS')] = 0, (14)

d/ 0. (15)

The major benefit of carrying out the analysis in the ponderomotive frame is evident

from Eqs.(14) and (15). To lowest order, the particle energy -y; can be treated as

constant in Eqs.(5)-(9) and (14).

In circumstances where perturbations are about a primary electromagnetic wave

with amplitude do =const (independent of z' and t'), it is useful in analyzing the orbit

equation (14) to introduce the bounce frequency B ('yj) defined by21

WB(yj) = (c2k'2a 0/7/ 2)2. (16)

9



Here, a,,, > 0 and do > 0 are assumed without loss of generality, and B(-yj) is

the effective bounce frequency of deeply trapped electrons with energy -yj. A detailed

analysis21 of Eqs. (11) and (14) shows that the zero-order electron motion is untrapped

for energies -yj satisfying (Fig.1)

- > [1 + (a,,, + a0)2 11/ 2  7)

That is, when Eq. (17) is satisfied, the particle motion is modulated by the pon-

deromotive potential, but the normalized velocity d9 ,/dt' does not change polarity

(Fig.1). On the other hand, for yj < j, the electrons are trapped, and the zero-order

motion described by Eq. (14) is cyclic, corresponding to periodic motion in the pon-

deromotive potential. From Eqs. (11) and (14), it is readily shown that the minimum

allowable energy of a trapped electron is21

' [1 + (a. - a4) 2 11/ 2 . (18)

Because 4 < a,,, in the regimes of practical interest, we note from Eqs. (17) and (18)

that the characteristic energy of a trapped electron is approximately

(1 + a2,)/2 (19)

B. Conservation Relation

The evolution equation (5) for the wave amplitude a,(z', t') and the orbit equation

(14), together with the definition 9 ,(t') k'z (t'), readily give

(a k', 42re 2  1/, ' (20)
- + -2f= (Y'--zj . (20)Smw'c 2 k' \ T2 /

It will be shown in this section that Eq. (20) implies the conservation of energy in

the laboratory frame.

Making use of the Lorentz transformation (4), the left-hand side of Eq.(20) can

be expressed as

a ' z'1 2 = 7, +\B + V, &,, (21)
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where v' = k'c 2/w' is the group velocity of the electromagnetic wave in the pondero-

motive frame, and
v' + v,

S1 + v ,/c2  (22)

is the group velocity in the laboratory frame. The energy of the jth electron 'yjmc 2

in the laboratory frame is related to the ponderomotive frame variables yj and p' by

= - = + 2 dj' . (23)

Operating on Eq.(23) with d/dt' gives

d -ypvp-t d 2d2 _Z_. (24)Tft/) =j 2  dt'2 3'

In obtaining Eq.(24), use has been made of dyj/dt' = 0 [Eq.(15)]. The characteristic

velocity of an electron interacting with the ponderomotive potential can be estimated

from the equation of motion (14). This gives d9 /dt'- ~ '(.y ), where the bounce

frequency a' (-y) is defined in Eq. (16). Therefore, Jdzj/dt'j ~ c(a.a)1/ 2 /yj < c in

the regime of practical interest, where a, is of order unity and &o < 1. That is to say

the ponderomotive frame can be viewed (in an approximate sense) as the rest frame

of the jth electron. Due to time dilation, the time derivative in the laboratory frame

is related to the time derivative in the rest frame of the electron by d/dt' = 'yId/dt.

Therefore, Eq.(24) can be expressed in the equivalent form

d2c 2 d
=Y-dt/2 z = --- I?. (25)

VP

The wave frequency and wavenumber (w', k') in the ponderomotive frame are

related to the wave frequency and wavenumber (w, c) in the laboratory frame by

W = -,(o - kv,),

h' = -y,(k - Wv,/c 2 ), (26)

where v, is defined in Eq.(3) and -y, = (1 - v2/c 2 )-1/ 2 . As a special case, for (w, k)

(w,, k,) we obtain w' = -yp(w, - k.,v) from Eq.(26), which gives

W' = ytkov,. (27)
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This is the familiar resonance condition for the free electron laser interaction.

Making use of (3), (10) (25) and (26), the right-hand side of Eq.(20) can be

expressed as

4re2  1 d2  4ire 2  1 d\
\j-z) -- (28)

m'2k,' L' \dt'2Z m-ypw,(w, - vpk.) L dt '

where the statistical average < EZ ... > in the laboratory frame is related to that in

the ponderomotive frame [Eq.(12)] by

1< >= < > (29)

In Eq.(29) L-1 = yL'-', where the factor -,, is due to the Lorentz contraction.

Making use of Eqs. (26) and the definition v' = k'c 2/w', it can be shown that

1 + vpv W (30)
c2  'yP2(w - v~k.)

It is evident from Eqs.(21) (28) and (30) that the conservation relation (20) is equiv-

alent to the relation

9 a 47re2 1 (31)
-+ Vg 2= - - - g(1atmw! L\dt

in the laboratory frame.

To show that Eq. (31) implies energy conservation in the laboratory frame, we

first define the average kinematic energy density of the beam electrons by

Up, = mc2 . (32)

The energy of an electromagnetic wave in a dispersive dielectric medium is given by8 7

UB2 + EU.m = + - fWKe(k,, w,)] E
87r aw., 87r

[__K_(k, (.,)mc\2 a2
c2k,2+ w,2 K (k,,w.,)+U.a ' I' (33)

1 .9 aw, e 8r

for a wave with slowly varying amplitude d. and phase 6'. Here, K,(k,,W,) is the

transverse dielectric function for the medium. From Eqs. (7) and (26), it can be

shown in the laboratory frame that the dispersion relation is

W! = C2 k! + w2. (34)
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Here, Kem(k.,wa) is defined by (see Appendix A)

W 2 2 U)2

Kem(k,,w,) = =1 _ (35)
a(35

where the relativistic plasma frequency-squared w2 is defined by

LO 4re2l (36)
,2 m L (6

Substituting Eqs. (34) and (35) into Eq. (33) readily gives

Ucm = (WarMc)2 . (37)

Making use of Eqs. (32) and (37), the conservation relation (31) can be expressed as

U. + Sem + Upa-t = 0, (38)
3tr 5az dt

where Sem = vgUem is the power flow density of the electromagnetic wave.

To summarize, Eq. (20) is equivalent to the energy conservation relation (38) in

the laboratory frame. Furthermore, in the ponderomotive frame, Eq.(20) constitutes

a powerful constraint condition in both analytical and numerical analyses.

C. Macroclump Model

To make the analytical investigation of the sideband instability tractable, we con-

sider a simple model in which all of the beam electrons are trapped in the ponderomo-

tive potential. Furthermore, the trapped electrons are assumed to be tightly bunched

into coherent macroclumps. Under the assumptions of the macroclump model, the

statistical average [Eq.(12)] over some phase function %P ( ,(0), -yj(0)) is replaced by

(E (O',..(O), yj(O))) -+h P(6',,, -Y,). (39)

Here, 4 is the average density of the beam electrons in the ponderomotive frame, and

the subscript 1' = k'z' (on ', and -Y,) is a label indicating that these variables are

evaluated at the macroclump located in the ponderomotive potential at z'. Making

use of Eq.(39), the field evolution equations (5) and (6) reduce to

(a a )a,(l', r') = e' sin[O',(r') + 8'(l', r')], (40)
+ 1' ' '

&~(',r') + (1, r) E'~ cos [0',,(r') + 6' (1', -r')], (41)
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where 1' = k'z' and r' = ck't' are dimensionless space and time variables, respectively,

and the dimensionless constant e' is related to the system parameters by

ek' ' = ,c. (42)

Here, G = 47rfhe 2/m is the nonrelativistic plasma frequency-squared in the pon-

deromotive frame. In obtaining Eqs. (40) and (41), it has been assumed that the

electron beam has sufficiently low density that we can neglect beam dielectric ef-

fects and approximate w' = ch'. Furthermore, the energy yj of the jth electron has

been approximated by the characteristic energy '= (1 + a 2)1/ 2 defined in Eq. (19).

Consistent with the eikonal approximation, the wave amplitude &, and phase S' in

Eqs. (40) and (41) change slowly with ' and r' provided 1e'/a. < 1.

