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Abstract

Results are reported of a theoretical and experimental investiga-
tion of a quasi-optical mode converter for the transformation of whis-
pering gallery mode gyrotron output into a Gaussian like beam. The
mode converter consists of a helically cut waveguide launcher, similar
to that originally proposed by Vlasov et al, followed by a focusing mir-
ror. Theoretical results using aperture field methods indicate that the
length of the waveguide launcher is of critical importance in providing
a confined radiation pattern. Experimental results on the radiation
pattern were obtained for several launcher lengths using a 0.6 MW,
149 GHz pulsed gyrotron operating in the TE16 ,2 mode. Radiation
pattern results for the best launcher length agree well with theoreti-
cal calculations using the Stratton-Chu aperture radiation theory for
unperturbed waveguide modes. A mirror focusing in the azimuthal
direction was designed by a geometrical optics approach to focus the
radiation coming from the launcher. Good focusing with 91.4% ef-
ficiency (power in the focused beam divided by gyrotron power) was
found experimentally using the combined launcher and mirror with the
pulsed gyrotron. These results indicate that quasi-optical antennas
are useful for transforming high order, high frequency gyrotron modes
into directed beams in free space.
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Introduction

It is desired to convert electromagnetic waves produced by over-
moded gyrotrons to low-order mode, linearly polarized waves (for
plasma heating via transmission in a corrugated waveguide using the
HE,, model or free space Gaussian beam propagation). The typical
output modes, TEmp, for high power gyrotrons, have a large azimuthal
index (m) and small radial index (p); the so called whispering gallery
modes (WGM).

Mode conversion to low-order linearly polarized radiation must
meet two requirements. First, the rather complex polarization must
be "unwound" into a linear polarization for efficient plasma heating.
Second, the highly structured waveguide fields must be efficiently trans-
formed into a low order mode suitable for transmission. The radiation
emanating from a circular aperture (or truncated waveguide) is un-
suitable for long path transmission or plasma heating, since a WGM
gyrotron has the radiation pattern of a hollow cone (with 2m azimuthal
lobes for non-rotating modes).

The goal of this research program is the efficient conversion of
rotating TEmp whispering gallery modes into narrow beam waves. To
design a mode conversion system, we start with the quasi-optical con-
figuration, known as a Vlasov converter2 . It consists of a waveguide
opening ivhich serves as a launcher bounded by a straight axial cut and
a helical cut, combined with a parabolic reflector, as shown in Fig. 1.
(In our terminology, the launcher refers only to the waveguide aperture,
while the converter refers to the launcher and mirror system.) The ra-
diation spills from the axial cut, and is directed in a beam with a fixed
polar angle and a moderate azimuthal angle spread. The reflector fo-
cuses in the azimuthal direction. The original quasi-optical converter
design treated TEmp modes for p = 1, where an assumption of a line
source close to the launcher edge is allowed. We explicitly treat p > 1,
where the radiation source is distributed inwards from the waveguide
wall.

Alternate methods for dealing with the distributed source diffi-
culties for p > 1 include converting the operating mode down to TEmn, 1

via radial perturbation mode converters3 , or partially converting -to
TEm,p+l and TEm,,- 1 to suppress sidelobe formation4 . These meth-
ods will not be treated here since they are not applicable for use in a
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Figure 1. a.) The mode converter configuration is shown in per-
spective, with the helically cut launcher, radiation at the polar angle

(GB), (the bounce angle), and the two-dimensional focus reflector. The
reflector as shown focuses the azimuthal spread in the launcher radi-
ation pattern to a line focus. b.) The cross section of the waveguide
shows the caustic radius, the extreme azimuthal angles of the radiation
pattern, limited by COS C' = m/l/mp, and the azimuthal angle coordi-

nate definition. The launcher edge is at an angle # = -r/2, and the

radiation is centered around 0 = 0.
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step tunable gyrotron.

In this research we have derived a general theory to describe the
radiation from such a launcher. We also have improved the parameters
of the helical launcher and reflector over previous experiments 2 ,s ,, and
verified the converter performance experimentally on a MW gyrotron
hot test for TEmp modes with p = 2.

Rotating and Counter-Rotating Modes

The helical cut of the Vlasov launcher fixes the mode converter
applicability to either right or left handed rotating modes. In our ex-
periments, the gyrotron interaction is destabilized at either one rotation
or the other exclusively, depending on the radial position of the elec-
tron beam and the corresponding sign of the coupling coefficient 7 '8 . In
practice, a single converter could be incorporated into a sealed gyrotron
tube, and used in either parameter range by reversing the polarity of
the magnetic fields at the cavity and electron gun.

