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ABSTRACT

The nonlinear dynamics of nonneutral plasmas with circulating

electron flow is often characterized by large-amplitude coherent

structures. Use is made of a cold-fluid guiding-center model to

investigate the properties of stationary, two-dimensional, large-

amplitude vortex structures in a low-density (s = Wp /4? << 1)e pe ce
nonneutral plasma column confined by an axial magnetic field B 0z
In addition, particle-in-cell computer simulation studies are

presented which describe the nonlinear evolution of a high-density
2 2

(s = W ,/W - 1) nonneutral electron layer in a relativistice pe ce
cylindrical magnetron, including the formation of a large-amplitude

"spoke" structure in the circulating electron density.

I. INTRODUCTION

The formation and evolution of large-amplitude coherent struc-

tures play an important role in describing the nonlinear dynamics of

nonneutral plasmas1 with circulating electron flow. This is true in

systems ranging from low-density (s = 2 /2 << 1) rotating non-e pe ce
neutral plasmas initially subject to the diocotron instability, to

high-density (s = w /Wce - 1) circulating nonneutral electrone pe ce
layers in conventional and relativistic magnetrons. Here, w pe is

the electron plasma frequency, wce is the electron cyclotron

frequency associated with the confining magnetic field, and s =
22
W 2/(ce is a measure of the self-field intensity.

This paper makes use of a cold-fluid guiding-center model to

investigate the properties of stationary, two-dimensional,

tResearch supported in part by the Office of Naval Research, the

Department of Energy High Energy Physics Division, and the Naval

Research Laboratory Plasma Physics Division.
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large-amplitude vortex structures in a low-density nonneutral plasma

column (Sec. II). In addition, particle-in-cell computer simula-

tions are presented which describe the nonlinear evolution of a

high-density nonneutral electron layer in a relativistic cylindrical

magnetron, including the formation of a large-amplitude "spoke"

structure in the circulating electron density (Sec. III).

By way of background, one of the most ubiquitous properties of

low-density nonneutral plasma initially subject to the diocotron
2-12instability is the development of long-lived, rotating vortex

structures13 during the nonlinear evolution of the system. This has

been observed experimentally in annular electron layers, 1 4 ,1 5

intense propagating annular electron beams,16 nonneutral plasma

columns with17,18 and without19-21 central conductors, and in

computer simulation studies.18 The fact that long-lived coherent

structures exist in these systems for many rotation periods and

thousands of cyclotron periods suggests the existence of large-
amplitude solutions which are stationary in the rotating frame. In

Sec. II, use is made of a cold-fluid guiding-center model to
investigate the properties of large-amplitude stationary vortex

structures in a low-density nonneutral plasma column with s =

(2 /4? << 1.
pe ce

In contrast, magnetrons operate with dense nonneutral electron

layers characterized by s = W2 /W 2 - 1. In relativistic mag-
22-30 e pe ce

netrons, pulsed high-voltage diodes are used to generate micro-
waves at gigawatt power levels. Although magnetrons are widely used

as microwave sources, a fundamental understanding of the underlying

interaction physics is still being developed,3 1 particularly in the

nonlinear regime. Part of the theoretical challenge is associated

with the fact that the electrons emitted from the cathode interact

with the electromagnetic waves excited in the anode-cathode gap in a

highly nonlinear way. This is manifest through a strong azimuthal

bunching of the electrons and the formation of a large-amplitude

spoke structure in the circulating electron density. In this

regard, computer simulation studies32-35 provide a particularly

valuable approach to analyze the interaction physics and nonlinear

electrodynamics in magnetrons. In Sec. II, we summarize recent
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computer simulations3 5 of the multiresonator, cylindrical A6 mag-
26netron configuration using the two-dimensional particle-in-cell

code MAGIC,36 including the formation of a coherent, large-amplitude

spoke structure in the circulating electron density.