With regard to the evolution of ',, it follows readily from Eq. (14) that

dar'
dr2',3(r)+ e' &,(l', r') sin[9',,(r') + 8',(l', i-')] = 0, (43)

where the dimensionless parameter E' is defined by

-' = . (44)

Here, we have approximated the energy -y of the jth electron by the characteristic

energy -' = (1 + a.)1/2 defined in Eq.(19). Making use of Eqs. (40) and (43), the

following conservation relation is readily verified, i.e.,

a2 
2 EP2' d20

T + T 2(I,,) E' '2,1,(r'). (45)

The coupled particle orbit equation (43) and field evolution equations (40) and

(41), together with the conservation relation (45) will be used in subsequent sections

to investigate the nonlinear dynamics of the sideband instability within the framework

of the macroclump model.
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III. Nonlinear Evolution of Primary Signal When a/al' = 0

In this section we consider the evolution of the primary signal in circumstances

where 8/l' = 0. This is the simplest application of the macroclump model to the

nonlinear evolution of the free electron laser.

A. Basic Equations and Conservation Relations

When the evolution of the system is independent of 1' (8/81' = 0), Eqs. (40), (41)

and (43) become

d 
(6Qr') = e' sin(9',(r') +I 6'(r')], (46)

-,(r') d',(r') = E'cos['(-r') +6s'(r')], (47)

d'2
dr ' * .(' i['('" '('] (48)

which describe the nonlinear evolution of &5 (r'), S,(r') and 0',(r'). The conservation

relation (45) reduces to

d , + ep' d 0' = 0 (49)

or
d 0/ e' * 6'

- ' + 2 = ., + aO = const, (50)
Tr' 2 ep/ e

where C.o and ' denote initial values. In addition, it readily follows from Eqs. (46)

and (47) that

, + (a sd = E'2 = const, (51)

which is another useful conservation relation, valid when 8/8l' = 0. Calculating

d2 a./dr'2 from Eqs. (46) and (47), we obtain

T -a. cos(O' + 8 d d-a25  P 5 . ( 1 di-' +d-r'

= d5, (dO' dS'
= ' 'LS, O + d'. (52)

dr' k d-r' d-') (52

Making use of Eqs. (50) and (51) to eliminate dO'/dr' and dS'/dr', it is readily

shown that Eq.(52) reduces to
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d22
dr: . [6P1 - (da./d T')2]1/ 2, = ±

x 9',0 + 1 (6 - a2) -e - (da.,/dr')2]1/2 (53)
f 3 2 e so, -is P I

If we assume d, > 0, then the plus (minus) signs in Eq. (53) correspond to

d'/dr' > 0 (df,/dr' < 0). Equation (53) is a closed nonlinear differential equation

for the evolution of a.(r') which can be solved subject to specified initial conditions

.,(-r' = 0) = e.,o and da,/dr'1le=o = e' sin('o + S'o).

B. Reduction to Quadrature

Equation (53), or equivalently, Eqs. (46)-(48) can be reduced to quadrature. Com-

bining Eqs. (47) and (50) to form the combination d,(d6'/dr'+ d',/r'), it readily

follows that
d1 e'

a. T(' + ,as + e' cos(' + S'), (54)

where

AW ' + eu, a2 (55)

For convenience, we introduce the rescaled variables A., V' and e' defined by

A., a.,
ep

/ - a2 ~2' 2  )1/2
' 2w' JCk 3  (56)

Then, Eqs. (46) and (54) can be expressed as

d
d-As = e'sin'I', (57)

A., d', - A' + A 2= E cos'. (58)( dT 1 ) a .

Nonlinear coupled amplitude-phase equations of the form (57) and (58) arise in

several physical problems8 1-8 3 and have a number of interesting properties. For exam-

ple, it can be shown that dC/dr' = 0, where the constant of the motion C is defined
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by

1 1
eA,cosT,+!Aw'A2-!A42~ 8'

1 1
= E'A,ocosI'o + I Aw'Ao - -A 4

3 2 3 s 8 so

= const. (59)

Here, A.,o and i',o denote initial values. Combining Eqs. (57) and (59), we readily

obtain a closed first-order equation for the evolution of A (r'), i.e.,

1 ( A2) + V(A) = 0, (60)

where the effective potential V(A ) is defined by

1V(A 2) = 2 e'A~o cosV 2', +4wA

- w'A 2 +1 A- )2e' 2 A . (61)
2 ' 8 '1

That is, use of the constant of the motion C defined in Eq.(59) has reduced the

evolution of A. to quadrature in Eq. (60).

Equation (60) can be solved for a variety of initial conditions Aso, T',o and 0'o.

For purposes of illustration, we assume

Aso =0, 0. (62)

so that Aw', a ,and

so-A 22so=0,Aan

V(A 2) = As - ',2A . (63)

It is evident from Eq. (60) that the maximum amplitude excursion A,,max satisfies

V(A ,m.) = 0. Making use of Eqs. (60), (62) and (63), we obtain

A.,max = 2(E',)1/ 3 , (64)

or equivalently [see Eqs. (42), (44) and (56)]

(6' /)2/3 2 ^4 \/3
a.,m = 2 2ack',2) . (65)

()1/3 = 12~ p)2
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Note that a,, scales as (h) 2/3 aV/3, and except for a constant scale factor of order

unity, the estimate of a,,. in (65) is the same as the estimate of the nonlinear

saturation amplitude obtained in the high-gain Compton regime" using a simple

trapping argument. To further illustrate this point, we introduce the dimensionless

parameter r, < 1 and the normalized (with respect to ck) bounce frequency Q' of

a deeply trapped macroclump defined by

0- 2- 4w (66)
*2 4w y' 3ck''

Q'2= ' a , . (67)

In Eq. (66), (31/2 /2)P',ck' is the familiar small-signal gain (temporal growth rate) 75

calculated in the ponderomotive frame. In the nonlinear regime, the saturation of

the signal occurs when the characteristic bounce time 1/i's of a trapped particle is

comparable to the exponential-growth time 1/qt. Therefore, the condition r' ~ Q'

gives an estimate of the amplitude at saturation. The saturation amplitude d,,. so

estimated is the same as that obtained in Eq. (65), except for a constant scale factor

of order unity.
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IV. Sideband Instability for Primary Signal with Slowly
Varying Phase

The basic framework for studying the sideband instability is established in this

section. In Sec. IV A, we introduce an equilibrium model in which it is assumed

that a primary wave signal with finite amplitude a =const and slowly varying phase

6b(l') is present in quasi-steady state. In Sec. IV B, use is made of Eqs. (40), (41) and

(43) to derive the equations describing the nonlinear evolution of the sideband signal.

In this regard, the sidebands are treated as perturbations about the quasi-steady

state described in Sec. IV A. In deriving the equations for the nonlinear evolution

of the sidebands, no a priori assumption is made that the perturbations have small

amplitudes compared to equilibrium quantities. Linear stability properties of the

primary signal are reviewed briefly in Sec. IV C, and the nonlinear saturation of

a single sideband is estimated analytically in Sec. IV D. The dependence of the

sideband saturation on the system parameters is found to scale differently in regimes

characterized by the dimensionless pump parameter (Q,/r' )'/4 [Eqs. (66) and (67)].

A. Equilibrium Model

For deeply trapped electrons, an appropriate quasi-steady equilibrium state con-

sistent with Eqs. (40), (41) and (43) is described by

,L + 0 = 2n7r,

ao = 0 - , (68)

and

6a = 0, = ' (69)

where n is an integer. That is, the equilibrium wave amplitude ao is constant (in-

dependent of ' and -r'), whereas there is a slow variation of wave phase S' with '

described by Eq. (69). Making use of the dimensionless parameters r' and Q' defined

in (66) and (67), respectively, Eq. (69) can then be expressed as

2 = 2 =0 .(70)
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Note that 2r'/Q'] = e'/, < 1 is required in the present analysis in order that

the change in 6,0 is small over the scale length of the ponderomotive potential (A' =

27r/k'). Therefore, when we examine the stability properties in the weak-pump regime

[('B 0 6 /4 < 1], it should be kept in mind that the limiting case where a0 ap-

proaches zero at finite value of the electron density is excluded in the subsequent

analysis.