Properties of Rotating Modes

The TE waveguide fields generated by a WGM gyrotron can be
written in cylindrical coordinates as:

H = Ho ei(kz*mO-wt) [ J'(kr) -F mk, Jm(kr)o + Jm(krr)-]

(1)

E = ZoHo ei(kz~mO-wt) Ti.Jm(kr)r - J,',,(krr)] , (2)

for propagation in the + direction, where t terms refer to right-
handed (+) and left-handed (-) azimuthal rotation. Here, kf is the
free space wavelength, k, is defined by k, = vmp/Rw where vm is the

Pth zero of J,(x) and R, is the waveguide radius, k. is the guide wave-
length defined by k 2 k 2 - k2, and Zo is the free space impedance given

by Vpo/Eo. One feature of rotating whispering gallery modes is that
the time averaged Poynting vector shows a real azimuthal component
of energy flux.

These fields can be represented as superpositions of plane waves
by decomposition of the Bessel functions in E. This is quite useful in
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approximating the design of reflector surfaces in the near field. The
result of this decomposition yields' (for right hand rotation):

27r

Er = - do' EO cos 0' ei(-wt+kz+kr sin '+m((-3')) (3)

27r

and E4 = j do' EO sin 0' ei(-wt+k.z+ktr sin (+m(4-)')) (

given that

Eo = Ho Zo. (5)21rk,

In this expansion, the fields are represented by a continuum of
plane waves according to the form

E, oc ei(kfs(r)-wt) (6)

where the eikonal S(r) is given by

kfS(r) = kzz + kr sin$' + m( - 0'). (7)

Solving the eikonal equation

(VS) 2 = 1 (8)

yields an intuitive picture of the propagation paths of these plane waves,
or rays' 0 . We see that

m
= R) = c , cosa = - , (9)

1Emp

where a is the azimuthal bounce angle of the rays between the guide
surface and a tangent plane to the guide (see Fig. 1b). Rays which
reflect at this angle are tangent to a caustic surface at

RC =- Rw . (10)
Vmp

Alternately, by substituting equation (8) to find the radius of zero radial
gradient,

1 M2
VS -r 1 = k2 -; r (VS - ?=0) = R (11)
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directly yields the minimum radius of the ray trajectories, that of the
caustic surface. The interpretation of the caustic radius also extends
to the field representation (equations (1) and (2)). For r > R,, the
fields are oscillatory, while for r < R,, the fields are evanescent, and
drop monotonically to zero at the axis.

This geometric description of ray propagation is valid in the limit
where the field variation scale length is large compared to a wavelength.
This is satisfied in highly overmoded waveguides far from cutoff. For
the experiments discussed here, this scale length is of the order of 1.5
times the wavelength. For this reason, we use the geometric optics
approximation for its simplicity in our experimental design, but take
every opportunity to compare our results with diffraction predictions
as a precaution.

In the geometric optics limit, we use the following model for ra-
diation from the launcher aperture in designing the focusing mirror.
The rays bounce along the inside wall of the waveguide in a polygonal
helix10 , tangent to a caustic surface at R, and propagating with an
axial component given by the bounce angle

1kr
OB = tan (12)

k Z

These rays radiate from the launcher aperture as shown in Fig. 1b.
The radiation is thus limited to a range of azimuthal angles of 2a: (as
defined in equation (9)).

Vector Diffraction Theory

In order to calculate the radiation field of the launcher, two meth-
ods are possible: use of the wall currents as a field source, or aperture
field integral methods. The latter proves to be more efficient, as the
integration may be reduced to two dimensions. Since the radius defin-
ing the aperture size of the waveguide is not very large compared to
the wavelength, the radiation field must be calculated by vector diffrac-
tion theory. The Stratton-Chu formula" is appropriate for the near
field in this case. The key assumption involved is that the fields on
the aperture are known exactly. The response to the Green func-
tion appropriate for radiation from a point source is integrated over
all source regions, modulated by the appropriate phase and amplitude
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Figure 2. The helical launcher is shown in perspective, with the
aperture construction used for calculation. The aperture is in the r-z
plane, covering 0 < r < Rw, and -L/2 < z < L/2.

for the fields in the aperture, to determine the net field at the point of
observation.

The appropriate aperture is the rectangular plane bounded by
the waveguide axis and the straight cut in the waveguide surface (in
the axial direction), and radial boundaries at the origin and end of the
helical cut (in the transverse direction), as shown in Fig. 2. The fields
on this aperture are assumed to be the unperturbed waveguide fields,
(equations (1) and (2)).