II. LARGE-AMPLITUDE VORTEX STRUCTURES

IN LOW-DENSITY NONNEUTRAL PLASMA

In this section, use is made of a cold-fluid guiding-center

model (Sec. II.A) to investigate the properties of stationary

coherent structures in a low-density (se = W 2 /C << 1) nonneutral
plasma column (Sec. II.B). Particular examples of large-amplitude

k = 1 and 2 = 2 vortex structures are then presented (Sec. II.C).

A. Nonrelativistic Guiding-Center Model

We consider a low-density nonneutral electron plasma in cylin-

drical geometry with

2 2
4n n (x,t)m cee- e «1.(<

2 = 2
ce 0

Here, me is the electron mass, c is the speed of light in vacuo, and

n (x,t) is the electron density. The electrons are confined radi-

ally by a uniform axial magnetic field B0 z, and cylindrical con-

ducting walls are located at r = a and r = b (Fig. 1). The case in

which the central conductor is absent is treated by setting a = 0.

In the present analysis, a cold-fluid guiding-center model2 is

adopted in which electron inertial effects are neglected (me 4 0),

and the motion of a strongly magnetized electron fluid element is

determined from

0 = -en (x t) E(x,t) + -Ve(x,t) x BO , (2)[K 1

where -e is the electron charge, and V (x,t) is the average flow

velocity. In the electrostatic approximation, the electric field

can be expressed as E(x,t) = -V+(x,t). Therefore, Eq.(2) gives

C
Ve(x,t) = - - (x,t) x z (3)

B
0
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Circulating Outer
Electron Conductor

Flow

Inner

Fig. 1. A low-density nonneutral electron plasma is

immersed in a strong axial magnetic field B0 2 between two

cylindrical conductors at r = a and r = b. In the electro-

static approximation, the perpendicular flow velocity is

V,= -( c/B0 ) V*(x,t) x z

for the perpendicular fluid motion. In cylindrical geometry, Eq.(3)
reduces to

ea

vre(r,e,t) = - - -- *(r,e,t) , (4)
B0r ae

c0
v(r,B,t) - (re,t) , (5)B0 =

where a/z = 0 is assumed. Because - V = 0 follows from Eq.(3),

the continuity equation can be expressed as
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c a a a,
- -- + -- - -n e(r,e, t) = 0 .(6)

at B0r N ar B 0r nr K

Of course, Eq.(6) must be supplemented by Poisson's equation

(1 a a 2
r + 2J (r,8,t) = 4 nen (r,9,t) , (7)

r ar 8r r 2e

which relates self-consistently the electrostatic potential *(r,ef)
to the electron density ne (r,9,t).

Equations (6) and (7) constitute a fully nonlinear description

of the two-dimensional evolution of the system in the cold-fluid

guiding-center approximation with me 4 0. Although the ratio

4? /Wc = 4a nmc 2/B2 approaches zero in the limit of zero electron
mass, note that the effective diocotron frequency defined by L1b =

? /pe = 4n nec/Bo remains finite as m 4 0. Assuming that the

cylinders at r = a and r = b in Fig. 1 are perfect conductors, it is
required that

1 a
E(r,E,t) = - - - *(r,,t) = 0, at r = a and r = b , (8)

r Ne

which corresponds to zero tangential electric field at the con-

ducting walls. Making use of V re(r,E,t) = -(c/B 0r)(a/ae)+(r,G,t),

it follows from Eqs.(4) and (8) that

Vre (r,e,t) = 0, at r = a and r = b , (9)

which corresponds to zero radial flow of the electron fluid at

r - a and r - b. The nonlinear equations (6) and (7) possess certain

global conservation constraints2,5 which provide important insights

regarding the nonlinear evolution of the system. In particular, it

is convenient to introduce the density-weighted mean-square radius

of guiding-center locations defined by

b 2n

Ur = drrj de r2ne(r,e,t) , (10)

a 0

and the generalized entropy defined by
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b 2 T

UG; = JdrrJ d9 G(n,,) .(1

a 0

Here, G(n ) is a smooth, differentiable function with G(ne -+ 0) = 0.

Making use of Eqs.(6) and (7) and the boundary conditions in Eq.(8),

it is readily shown that

d
-U = 0 (12)
dt

and

d

- G =0. (13)
dt.