B. Evolution Equations for the Sideband Signals

In order to investigate the nonlinear evolution of the sideband signals, it is con-

venient to introduce the complex wave amplitude a, defined by

a,(l', r') =_ 5(l', r') exp~i'(l', r')]. (71)

It follows directly from Eqs. (40) and (41) that

( + ) a,(l', r') = ie'exp[-i', 1 (r')]. (72)

Moreover, the orbit equation (43) for the macroclumps can be expressed in the equiv-

alent form

d '2 ,1,( -r') + e',Im{a, exp(i 8 ,, (r')]} = 0. (73)

We now express each dynamical variable as its equilibrium value plus a perturba-

tion, i.e.,

a, = .,exp(iS',)=(, + SA,)exp(ib0). (74)

Here, the equilibrium quantities a0, 6,0 and 0, are described by Eqs. (68) and (69) in

Sec. IV A. Also note that the perturbed complex amplitude SA, of the electromag-

netic wave is related to the perturbed real amplitude &i, = -., - 10 and the perturbed

phase ' 6' - 6,0 by

SA, = (do + 8,) exp(i') - it. (75)

When the perturbations are small, Eq. (75) reduces to

SA, = Sa, + iao.'. (76)
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The equations of evolution for the perturbed quantities SA, and 60' can be obtained

by substituting the definitions in Eq. (74) into Eqs. (72) and (73), and making use of

Eqs. (68) and (69) to eliminate equilibrium quantities. This gives

0a + Re(SA.) = e' [a3 sin(O',,,) + Im(6A.) , (77)

/ 8 \ 7
a a + Im(SA.) = e 1 a5 [cos(O',j,) -1]- Re(SA.), (78)

d2
d72' - E' {[a4 + Re(A,] sin(8O', 1)

+Im(A.) cos(8O',j,)}. (79)

In obtaining Eqs. (77)-(79), no a priori assumption has been made that the pertur-

bations SA, and 60',, are small. Therefore, Eqs. (77)-(79) can be used to study the

nonlinear evolution of the sidebands within the framework of the macroclump model.

C. Linearized Equations for the Sideband Instability

The linear stability properties of the equilibrium state described in Sec. IV A

have been studied by Davidson and Wurtele24 in considerable detail. Here, we briefly

review some of the key results which are relevant to the present analysis.

When the perturbations SA, and 80, are small, Eqs. (77)-(79) can be approxi-

mated by the linearized equations

a + Re(S.) = doe'(60',,) + e'Im(SA,), (80)

ao a + Im(SA.) = -e'Re(SA.), (81)

d 2
'' -6'.[a46o', + Im(SA.)]. (82)

dr/2  5,'

Examining normal-mode solutions to Eqs. (80)-(82), we assume that the -r' and '

dependence of the perturbations is proportional to exp[i(AK'l' - Af'r')], where

Im(Af') > 0 corresponds to instability (temporal growth). However, the pertur-

bations Re(A.,), Im(SA.,) and 80,,, in Eqs. (80)-(82) are all real-valued. Therefore,

the solutions to Eqs. (80)-(82) should be the sum of the complex normal-mode solu-
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tions and their complex conjugates, i.e.,

Re(SA.) = eJ exp[i(AK'l' - AQ'r')] + c. c., (83)

Im(SA,) = a. exp(i(AK'l' - An'ir')] + c. c., (84)

0', = 50'exp[i(AK'l' - Af'r')] + c. c., (85)

where c. c. stands for complex conjugate, and a', a, and 89c are complex amplitudes.

Substituting Eqs. (83)-(85) into Eqs. (80)-(82) gives the equations relating the

amplitudes a', a, and 59'

-i&O(A!' - AK')a = ' (0809C + a,) (86)

-iaO(Af'- AK')d = -,'ar (87)
(A') 28c _ ,(aos6o + a,). (88)

For the perturbation amplitudes Ca, C, and 80c in Eqs. (86)-(88) not to vanish, the

frequency Ai' and wavenumber AK' must satisfy the dispersion relation

'B 4 j(rO')
(A= )2  (An' - AK') 2 ' (89)

which is the familiar dispersion relation obtained by Davidson and Wurtele24 for the

sideband instability assuming slowly varying equilibrium phase 8, and deeply trapped

electrons. Here, the parameters Q' and F' are defined in Eqs. (66) and (67).

Equation (89) has the familiar form of the dispersion relation for the two-stream

instability."5 ,'8 In the following special cases, the maximum growth rate Im(An')m

and the corresponding real frequency shift Re(AQ')A1 and wavenumber AKLJ at max-

imum growth can be estimated analytically.24

1. Strong-pump regime [(Q'/r')'/4 > 1]

Im(A')m = (31/2 2/3),

Re(An')m = 0' + (1/22/3

AK' = Q' (90)
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2. Weak-pump regime [(Q'/r,)'/4 < 1]

Im(AQ')m (31/2

Re(AQ').l= (1/2)F',

AK' = 2r'(r' / Q) 2 . (91)

3. Intermediate pump strength [(Q'/r,)6/4 = 1]

Im(AI')m (1/2)Q'B,

Re(AQ')m (31 /2 /2QB

AK'= 31/2B. (92)

For three different values of the dimensionless pump parameter (n,/r,')6/4, Fig. 2

shows the plots versus normalized wavenumber AK'/S of the normalized growth

rate Im(zf')/l'. The maximum growth rate and the corresponding wavenumber

for each pump parameter agree with those predicted in Eqs. (90)-(92).

D. Saturation Amplitude of the Fastest Growing Sideband

The unstable sideband modes obtained in Sec. IV C will grow exponentially until

the assumptions used to derive the linearized equations (80)-(82) are violated. When

linear theory breaks down, the nonlinear equations (77)-(79) should be used to deter-

mine the long-term evolution of the sideband modes. In Sec. V, Eqs. (77)-(79) will

be solved numerically to determine the nonlinear evolution of the sideband instability

within the framework of the macroclump model. In this section, we estimate analyti-

cally a lower bound on the saturation amplitude of the unstable sideband mode in the

case where only the fastest growing mode is present. Although the fastest growing

mode may generate harmonics, it is found from the growth rate curves in Fig. 2 that

these harmonic modes are linearly stable with ReAQ' = 0. Therefore, the harmonics

do not experience significant growth before the breakdown of the linear theory.

The conditions for the breakdown of the linearized macroclump equations (80)-

(82), as well as an estimate of the lower bound on the saturation amplitude are

obtained from the following arguments.
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(a) The nonlinear terms in the evolution equations (77)-(79) are: sin(S0',9 ) in

Eq. (77); cos(0',,,)-1 in Eq. (78); and sin(89',), Re(SA.) sin(S9',,) and Im(SA,) cos(&9',L)

in Eq. (79). When sin(S9 ',Ll) and cos(SO',,,) are expanded as power series in SO',9, the

terms cos(S 9 ',) - 1 and Re(SA,) sin(SO',p) contain only products of even powers

of perturbed quantities, and contribute only to the generation of even harmonics.

Under the assumption that the linear growth rate of the fast growing mode is not

affected by its own harmonics, as mentioned in the previous paragraph, we ignore

the cos(S',,) - 1 and Re(SA.) sin(SO', 1i) terms in the saturation estimate. How-

ever, the other two terms, sin(9' ,,,) and Im(SA,) cos(SO',), contain triple products

of the perturbed quantities, and the expansion procedure [e.g., sin(89',,,) ~ SO',, and

Im(SA.) cos(SO',,,) ~ Im(SA,)] breaks down when 8' is of order unity.

(b) When jS9', is of order unity, nonlinear effects become important in the equa-

tion of motion (14) for a particle trapped in the ponderomotive potential. One such

effect is that the bounce frequency of a trapped particle depends upon the amplitude

of its bounce motion.

(c) In the regime where the linearized equations (80)-(82) are valid, the perturba-

tions grow exponentially with relative amplitude obtained from Eqs. (83)-(88)

1
IIm(SA,)I = -(AQ') 2 _ el do .S6',1, (93)

jRe(SA.,)I = -- '- (,A' - AK')[( ') 2 - e' d4] - |/6',g (94)

When I89,D is of order unity, the linear theory breaks down. Hence the corresponding

amplitude of the sideband can be estimated by setting I t' ~ 1 in Eqs. (93) and

(94). This gives

IIm(SA.,)/ai ~ -- (0') 2 - ' , (95)

1
IRe(8A,)/a0| ~ --- (A' - AK')[(Ajj') 2 - 6'a0] , (96)

as the conditions for the linear theory to break down. Since the amplitude of the

unstable sideband grows exponentially until the linear theory breaks down, the am-

plitudes in Eqs. (95) and (96) determine a lower bound on the saturation amplitude.

The lowest estimate in Eqs. (95) and (96) is the one of physical interest. Furthermore,
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it will become evident in Sec. V, that the amplitudes Re(SA.) and Im(SA.) are closely

related to the amplitudes of the upper and lower sideband signals [Eqs. (107), (108),
(114) and (115)].