The field at the point of observation is given by:

E(r) = j [(h . E')Vgr,r, + (A x E') x Vgr,r, +iwgrr, (n x B')] dS',

(13)
neglecting the contribution from source currents on the aperture bound-
ary, where E' and B' are the fields in the aperture, E is the field at the
observation point, and gr, is the appropriate Green function for point
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source radiation, given by

- eikfr (14)

where kf is the free space wavenumber, and

r = Ir - r'l (15)

is the distance from the source point to the observation point.

When calculating the fields by the above method, an additional
consideration must be included. The helical cut of the launcher can
shield a fraction of the rectangular aperture from some observation
points. Contributions to the integrals are only included if the aperture
segment is not shielded, i.e. if the line of sight between point r' in the
aperture and the point r of observation does not intersect the launcher.

Unfortunately, this treatment yields a two-dimensional integral
which is analytically intractable. We have written a code incorporat-
ing several numerical shortcuts to integrate the TEmp waveguide mode
equations in the Stratton-Chu formula over the Vlasov aperture.

The results from calculating the azimuthal dependence of the ra-
diation pattern from the helical launcher at intermediate distances and
optimum polar angle are shown in Fig. 3, compared to measurements
(discussed below).

In the far-field, this treatment may be simplified to a single one-
dimensional integral, which allows for faster calculation (see Appendix).
The resulting E 4, component is also shown in Fig. 3. The far-field
expansion is a good approximation to the near-field case at intermediate
distances (the Fresnel zone).

Launcher

In the plane wave approximation, the helical flow of energy in the
waveguide can be represented as circulating rays tangent to the caustic,
as described above. It is essential that the waves are unperturbed until
they are incident on this aperture, thus the waveguide opening must

be cut open in a helical shape - with the helical cut following the ray
trajectories in the guide.
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Figure 3. The EO and cross polarization components of the TE16,2
mode radiation pattern from the launcher at the optimum polar angle
of 6 = 25.40 are shown, as calculated by a near-field Stratton-Chu
calculation at r = 25 cm. The indicated line shows the far-field ap-
proximation to EO. The data points are measurements at 25 cm.

The penalty for having a launcher length that is too short is that
radiation will "spill over" the helical cut of the launcher. This radiation
will be randomly distributed in azimuthal angle and polarization - i.e.
not recoverable in the succeeding chain of focusing mirrors. In the
extreme limit, the radiation from a short launcher approaches that of
a circular aperture; a hollow cone with non-uniform polarization.

In the geometric optics limit there is no penalty for too-long a
launcher. A more careful examination shows, however, that the self-
shielding and extended "slit" of a too long launcher will cause mode-
conversion and enhanced losses' 2

Previous work 2 ,,' has assumed the correct length to be the
"bounce length", the axial distance along the guide propagated by a
wave bouncing at angle 6 B in traversing the guide circumference 27rR.,

LB = 27rR, = 27rR, f 1. (16)
kr k
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Figure 4. The length of the launcher increases quickly as the launcher
radius increases. The upper line shows the curve for the bounce length,
LB. The lower line shows the modified length, after correcting for
conservation of energy flux (at a mode number of TE16,2).

If the wave propagating in the guide is generated near cutoff in a gy-
rotron cavity of radius Rcav, then

R2
kf ~ kr,cav = vmp/Rcav thus LB ~a 2rR, " - 1. (17)

Equation (17) indicates that the bounce length is independent of the
mode (i.e. independent of vmp) for modes generated near cutoff in a
gyrotron cavity and propagated out into an overmoded guide. If the
above bounce length is the correct length for the launcher, then the
launcher length would be independent of the operating mode in the
gyrotron.

Fig. 4 shows how the launcher length depends on the waveguide
radius. To keep the launcher reasonably short, the output waveguide
radius must be as small as practical. This must be balanced against a
desire to keep the wave impedance close to that of free space to minimize
impedance mismatch reflections.
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Figure 5. The modification factor for the conservation of energy
correction to the coupler length, as a function of the ratio m/Vmp.
The values for a few significant mode numbers are shown.