To examine the scaling of the saturation amplitude, we now substitute the complex

frequency and real wavenumber estimated analytically in Eqs. (90)-(92) for the fastest

growing mode into Eqs. (95) and (96). This gives the following estimates:

1. Strong-pump regime [( /F')'/4 > 1]

2/3 2 = 24/3 _' )j~m6A)/O~. Z2 E'W,(a S)3 2 QB
1/6 / ,

jRe(6A.,)/d*j..t Z 21/3 2 = 2/3 _QO97
e'(a) (97)

2. Weak-pump regime [(Q' /r,)/4 < 1]

jIm(8A.)/6Ia |,, Z 2 2/3(0e/

jRe(8A,)/a". Z 22/3eO _ 2 (98)

3. Intermediate pump strength [(Q' /r,)'/4 = 11

jIm(6A.,)/d4j., Z 1,

jRe(6A.,)/&4j.t Z 1. (99)

It is evident from Eq. (97) in the strong-pump regime [(g /r,)'/4 > 1], that the

sideband signal may saturate at an amplitude smaller than that of the primary signal

0. However, when the pump strength (Q'/r,)'/4 is of order unity in Eq. (99), the

sideband signal may grow to an amplitude at least comparable to &0.

In the weak-pump regime, Eq. (98) gives a saturation amplitude larger than ix. It

is interesting to note, apart from a factor of order unity, that the saturation amplitude

in (98) is equal to a.,m. in Eq. (65) obtained for the nonlinear evolution of the primary

signal when 8/&l' = 0. As mentioned in Sec, III, the amplitude a,,m.x is the same

as the nonlinear saturation amplitude of primary signal in the high-gain Compton

regime using simple trapping arguments.15 It should also be pointed out that the

maximum growth rate (normalized with respect to ck') in the weak-pump regime,
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(v'/2)F' from Eq. (91), is the familiar small-signal gain (temporal growth rate)75

calculated in the ponderomotive frame.

Assuming that an unstable sideband is present, it is important to note that the

excursion of a macroclump about its equilibrium unperturbed position will grow to a

significant amplitude, i.e., ISO,',1 -'1, no matter how small the initial amplitude of the

unstable sideband. This should be compared with the result obtained by Riyopoulos

and Tang,27 who have shown, when only a single sideband with constant amplitude

(independent of z and t) is present, that the motion of the particles becomes highly

irregular only if the amplitude of the sideband is greater than some threshold value.

It should be reiterated that the estimate of the saturation amplitude carried out

in this section is valid only for single-mode sideband excitation. When many side-

band modes are present simultaneously, coupling between sideband modes becomes

important, which renders the present estimate of the saturation amplitude invalid.

Also the present estimates of the saturation amplitude are restricted to the fastest

growing mode. For modes with smaller growth rates, cascade processes (Sec. V) may

generate harmonics which grow faster than the fundamental mode.

As a final point, the lower bounds on the saturation amplitude in Eqs. (97)-

(99) have been estimated earlier in this section by taking the maximum excursion of

the macroclump in Eqs. (93) and (94) to be IS9',I ~ 1. The numerical results in

Sec. V B, however, suggest that the maximum excursion 16', k. is comparable to r

[see Figs. 3(c), 4(c) and 5(c)]. Moreover, the field amplitudes IRe(Sa,)I and IIm(a.,)I

are observed to saturate at amplitudes larger than the lower bounds in Eqs. (97)-(99)

by a factor between unity and ir (see Figs. 3-5).
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V. Nonlinear Evolution of the Sideband Instability

A. General Description

Equations (77)-(79) are solved numerically in this section in order to examine the

nonlinear evolution of the sideband instability. First, a few key points are described

regarding the procedure used to analyse the coupled nonlinear differential equations

(77)-(79).

By making the change of variable

= I'- -', (100)

the partial differential equations (77) and (78) reduce to the ordinary differential

equations

Sd& dRe[SA,(',r')] = e {aj sin[90,i(r')] + Im[6A,(t',r')]}, (101)

d 5 1O -1 e8A("r')]. (102)aT7 Im[SA,( ', r') = e' {a{cos[S',,,(r')] -1-Re[SA,(')

Moreover, the macroclump equation of motion (79) becomes

d 82'(r') =- ({ao + Re[SA,(/' r')]}sin[60',,(r')]
d712  S W~\ sS,

+Im[SA,(6', -r')] cos[6I',,I(r')]). (103)

In Eqs. (101)-(103), the subscript ' on 6',, indicates that the corresponding macro-

clump is located at 1' = k'z'. It is evident from Eqs. (68) and (69) that 1' is a

discrete label with incremental value 27r/(1 + e'/a"), where e'l/a < 1 is assumed to

be consistent with the assumption that the wave phase S' varies slowly [see Eq. (70)].

Furthermore, the field perturbation SA, is a function of r' and 6'. In the present

analysis, the fast spatial variation on the length scale L' = 27r/k' has been elimi-

nated by averaging over an interval of length L'. Therefore, at given r', the change

in SA, is small when 6' changes by an amount of order unity. Furthermore, it is

an appropriate approximation to consider ' as a discrete label. For present pur-

poses, we chose the incremental value of 6' to be the same as that of the label 1', i.e.,

A ' = Al' = 27r/(1 + '/&4). To evaluate the right-hand side of Eqs. (101) and (102)

for a particular value of 6', the corresponding value of ' in 60' is determined by
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minimizing the difference ' - (1' - T')I. Note that ' - (1' - r')I is generally nonzero,

because ' and ' are both discrete labels. Similarly, to evaluate the right-hand side

of Eq. (103) for a particular value of ', the same condition is used to determine the

value of ' in SA,( ', r').

For convenience in the numerical calculations, we also assume the periodic bound-

ary conditions

89',at = 89'

SA.( ' + L,, r') = 8A,( ', T'), (104)

where the spatial periodicity length L, is defined by

L, = 27rNpt/(1 + e' /&o), (105)

and Np0 t is the number of ponderomotive potentials in each period. For the periodic

boundary conditions in Eq. (104), the sideband modes allowed in the system are

those with wavenumber AK' = 27rm/L, (m = 1, 2, 3,.. .). That is, the resolution in

wavenumber (AK'-space) is sacrificed by assuming the periodic boundary conditions

in Eq. (104). Nevertheless, the present calculation is still a multimode analysis, so

that nonlinear effects such as harmonic generation and the coupling between allowed

discrete modes are taken into account.

It is useful to express the dynamics variables 89', (r') and 8A.,( ', r') in terms of

the Fourier series

8, 11(r') = 89O(T') + E 89AK'(r') cos[AK'(l' - r') + XPIK,(r')], (106)
AK'

Re[A.,(-', r')] = SAO(r')+ Z SAA'K,(r') cos[AK''+ 'AK(T')], (107)
AK'

Im[A.,(A',r')] = 8A'(r') + E SAiK,(I') cos[A K' ' + 'i'XKr')], (108)
AK'

where the wavenumber AK' is restricted by the periodic boundary conditions in

Eq. (104) to be AK' = 27rm/L, (m = 1,2, 3,.. .). The Fourier coefficients in

Eqs. (106)-(108) are related to the real-valued variables S9 ',,(T') and SA,( ', r') by

2 m=1--.,N,

SOAK'(r') exp['i K'i-) N= E 9',(') exp[-iAK'(l' - 7')],
pat L'=mL,/Npot

28



2 m=l,..,Npot

Npot e'=mLP/Np.,

-,(r-)

(109)

and

80o(-r')

SAr (r')

8A'(r')

1M=1,---,Npt,
-E 60' ,, ,(7-'),
NPOt1'=mL,/Npo (

1 m=1,...,Npot

-q- E Re[SA,(
N~ 4 mmL[Np

1M=1,...,Npot

Po Im[LA.,(t
(110)

Making use of Eqs. (69) and (71), and substituting ' = 1' - r' into Eqs. (107) and

(108), the complex amplitude a, defined in Eq. (71) can be expressed in the equivalent

form

a,(l',T') = [8Ao(i-') + & + i6Ai,(r')] exp(iel'/i)

1 rF
+ {SAAK,(r') exp[i 4Ks(r')I + iSAiD,(r') exp[i'iAK'(r]

AK'
x exp[iAK'(1' - r')] exp(ie'l'/&O)

+ {SAKg(r') exp[-Z5qVAK'(r')] + iSAXK'(') exp[- % AK'(1-')]}
AK'

x exp[-iAK'(l' - -r')] exp(i,/&)(1)