We have calculated the length of the Vlasov launcher by integrat-
ing the normal component of the Poynting vector of a rotating wave-
guide mode over an aperture of height R, and length L, the aperture
shown in Fig. 2. By equating the energy flux through the waveguide
cross section to that through the rectangular aperture defined above,
we find the correct length L to be given by:

L=L / 2 ~ _-in 2 ) J 2 (Vmp) (8
L = LB P (18)

Fig. 5 shows the ratio L/LB as a function of m/vmp. For true whis-
pering gallery modes (m > 1 and p = 1), m/vmp converges to 1, as
does this correction factor (L/LB).

Although the correction factor is mode number dependent, this
variation is very weak over the step tuning range of a high power gy-
rotron, since the azimuthal and radial mode numbers tune together
with the ratio m/Vmp approximately constant.
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A coupler could be cut to the length corresponding to the pitch
angle of the wall currents'. The wall currents are seen to rotate at a
stronger helical pitch angle than the radiation, as found by:

current r. oc n x H at wall, (19)

where n is the normal unit vector at the wall. This pitch angle corre-
sponds to a very short launcher length,

L' = 27rR H = LB m (20)Hz (Rw)| vmp

Very low efficiency (75% for the TE16 ,2 mode) should be seen with a
launcher of this length, due to the losses over the helical edge.

An alternate intuitive approach' uses the following correction to
the bounce length derivation. Since the rays do not exactly skim along
the wall, equating 27rRw/L to the tangent of the pitch angle is not
correct. The effective azimuthal path length is instead determined by
the sum of chords which are tangent to the caustic radius (mRw/VmP)
on each bounce. The bounce length must then be multiplied by the
ratio of the chord length to arc length for one chord:

Ssin a
L = LB a (21)

where a is the azimuthal spread angle defined above (cos a
Although they are not equal, the approximation

L" ~ L (22)

can be shown numerically to be correct to within 0.1% for a wide range
of mode numbers.

Design of the Reflector

The radiation from the helical launcher requires focusing and pro-
file shaping before it is suitable for transmission as a Gaussian beam.
The reflector is designed for focusing in the azimuthal direction only,
as its cross-section is constant along the axial direction.

For simplicity, we use geometric optics (from the plane wave ex-
pansion and far-field expansions) to design our reflector. We then
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Figure 6. A cross section of the launcher and mirror geometry shows
the arc of the caustic which can be treated as the radiating source, the
extreme rays, an intermediate phase front, and the focus.

use the near-field calculation to check our results. A geometric optics
construction of the phase front is used to design the reflector, see Fig.
6. The radiating source is assumed to be an arc segment of the caustic
bordered by the extreme rays. By the plane wave expansion (equa-
tions (3) - (6)), a bundle of rays is generated to fill the aperture. The
source points of these rays are considered to be the last tangency to the
caustic surface before being emitted through the aperture. In addi-
tion, there is a uniform distribution of rays leaving the caustic source
with a phase variation of

E(q, z) oc e(m kz) (23)

A phase front can be constructed from rays with identical path
lengths, where the paths are measured along the straight path tangent
to the caustic plus the fraction of the caustic travelled from a common
point. The mirror surface is designed by satisfying the constraints of
1) focusing the rays at a given point and 2) constant phase at the focus.
The locations of the mirror center and the focal point can be chosen
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arbitrarily - we select these by adding the constraint of optimizing the
angular distribution of rays converging on the focus to approximate a
Gaussian distribution.

The reflected rays must also not intersect the launcher en route
to the focal point. This either constrains the reflector to a distance
r 3R, from the launcher wall, or requires that the reflection angle be
tilted to direct the beam away from the launcher. The second method
leads to a better approximation of the Gaussian transverse distribution.

Hardware

Measurements were made using the rotating WGM generated by
the MIT megawatt gyrotron, (typically operating at about 0.6 MW
in 1 psec pulses). The frequency was step tunable from 126 to 328
GHz, corresponding to the TE 12 ,2 through the TE 2 7 ,6 modes. These
experiments were performed at 148.8 GHz in the TE16 ,2 mode.

A sleeve was fixed to the gyrotron window and the rotatable
launcher attached behind it. The window gap unfortunately created
spurious modes which could be observed by far field scans. Careful
alignment of the mounting sleeve was necessary to minimize this ef-
fect. Ultimately, better than 90% mode purity was achieved (with
most of the impurity in the TE1 6 ,1 mode). Operation without the
sleeve showed no measurable TE16 ,1 impurity, and confirmed that the
spurious mode generation was due to the window gap. In addition,
the azimuthal scans of the launcher far field were performed with the
detector centered on the main polar lobe of the radiation. Azimuthal
scans were done by rotating the launcher on the sleeve. The reflec-
tor was mounted on an independent platform, with 1 mm alignment
tolerances.