For the right-circularly polarized electromagnetic wave with vector potential defined

in Eq. (2), we introduce the complex representation of the vector potential

a (z, t) = a.,(z, t) - ia,.(z,t). (112)

Making use of Eq. (2) and the inverse of the Lorentz transformation (4), it is readily

shown that

a;(z', t') = &.(z', t') exp[i(k'z' - w't') + i 8 (z', t')]

Sa.,(z',t') exp[Z(k'z' - 't')], (113)
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where (w', k') in the ponderomotive frame is related to (w,, k.) in the laboratory

frame by Eq. (26). For convenience, we introduce the definitions

1
A'KI,(r') exp[iObK, (r')] = f{SAK,(r') exp[itPAK,(ir')2

+iSA'K, (-') exp[iiK, (r')] }, (114)
1

AKI,(r') expfi'bgK(r')] = 1{SA'K,(r') exp[-ilp',(r]

+iSAKIr,(r') exp[-iiAK,(r')]}, (115)

A,(r') exp[i,(r')] = [6Ar(r') + &4 + i6A'(-')], (116)

where AAKI, A&K,, AK, and 2 AK, are real-valued functions. It is evident from

Eqs. (111)-(115) and the definitions ' = k'z' and T' = ck't', that AAK,(r') is the am-

plitude of the upper sideband with wavenumber k' upshifted from the wavenumber

k' of the primary wave by Ak' = AK'k' and that the corresponding real frequency

a' is upshifted from the frequency w' of the primary wave by Re(Aw') = ckh'[AK' -

(dO1K,/dr')]. Similarly, the amplitude of the lower sideband with wavenumber k'

downshifted from the wavenumber k' of the primary wave by Ak' = AK'k' is A'KJ (r')

defined in Eq. (115), and the corresponding real frequency w' is downshifted from the

frequency w' of the primary wave by Re(Aw') = ckh'[AK' + (d2b,/dT')]. Further-

more, the quantity A,(r') defined in Eq. (116) is the amplitude of the primary wave,

and ck',(-d@,/d-') is the real frequency shift of the primary wave from the frequency

As a final remark on the numerical approach used to investigate the sideband

instability, the conservation relation in Eq. (45) is a useful constraint condition, which

can be used to test the accuracy of numerical calculations. Integrating Eq. (45) with

respect to 1' over a periodicity length L, readily gives

d LP 2e' d m=1,*..,NpOt
dl'&C(l', /') = ' d-'

W L'=mLp/Not

or equivalently,

dI'iz(l', T') + ' (j d' 61(r') = const. (118)
W J'=mLp/Npt r'

during the nonlinear evolution of the sideband instability. In subsequent sections, the

constraint condition in Eq. (118) is used as a check on numerical accuracy.
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B. Exponential Growth and Saturation

The nonlinear evolution of the sideband instability has been investigated by solv-

ing Eqs. (101)-(103) numerically over a wide range of system parameters, subject to

the periodic boundary conditions in Eq. (104). It is evident from Eqs. (101)-(103)

that the nonlinear evolution of the free electron laser depends on the three dimen-

sionless parameters ', e' and a' defined in Eqs. (42), (44) and (68). In this regard,

it should be kept in mind that e' < &0 is required in order to be consistent with

the assumption that the amplitude a, and phase 8, of the electromagnetic wave vary

slowly in comparison with the fast temporal scale 1/ck,' and the fast spatial scale

1/k'. Moreover, the variables 1' and ' are discretized as described in Sec. V A.

For purposes of illustration, we choose three sets of illustrative parameters, corre-

sponding the strong-pump, intermediate-pump and weak-pump regimes.

Case I: E' = 3.1623 x 10~7, e' = 0.1 and a& = 10-3

In this case, the pump strength [(Q' /L')/4]' = e'W(a0) 3/e/ = iOa, which corre-

sponds to the strong-pump regime. The growth rate, real frequency shift and the

wavenumber of the fastest growing mode obtained from Eqs. (66), (67) and (90) are

Im(A!Q')m = 6.87 x 10-4, Re(AL')M = 10-2, A KXI = 102. (119)

The lower bound on the saturation amplitude obtained from Eq. (97) gives

Im(SA,)/LiQ Z1.59 x 10-1, Re(sA,)/aO8  >3.98 x 10~1. (120)

Case II: e'= 5.807 x 10', E, = 3.37 x 10~ and a. = 10-

In this section, the pump strength [(!',/F',)/4] = '(aO)/,E = 1.0, which corre-

sponds to the intermediate-pump regime. The growth rate, real frequency shift and

the wavenumber of the fastest growing mode obtained from Eqs. (66), (67) and (92)

are

Im(AQ')AI = 2.9 x 10-3, Re(AQ')m = 5.0 x 10-3, _AKAI = 10~2. (121)

The lower bound on the saturation amplitude obtained from Eq. (99) gives

Im(8A,)/a4Q Z1.0 , Re(6A,)/ad z1.0 . (122)

31



Case III: e' = 10, C', = 10- and EL = i0-.

In this case, the pump strength [(n' /r,)/4]6 = e',0)3/61 = 10-3, which cor-

responds to the weak-pump regime. The growth rate, real frequency shift and the

wavenumber of the fastest growing mode obtained from Eqs. (66), (67) and (91) are

= 6.87 x 10-4, Re(A')m = 3.97 x 10-4, AKiK = 10-2. (123)

The lower bound on the saturation amplitude obtained from Eq. (98) gives

Im(SA,)/a&. Z6.3 , Re(SA,)/a&s Z6.3 . (124)

The nonlinear evolution is determined numerically for small-amplitude initial con-

ditions with wavenumber equal to that of the fastest growing mode. That is, the

wavenumber of the initial perturbation is equal to ZAKi defined in Eqs. (119), (121)

and (123) for Cases I, II and III, respectively. For the three cases considered here,

the wavenumber AKi, 1 is equal to 102. For specified AK', note that the dispersion

relation (89) has four roots. Therefore, initial perturbations with wavenumber AK'

are generally linear combinations of these modes. Figures 3-5 show the time evolution

of the Fourier amplitudes with AK' = AK.& = 102. The Fourier decompositions

defined in Eqs. (106)-(109) are used to obtain the Fourier amplitudes SAjK,, SAAKI

and 6 AK' from the variables SA,( ', r') and SO',,,(r'), which are obtained directly by

solving Eqs. (101)-(103). It is evident form Figs. 3-5 that the perturbations, after an

initial transient stage, grow exponentially with growth rates predicted by Eqs. (119),

(121) and (123), until the linear theory breaks down. Moreover, the saturation ampli-

tudes in Figs. 3-5 are found to agree with the lower bounds estimated in Eqs. (120),

(122) and (124), within a factor of three. In addition, the following features are found

in the numerical calculations.

(a) During exponential growth, the real frequency shift of the fastest growing

sideband modes agrees with that given in Eqs. (119), (121) and (123).

(b) Before saturation, the higher harmonics of the initial perturbations have am-

plitudes much smaller than the amplitude of the fastest growing mode, as anticipated

from the linear theory.

(c) After the fastest growing mode saturates, it is found in the numerical cal-

culation for Case II with dimensionless pump strength (n' /r,)1/4 = 1 that the
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harmonics with AK' = 2AKk, and AK' = 3AK's can grow to an amplitude com-

parable to that of the fastest growing mode (approximately &0). In contrast, the

fastest growing modes in Cases I and III remain the only dominant sidebands in the

long-term evolution of the system.

In summary, the time evolution of the fastest growing sideband mode has been

studied for three choices of system parameters. The three stages observed in the

evolution correspond to an initial transient followed by exponential growth and sat-

uration. The numerical examples presented in this section confirm the validity of the

analytical estimates of the growth rate and saturation amplitude in Secs. IV C and

IV D over a wide range of system parameters.

C. Cascade Processes

In this section, we examine a situation where the initial perturbations consist of

sideband modes with wavenumber AKE = AK'1 /2. Here, AK's is the wavenumber

of the fastest growing mode. During the evolution, harmonics of the initial pertur-

bations are generated by the nonlinear terms in Eqs. (101)-(103). Included in these

harmonics is the fastest growing sideband mode. In the situation examined in this sec-

tion, the long-term evolution of the instability behaves differently for different choices

of system parameters. To demonstrate this, we present three examples with system

parameters e', e' and &0 identical to Cases 1, 11 and III in Sec. V B. It follows from

Eqs. (119), (121) and (123) that the wavenumber AK of the initial perturbations is

equal to 0.5 x 10-2, and that of the fastest growing mode is AK'f = 102 in all three

cases. Figures 6-8 show the evolution of the Fourier amplitudes SAIK, and SAAK,

for the sideband signals with wavenumbers AKi = AK,/2 and AKL, and system

parameters corresponding to Cases 1, 11 and III, respectively.

For Case I with system parameters e' = 3.1623 x 10~ 7, e = 0.1 and a0 = 10-3 ,

which corresponds to the strong-pump regime, the results displayed in Figs. 6(a)

and 6(b) show that the initial perturbations with wavenumber AK = AKh1 /2 grow

exponentially, after a short transient stage. The observed growth rate agrees with that

obtained from the dispersion relation in Eq. (89). However, the exponential growth

of the initial perturbations saturates at an amplitude much smaller than what would
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be predicted, had we assumed single-mode evolution and applied Eqs. (95) and (96)

to estimate the saturation amplitude in the present case. The failure of the single-

mode assumption is evident from Figs. 6(c) and 6(d), which show that the fastest

growing mode, after being excited by harmonic generation, grows with the growth

rate given in Eq. (119) and eventually causes the breakdown of the linear theory.

The evolution of the fastest growing mode in Figs. 6(c) and 6(d) is similar to that

shown in Figs. 4(a) and 4(b), except for a time delay, which is a consequence of the

different initial conditions used in the two calculations. The amplitudes of the higher

harmonics, which are not shown here, are small compared to the amplitude of the

fastest growing mode. Therefore, in this case, which corresponds to the strong-pump

regime, the evolution of the system is dominated by the fastest growing mode with

wavenumber AK' = AK.

Figures 7(a)-7(d) show the evolution of the system for Case II with parameters

e' = 5.807 x 10~', e', = 3.37x 102 and d = 10-. The dimensionless pump parameter

(n' /r)'/4 is equal to unity in this case. It is evident from Fig. 2(b) that the unstable

sideband mode with AK' = AKj'n = AK /2 has growth rate comparable to that of

the fastest growing mode with AK' = AK. It is observed in Figs. 7(a) and 7(b)

that the initial perturbations grow exponentially with a growth rate which agrees with

that obtained from the dispersion relation in Eq. (89). Moreover, before saturation at

an amplitude of the same order as the equilibrium amplitude a, of the primary signal

wave, the exponential growth continues without interference from the fastest growing

mode. On the other hand, the fastest growing mode with AK' = AK, which

started with very small amplitude, evolves through harmonic generation due to the

strong influence of the large-amplitude sideband mode with AK' = AK,/2. In the

present situation, it is evident from Figs. 7(c) and 7(d) that the fastest growing mode

behaves very differently from the single-dominant-mode case shown in Figs. 4(a) and

4(b). Although, within certain time intervals, the evolution in Figs 7(c) and 7(d) does

behave like exponential growth, the growth rate does not agree with that obtained

from the dispersion relation in Eq. (89). It is also found during the exponential growth

of the sideband mode with AK' = AK,% /2 that all of the higher harmonics (not shown

in Fig. 7) have amplitudes small compared to the amplitude of the sideband mode with

AK' = AK 1 /2. In the long-term evolution, however, many of the higher harmonics
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eventually grow to amplitudes comparable to that of the sideband mode with AK' =

AKn1 /2. Therefore, in this case, which corresponds to the intermediate-pump regime,
the long-term evolution involves many modes with comparable amplitudes interacting

with one another.

Displayed in Figs. 8(a)-8(d) is the evolution for Case III with system parameters

E' = 10-, e', = 10- and 0u = 104, which corresponds to the weak-pump regime.

Comparing Figs. 2(a) and 2(c), it is evident that the growth rate curve for this case has

the same shape as that for Case I. Therefore, it is not surprising to find in Figs. 8(a)-

8(d) that the fastest growing mode dominates the evolution. The amplitudes of the

higher harmonics, which are not shown here, remain small compared to the amplitude

of the fastest growing mode during the evolution. In the present calculation, the time

evolution of the fastest growing mode shown in Figs. 8(c) and 8(d) is similar to the

single-dominant-mode case shown in Figs. 5(a) and 5(b), except for a time delay due

to the difference in initial conditions. The oscillatory behavior observed in Figs. 8(a)

and 8(b) is attributed to the interference between different sideband modes in the

initial perturbations. As discussed in Sec. V B, for each wavenumber AK', there are

four modes corresponding to the four roots obtained from the dispersion relation in

Eq. (89). The initial perturbations chosen for the case in Fig. 8 happen to contain

large contributions from two oscillatory modes. The interference between these modes

generates the oscillatory pattern in Figs. 8(a) and 8(b). A similar pattern is also

observed in Figs. 5(a) and 5(b) during the transient stage. Depending on the initial

conditions, this interference can also occur in the strong-pump and intermediate-pump

regimes.

D. Nonlinear Evolution for System Parameters Correspond-
ing to the Los Alamos Free Electron Laser

The first experimental investigation of the free electron laser sideband instability

was carried out by Warren, et al' at Los Alamos using an L-band RF linear accelerator

operating at 20MeV, peak current of 40A, and micropulse width of -35ps. The

electron beam has radius r = 1mm, which gives an estimated density iib = 2.65 x

10"cm-3 in the laboratory frame. The wiggler magnets generate a transverse planar
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wiggler field with constant wavelength A, = 2.73cm and constant amplitude B, =

3kG which corresponds to a normalized wiggler amplitude a, = 0.76. The total

length of the wiggler is L=1m.

The laser oscillator operates at an output wavelength of A. = 10.35ptm.' The

peak laser output power inferred from the micropulse width is about 5MW from the

coupler (or 100MW in the cavity).' The radius of the optical beam at the center of

the wiggler is 1.45mm, which gives the estimate . = 2.4 x 10-' for the normalized

amplitude of the radiation field.

The velocity v, = Oc of the ponderomotive potential defined in Eq. (3) is deter-

mined from O, = A,/(A. + A,) = 0.99962 (or equivalently 1 - O, = 3.8 x 10-1), and

the relativistic mass factor -1 = (1 - 2)-/2 associated with the Lorentz transforma-

tion is -y, = 36.2. The value of the wavenumber k' of the ponderomotive potential

defined in Eq. (10) is readily determined to be k' = 1.68 x 10 2 cm'. Making use

of Eq. (27), the frequency w' of the primary signal in the ponderomotive frame is

w' = 2.5 x 1012rad/sec. The nonrelativistic plasma frequency-squared is defined by

'2= 4ire 2/m, where 11 = /, is the electron density in the ponderomotive

frame. In this experiment, the electron density is rbA ~ 2.65 x 10"cm-3 , which gives

'2 =2.33 x 10 1'sec.

To determine the dimensionless parameters e' and e', corresponding to the Los

Alamos free electron laser,5 we make use of the definitions in Eqs. (19), (42) and (44).

Making use of the values of the system parameters calculated earlier in this section,

this gives e' = 5.6 x 10-7 and e' = 0.48. Furthermore, we take the normalized ampli-

tude of the radiation field to be the equilibrium amplitude of the primary signal, i.e.,

do= 2.4 x 10-4. Substituting the calculated values of the dimensionless parameters

e',, e', and 0, into the definitions in Eqs. (66) and (67), readily gives the dimensionless

pump strength (Q' /r, )'/4 = 21 for the parameters corresponding to the Los Alamos

free electron laser.

The dispersion relation in Eq. (89) has been solved for the set of system parameters

corresponding to e' = 5.6 x 10-7, e'1 = 0.48 and do = 2.4 x 10-4. This gives the plots

versus real wavenumber AK' of the growth rate Im(A',) and real frequency shift

Re(AW',) displayed in Fig.9. The maximum normalized growth rate is approximately
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2.3 x 10-, which occurs at wavenumber AK.Xf = 1.195 x 10-2.

Equations (77)-(79) have been solved numerically to determine nonlinear evolution

of the sideband instability for the choice of system parameters c' = 5.6 x 10',

e' = 0.48 and ao = 2.4 x 10', using 252 periods of the ponderomotive potential

(Npt = 252) and the boundary conditions in Eq. (104). The allowed wavenumbers are

AK' = m/252, where m = 1, 2,. -. Moreover, m = 3 or AK' = 1/84 is approximately

equal to the wavenumber A KkI = 1.195 x 10-2 of the fastest growing mode. The initial

conditions in the numerical calculation correspond to small-amplitude perturbations

consisting of the first six Fourier components, i.e., m = 1,.. ,6, which are assumed

to have equal amplitudes at r' = 0.