Intermediate field measurements (launcher azimuthal scans) were
made with a Hughes WR6 diode detector with a WR6 21 dB pyra-
midal horn. Short distance measurements (launcher edge scans, and
mirror focus scans) were made with a truncated WR6 waveguide re-
ceiver rather than a horn, for spatial localization and less directivity.

Calorimetric measurements were made with a Scientech model
362 laser calorimeter with a 36-0401 head modified for a 12.5 cm di-
ameter absorbing plate with 95% absorption at 140 GHz. Detailed
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calibration measurements of the calorimeter surface have shown the
absorption coefficient to be fairly independent of the angle of incidence.
The gyrotron was pulsed at 6 Hz, and efficiencies were measured by
normalizing to power measurements taken with the launcher removed.

The nominal gyrotron power was measured by placing the
calorimeter several cm from the end of the circular waveguide. The
mirror efficiency measurements were made by placing the calorimeter
at the linear focus from the reflector. Since the focal line is longer
than the width of the calorimeter, a square eccosorb mask was placed
over the calorimeter, and the measurement was done in three segments
to cover the width of the line. Relative uncertainty in the lateral
alignment of the segments was about 2 mm, giving an uncertainty in
the power measurement due to misalignment (overlap or gap) of the
segments of about ±2%.

Experimental Results

The field distribution of the aperture (see Fig. 2) was measured
along the axial cut of the launcher, at several radial positions, see Fig.
7. Clearly the conventional bounce length, LB, is too long - the
signal is characteristically 25-30 dB down at this position. Similarly,
the wall current length, L' is clearly too short, as about 15% of the
power is radiated beyond this point.

We conjecture that there is a failure in the assumption of unper-
turbed waveguide fields between L' and L. This is due to the difference
in pitch angle between the average energy flux in the waveguide and the
wall currents. At z < L', the wall currents and radiation energy flux
in the launcher are effectively unperturbed by the launcher, i.e. the
respective pitch angles trace backwards smoothly into the waveguide.
At z > L', this is not true, as the steeper pitch angle of the wall cur-
rents traces back to a region perturbed by the launcher aperture. This
also implies that a launcher of length L' might generate the "cleanest"
radiation pattern, in spite of the inherent low efficiency.

An azimuthal scan of the radiation pattern from the launcher at
the polar angle of peak radiation is shown in Fig. 3. The data points
show a scan of the Ep component of the TE1 6 ,2 mode, while the solid
lines show the theoretically predicted results. The reasonable agree-
ment between theory and experiment indicates that the assumptions
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Figure 7. The measured radiation intensity is shown as measured
along the length of the straight edge of a launcher of length about LB.
Measurements were made with a receiving antenna constructed of trun-

cated WR6 waveguide, scanned 0.2 cm from the waveguide wall in an
r = 1.74 cm launcher radiating TE 16 ,2 at 148.8 GHz. (Fluctuations
with axial distance were often larger than above on similar scans, pre-
sumably due to the steep gradients in field strength and uncertainty in
alignment of the receiver relative to the radiating edge. The character-
istic signal strength vs. axial distance is very reproducible.)

connected with the aperture field method are valid. The cross polar-
ization (Eo) component does not show the same quality of agreement,
although the predicted 20-25 dB drop compared with EO is reasonably
accurate.

Fig. 8 shows measurements made on a vertical scan through the
line focus in the focal plane at two different locations (using a diode
receiver and a truncated WR6 waveguide as a receiving antenna). The
power is seen here to be well focused, with a FWHM of 5.5 mm, or 2.25
A.

Calorimetry measurements were made with the reflector, and
launchers of three different lengths (and corresponding helical pitches).
The short launcher was cut to the wall current length, L'; the medium
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Figure 8. The measured radiation intensity of the E, polarization
measured at the focus line after reflection off the mirror is shown at
two axial distances 12.0 cm apart. The receiving antenna is a truncated
WR6 waveguide, for spatial localization.

cut to L; and the long launcher cut slightly short of the bounce length,
LB. The following table shows these results.

LENGTH EFFICIENCY
L'= 15.8 cm 69.0%
L = 20.4 cm(~ L") 91.4%

LB = 21.9 cm 85.6%

The correct length L shows the highest efficiency, 91.4%, further con-
firming this as the appropriate length.