Figures 10(a)-10(f) show the time evolution of the normalized power PAK' of the

upper sideband signal (dotted curve) and lower sideband signal (solid curve) for the

first six Fourier components with wavenumbers AK' = m/252, m = 1,--- ,6. Here,

the normalized power PAK' is defined by

PAK' =1 ][Al,(r') ] 2 , upper sideband, (125)
' (AaK'(Y)/aV] 2 , lower sideband,

where AAK,(r') and AIK,(r') are defined in Eqs. (114) and (115). It is evident from

Figs. 10(a)-10(f) that both the upper sideband and the lower sideband for all six

Fourier components experience significant growth in amplitude. Most remarkable is

the lower sideband for AK' = 1/84, which corresponds to the fastest growing mode

and achieves a power level comparable to the initial power in the primary signal.

Another sideband signal which also distinguishes itself from the other sideband signals

by growing to a large power level (more then one tenth of the power of the primary

signal) is the lower sideband for AK' = 1/42. Figures 11(a) and 11(b) show the real

frequency shifts (-dO&Ka,/dr' - AK') [see the paragraph following Eqs. (114)-(116)]

of the lower sideband signals for both AK' = 1/84 and AK' = 1/42. It is found from

Fig. 11(a) that the real frequency shift of the lower sideband signal for AK' = 1/84 is

approximately Re(Af') = 0.01 (in units normalized with respect to ck'). Making use

of the inverse transform of Eq. (26), the real frequency shift in the laboratory frame

(in real unit) is determined from Redw, = y,(Re Ai'+OAK')ck,' = 4 x 10' 2rad/sec,

which is approximately 2.2 percent of the primary signal frequency w, = 27rc/A, =

1.82 x 1014rad/sec. As a final remark on the results displayed in Figs. (10) and (11), it
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is found in the present calculation that a large peak in the sideband spectrum develops

at a frequency which is downshifted by 2.2% from that of the primary signal. This is

in qualitative agreement with what is observed in the experiment.'

Figures 12(a) and 12(b) show the evolution of the normalized power A,/(d )2 for

the primary signal [see Eq. (116) and the paragraph following Eq. (116)] and the

normalized spatially averaged power < i> /(&)2, respectively. Here, the spatial

average < a2 > of the field amplitude-squared is defined by

L J
< (')>= - a(l', r')dl'

= A,(r') + j {[AAK,(r')]2+ [A ,(T')]2}, (126)
11=mL,/Npot

which includes the contributions from the primary signal and the sideband signals.

In obtaining Eq. (126), use has been made of Eqs. (71), (111) and (114)-(116).

It is evident from Fig. 12(a) that the power level of the primary signal decreases

from its initial value when the sideband signals grow to an appreciable level. How-

ever, it is found from Fig. 12(b) that the total radiated power, which includes the

contributions from the primary signal as well as the sideband signals, becomes larger

than its initial value, during the long-term evolution. This implies, in good agreement

with what has been observed in other numerical simulations,5 ," that the presence of

the sideband signals increases the efficiency of radiation generation for a untapered

wiggler field.

It is interesting to examine the power spectrum in the laboratory frame of the

electromagnetic field obtained in the numerical calculation modeling the Los Alamos

free electron laser. Making use of Eqs. (4) and (113), the complex amplitude a;(z, t)

defined in Eq. (112) in the laboratory frame is readily obtained from a,(z',t') cal-

culated numerically. At a point zo in the laboratory frame, the power spectrum is

proportional to the amplitude-squared of the Fourier transform of a;(zo,t). Fig-

ures 13(a) and 13(b) show the relative power P(Aw) plotted versus the normalized

frequency shift -Aw/w, from the frequency w, of the primary signal. The vertical axes

in Figs. 13(a) and 13(b) have been rescaled so that the maximum of P(ALw) is equal

to unity. The difference between Figs. 13(a) and 13(b) is the following. In taking the

Fourier transform to obtain the plot in Fig. 13(a), the data for the entire evolution
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from r' = 0 to r' = 6000 are used. On the other hand, in obtaining the plot in

Fig. 13(b), only the data from r' = 4000 to -r' = 6000 are used. It is evident from

Figs. 13(a) and 13(b) that a strong sideband signal develops at a frequency which

is downshifted by approximately 2.2% from the frequency w, of the primary signal.

During the later stages of evolution (from r' = 4000 to r' = 6000), it is found in

Fig. 13(b) that the lower sideband signal at wd/w, = -2.2% has a larger power

output than the primary signal. Moreover, the primary signal experiences a small

frequency shift to somewhat higher frequency.

In summary, there are several areas of qualitative agreement between the results

of the Los Alamos free electron laser experiment" and those of the present macro-

clump model. Nevertheless, it should be kept in mind, when making the comparison,

that there are significant differences between the present model and the experimental

situation. Besides the simplifications associated with neglecting space charge effects

and transverse spatial variations, the present model differs from the experiment in

the following aspects.

(a) The present model assumes a helical wiggler field, whereas the experiment

uses a planar wiggler field.

(b) The present model assumes that the interaction region is infinite in the z direc-

tion and satisfies the periodic boundary conditions in Eq. (104). In the experiment,

however, the wiggler field, electron pulses and optical pulses have finite length.

(c) In the ponderomotive frame, the wiggler field of length L. (measured in the

laboratory frame) passes by a beam electron in a time interval T, = L./(y~v,), which

is approximately T, = 9.2 x 10"sec for L. = 1m, v, ~ c and -y, = 36.2. The total

evolution time -r' = 6000 (or t' = r'/ck' = 1.2 x 10- 9 sec) in the numerical calculation

corresponds to 130 passes of electrons pulses (or 130 bounces in the cavity of the

optical pulse). In the experiment, the electrons are distributed uniformly within the

pulse at the beginning of each pass. The present model, however, assumes that the

electrons are tightly bunched into macroclumps during the entire evolution of the

system.
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VI. Conclusions

In this paper, we have investigated the nonlinear evolution of the sideband insta-

bility within the framework of a simple macroclump model. The model is based on

the field evolution equations (5) and (6), and the particle orbit equations (14) and

(15). A conservation relation [Eq. (20)], associated with the self-consistent evolution

of the electromagnetic field and the particles orbits, was obtained in the ponderomo-

tive frame, and shown to be equivalent to energy conservation in the laboratory frame

(Sec. II B). In the macroclump model, the beam electrons are assumed to be trapped

and tightly bunched into coherent macroclumps. This leads to a simplification in the

evolution equations (Sec. II C).

Within the framework of the macroclump model, assuming 9/11' = 0 in the

ponderomotive frame, the nonlinear evolution of the primary signal was examined

in Sec. III. It was found that the evolution equations (46)-(48) can be reduced to

quadrature [Eq. (60)]. The maximum excursion A,, was determined analytically

for the choice of initial conditions AO = 0 and 6' = 0 in Eq. (62). This gives a max-

imum amplitude of the primary signal a.,. = 2(e') 2//( ,) 1/3 = [2a_'/w'2c2 k' 1/3

[Eq. (65)], which is the same (within a factor of order unity) as the estimate of the

nonlinear saturation amplitude obtained in the high-gain Compton regime7" using a

simple trapping argument.

The coupled differential equations (77)-(79) were derived, which describe the non-

linear evolution of the sideband signals. In obtaining Eqs. (77)-(79), no a priori

assumption was made that the sideband signals have small amplitudes compared

to equilibrium quantities. Linear stability properties were summarized for small-

amplitude perturbations about the equilibrium state described by Eqs. (68) and (69)

(Sec. IV C), and the saturation amplitude of the fastest growing sideband was esti-

mated analytically (Sec. IV D).

For three sets of illustrative parameters [see Cases I, II and III in Secs. V B and

V C], a detailed investigation of the nonlinear evolution of the sideband instability

was carried out by solving Eqs. (77)-(79) numerically. Moreover, the nonlinear evo-

lution of the sideband instability was investigated numerically for system parameters

corresponding to the Los Alamos free electron laser experiment (Sec. V D). In several
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aspects, the numerical results were found to be in good qualitative agreement with

the experimental results.