Efficiency Estimates

The efficiency of the mode converter can be estimated numeri-
cally, using the near-field calculation, and the radiation azimuthal angle
range subtended by the first mirror. Fig. 9 shows the azimuthal angle
dependence of the radiation pattern at optimum polar angle, at a 9 cm
distance from the center of the aperture (as aligned in the experiment).
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Figure 9. TheEO and Eo polarization components of the near-field
radiation pattern are calculated at 8 = 9 cm, (the mirror distance).
Numerically integrating the power in this pattern gives a relative effi-
ciency of 92.5% between the azimuthal angles subtended by the mirror.

The power is integrated within the angle limits of the first mirror, with
a predicted 92.5% total efficiency (i.e. both polarizations), as compared
to the measured value of 91.4%. Note that the majority of the missing
power is at larger values of 4, which corresponds to rays tangent at a
radius smaller than the caustic radius - a "soft" boundary.

The penalty for a too-short coupler is the loss of radiation over the
backside of the helical coupler, as discussed above. Using this idea,
the relative efficiency loss for the 15.8 cm coupler can be estimated
from the ratios of the lengths - the short launcher should show 77% of
the efficiency of the conservation of energy length, or 77%x91%=70%.
This is compared with the measured efficiency of 69%.

Summary

We have shown a new method for determining the proper length
of a helical Vlasov launcher for mode conversion of rotating whispering
gallery modes to low mode number linearly polarized radiation, which
leads to optimum efficiency. We have also designed an optimized re-
flector for the mode conversion system. Both launcher and reflector
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were tested experimentally and achieved 91.4% efficiency, in agreement
with theory. A robust numerical code has been developed for calculat-
ing near-field radiation patterns from the launcher, which agrees well
with experimental measurements.
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APPENDIX: Far Field Approximation

Although far-field approximations are not particularly relevant
for the launcher to mirror distances used in this experiment, the asymp-
totic form of the radiation pattern in the far-field gives valuable insight
towards understanding the detailed radiation pattern.

Derivation of the far field equation uses the Franz formula", (an
equivalent form of the Stratton Chu formula, in which only the field
components in the plane of the aperture contribute to the radiation
fields), which is integrated over the rectangular aperture, as before:

E(r) = V X i x E'grr, dS'+ VxVx 'xB'gr,r,dS'. (24)
-41r f~ rr 47rwf

In the far field approximation, r Ir - r' can be approximated in the
Green function by:

eikfr ei(kfr-kfr') (25)
gr, r Irl .(5

To evaluate equation (24) for the fields defined by (1) and (2),
a transformation must be made from the cylindrical (waveguide) coor-
dinate system to rectangular coordinates to perform the integral. A
further transformation to spherical coordinates is preferable for inter-
pretation of the result. The cylindrical to spherical transformation
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preserves the azimuthal angle (q), while the polar angle (0) is defined
as the elevation from the +Z axis. The aperture is defined to be in
the 0 = -ir/2 plane. The del operator can be taken as ikf for large
distances. The integral over the length of the aperture can be solved
analytically, yielding (in the far field limit):

E = ZoHok,-e rf -
4-m r k,.

r sin Of2(0, 0) - cos 0 sin Of3 (0, 4) , (26)

- (cos Of3(0, 0) + Mkf sinefi(0,0)-) 0]

where
sin (L(cos O k))

fo(0) = L , and (27)
2 k)

f( (0, )= mMP dVJMMe) sin , sin 1

, = jd J ( ) e i si nl9 s i n , ( 2 8 )

f 3 (oq ) = j dvJm(v) e $"/Sin6Sif .

The three integrals are shown in Fig. 10. From equation (27), it can
be seen that the far-field radiation pattern is quite peaked at 0 = OB,

and that equations (28) act as slowly varying envelopes around the fast
fo(G) modulation. Furthermore, it can be shown numerically from (26)
and (28) that the E4, term dominates. The plane wave interpretation
of the resulting pattern is that the radiation is azimuthally polarized,
directed at 0 = 0 B, and has an azimuthal distribution given by equation
(26).
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Figure 10. The three envelope integrals in the far-field expansion
of the Franz formula are shown as a function of spatial angle (for the
TE 1 6 ,2 mode with kf /kr = 2). All three functions are slowly varying,
compared to the rapid modulation in 9 of fO(Y)-
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"A long launcher will appear like a superposition of the proper aperture
and an axial slit in the waveguide preceding the aperture. Such a
slit will interrupt wall currents, causing mode conversion. The most
likely mode conversion in such a case will be to the opposite rotating
mode (thus giving a null in the wall currents on the slit). Any power
converted to the opposite rotation will "spill" over the helical cut of the
launcher, thus reducing efficiency.
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