In conclusion, the nonlinear evolutions equations (77)-(79) were investigated ana-

lytically and numerically over a wide range of system parameters to determine detailed

scaling properties of the sideband stability within the framework of the macroclump

model. The present analysis suggests that a free electron laser operating with system

parameters corresponding to the strong-pump regime [(Q'/F')'/4 = e',(0)'/> 1]

is less vulnerable to the sideband instability than a free electron laser operating in

the weak-pump regime or in the intermediate-pump regime. Furthermore, it has been

shown in a recent kinetic analysis of the sideband instability by Yang and Davidson"4

that a sufficiently large energy spread in the trapped-electron distribution can reduce

significantly the growth rate of the unstable sidebands for system parameters corre-

sponding to the strong-pump regime [(!Q,/r,)'/4 > 1]. Therefore, we conclude by

suggesting that the strong-pump regime is the most favorable regime for free electron

laser operation, as far as amelioration of the sideband instability is concerned.
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Appendix A. Derivation of the Dielectric Function in the
Laboratory Frame

From Eq. (7), the transverse dielectric function K' (k', w,) in the ponderomotive

frame for an electromagnetic wave propagating in the z direction is
2 12 2

K' (k',, w') = cW /2, (A)

where the relativistic plasma frequency-squared w2 is defined by

2 = 47re2 (A2)

Equation (Al) is the familiar dielectric function for a transverse electromagnetic wave

propagating in an unmagnetized plasma including relativistic effects. The electric field

E' of the electromagnetic wave is related to the perturbed current density J', of the

beam electrons by

4rXJ' = -i1[K'(k',w) - 1]E,. (A3)

Here, both the current density J, and the electric field E' are perpendicular to the z

direction. Therefore, the current density J, and the electric field E', in the pondero-

motive frame are related to the laboratory-frame variables J, and E, by"8

J, = J,, (A4)

E' = -, f(E, + v , x B.) . (A5)
\ c/

Making use of the Faraday's law

ik,&z x E, = B,, (A6)

Eq. (A5) can be expressed as

E' = y, 1 - Es, (A7)

where k, and w, are the wavenumber and frequency, respectively, of the electromag-

netic wave in the laboratory frame.

Substituting Eqs. (A4) and (A7) into Eq. (A3) readily gives

47rJ = -iw'[K'(k,, W') - 1]-y, 1 - -- E,

= -i [K,,(k,,W1) - 1E,, (A8)
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where the dielectric function K.,(k., w,) in the laboratory frame is defined by

Km(k,,w,) = 1 + w[K'm(k',) - i]y, (i oPk'). (A9)

Making use of Eqs. (Al) and (A9) and the transformation (26) between (w., k,) and

(w', k'), we obtain

K,(k., w.) = 1 - (A10)

in the laboratory frame.
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FIGURE CAPTIONS

Fig.1 In the equilibrium state (8/8t' = 0), electron motion in the phase space (z', p')
occurs on surfaces with Y' = const.

Fig.2 Plots of the normalized growth rate Im(z ')/Q's versus normalized wavenum-

ber AK'/Q' obtained from Eq. (89) for the choices of pump parameter corre-

sponding to (a) (Q'/r/ )6/4 = 103, (b) (n' /r, )6/4 = 1.0 and (c) (0' /r,)/4 =

10-3.

Fig.3 Time evolution of the fastest growing sideband mode with AK' =AK, =

10-2 for the choice of system parameters e' = 3.1623 x 10-7, ', = 0.1 and

ai = 10-3 (Case I in Sec.V B). Shown here are plots of the Fourier amplitudes

(a) SAKI,/&L, (b) 6AKD,/a& and 6 0'K, obtained from Eq. (109). The variables
6A,((', -r') and 69',(-') in Eq. (109) are obtained directly by solving Eqs. (101)-

(103) for the case of small-amplitude initial conditions with wavenumber AK' =

A = 102.

Fig.4 Time evolution of the fastest growing sideband mode with AK' = AK?=

102 for the choice of system parameters E' = 5.807 x 10-6, e', = 3.37 x 10-2 and

0, = 10- (Case II in Sec.V B). Shown here are plots of the Fourier amplitudes

(a) SAIK/&o, (b) SAK' and 0'AK' obtained from Eq. (109). The variables

6A.,(', r') and 59',(r') in Eq. (109) are obtained directly by solving Eqs. (101)-

(103) for the case of small-amplitude initial conditions with wavenumber A K' =

AKM = 10-2.

Fig.5 Time evolution of the fastest growing sideband mode with AK' = AKl =

102 for the choice of system parameters e' = 10-', e' = 10 3 and &0 =

10-4 (Case III in Sec.V B). Shown here are plots of the Fourier amplitudes

(a) SAI'A./&a, (b) 6A KIiz,/ and 8 9 'AK' obtained from Eq. (109). The variables

A.(', T') and SO', 1 (T') in Eq. (109) are obtained directly by solving Eqs. (101)-

(103) for the case of small-amplitude initial conditions with wavenumber AK' =

AKEf = 102.

Fig.6 Time evolution of the Fourier amplitudes SAaK, and 6AiK, for Case I with the

choice of system parameters e' = 3.1623 x 10-7, E, = 0.1 and ao = 10-3. Shown

in (a) and (b) are the amplitudes of the sideband signals with wavenumber

AK' = AKki/2 = 5 x 10-3. Shown in (c) and (d) are the amplitudes of the
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sideband signals with wavenumber AK' = AKJ = 10-2. The initial conditions
in this figure correspond to small-amplitude perturbations with wavenumber
AK' = AK,1/2 = 5 x 10- 3.

Fig.7 Time evolution of the Fourier amplitudes SAIK, and SA4K, for Case II with
the choice of system parameters e' = 5.807 x 10-, e', = 3.37 x 10-2 and

= 0'. Shown in (a) and (b) are the amplitudes of the sideband signals
with wavenumber AK' = AK'/2 = 5 x i0-. Shown in (c) and (d) are
the amplitudes of the sideband signals with wavenumber AK' = AK,1 = 102.
The initial conditions in this figure correspond to small-amplitude perturbations
with wavenumber AK'= AKh/2 = 5 x 10-3.

Fig.8 Time evolution of the Fourier amplitudes SAIK, and 6A K, for Case III with
the choice of system parameters e' = 10', e' = 10- and &* = 10'. Shown

in (a) and (b) are the amplitudes of the sideband signals with wavenumber

AK' = AKn,/2 = 5 x 10-. Shown in (c) and (d) are the amplitudes of the

sideband signals with wavenumber AK' = AKf = 102. The initial conditions

in this figure correspond to small-amplitude perturbations with wavenumber

AK' = AKh/2 = 5 x 10-3.

Fig.9 Plots versus real wavenumber AK' of (a) the growth rate Im(Afl') and (b)
the real frequency shift Re(Af') obtained from the dispersion relation (89) for

the choice of system parameters e' = 5.6 x 10-7, e', = 0.48 and &* = 2.4 x 10-4

corresponding to the Los Alamos free electron laser.5

Fig. 10 Time evolution of the sideband instability for the choice of system parameters

E' = 5.6 x 10-7, ', = 0.48 and do = 2.4 x 10-4. The normalized power PIK'

defined in Eq. (125) is plotted versus -r' for first six Fourier components, i.e.,

AK' = m/252, m = 1, ---,6. The lower sidebands correspond to the solid

curves, and the upper sidebands correspond to the dotted curves. The curves

in Figs. 10-12 are obtained in the same numerical calculation.

Fig.11 Plots versus -r' of the real frequency shift (-do',/dr'- AK') [see the para-

graph following Eqs. (114)-(116)] corresponding to the lower sideband signals

for (a) AK' = 1/84 and (b) AK' = 1/42. The curves in Figs. 10-12 are obtained

in the same numerical calculation.

Fig.12 Plots versus r' of (a) the normalized power A2/(a.) 2 for the primary signal
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[see Eq. (116) and the paragraph following Eq. (116)] and (b) the normalized

spatially averaged power < &, > /(!')2 defined in Eq. (126). The curves in

Figs. 10-12 are obtained in the same numerical calculation.

Fig.13 Plots versus frequency shift Aw/w, of the relative power spectrum P(AW),

which is proportional to the amplitude-squared of the Fourier transform of

a;(zo, t) defined in Eq. (112) at z = zo in the laboratory frame. Here, a;(z, t)

is obtained from a,(z', t') calculated in Sec.V D. In obtaining the Fourier trans-

form plot in (a), the data for the entire evolution from r' = 0 to r' = 6000 are

used. In contrast, only the data from r' = 4000 to r' = 6000 are used to obtain

the plot in (b).
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