That is, Ur = const. and UG = const. are globally conserved

quantities no matter how complicated the nonlinear evolution of the

system described by Eqs.(6) and (7). In this regard, note that

U = const. is a statement of the conservation of canonical angular

momentum, fd 2x(merV - eB0 r
2/2c)ne = const., in the limit of zero

electron mass (m -+ 0).

Not only are Eqs.(12) and (13) useful conservation relations for

describing the nonlinear evolution of the system, these constraint

conditions can also be used to derive a sufficient condition for

azimuthally symmetric equilibria n 0 (r) to be stable to small-e
amplitude perturbations n e (r,e,t). In particular, for mono-

tonically decreasing profiles with

1 0
-- n (r) 0, for a < r < b , (14)
r ar

it can be shown that the density perturbation Sn (r,9,t) cannot grow

without bound, and the system is linearly stable. 2,5,6 That is,

Eq.(14) is a sufficient condition for stability to small-amplitude

perturbations in the context of the cold-fluid guiding-center model

based on Eqs.(6) and (7). Therefore, a necessary condition for
0

instability is that the density profile ne (r) have a maximum at some

radius r = rM intermediate between r = a and r = b. An example of a

profile subject to the diocotron instability is a sufficiently thin
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annular electron layer2,3,10 in which the inner and outer radii of

the layer (at r = r~ and r = r+, say) are not in contact with the

conductors at r = a and r = b. A smooth density profile no(r) with
0 0 e

a sufficiently large density depression n (r = a)/n (r = r ) < 1 is
also subject to the diocotron instability.

B. Nonlinear Stationary Structures in the Rotating Frame

A thorough review of the linear properties of the diocotron

instability is presented in Chapter 6 of Ref.1 and will not be

repeated here. Rather, we focus on the application of Eqs.(6) and

(7) to describe large-amplitude rotating structures in nonneutral

plasma. As indicated earlier, one of the most ubiquitous properties

of nonneutral plasma initially subject to the diocotron instability

is the development of long-lived vortex structures13 during the

nonlinear evolution of the system. This has been observed experi-

mentally in annular electron layers,14' 15 intense propagating

annular electron beams,16 nonneutral plasma columns with17,18 and

without 19-21 central conductors, and in computer simulation

studies.18 The fact that long-lived coherent structures exist in

these systems for many rotation periods and thousands of cyclotron

periods suggests that the nonlinear equations (6) and (7) support

large-amplitude solutions which are stationary in the rotating

frame.

To investigate this possibility, we look for solutions to

Eqs.(6) and (7) which depend on e and t solely through the linear

combination, e - ort, where wr = const. is the angular rotation

velocity of the disturbance. In particular, we introduce the

coordinate transformation

O= e - Crt,

r' = r , (15)

t'= t

For stationary solutions n (r',9') and *(r',9') with /at' = 0, the
continuity and Poisson equations (6) and (7) can be expressed in the

rotating frame as
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c a an c 4+ an.
-r+ f--I) -e - e - , (16)

B0  0

and

---- r' + ,2 2= 4 men (17)
r' ar' ar' ',9

It is convenient to introduce the stream function *(r',9') defined

by

c 1
*(r, = - *(r',e') - - wrr2 . (18)

B0  2

Equations (16) and (17) then become

* 'ane 3* an
- = 0, (19)

ar' 39' 9e' ar'

1 a a 1 a2 4nec
-- r' - + -= - n -2 ' (20)
r' ar' ar' r' )' B 0

Note that introducing the term -wr r' 2/2 in the definition of the

stream function *(r',9') in Eq.(18) is equivalent to reducing the

density by a constant amount (B0 /
2 nec)wr in Poisson's equation (20).

The general stationary solution to the continuity equation (19)

in the rotating frame is

n (r',e') = n [*(r',e')I , (21)

where ne (*) is a (yet unspecified) function of 4. Substituting
Eq.(21) into Eq.(20) then gives

[1 a 1 32 4 nec
-- r' -- + - j = - n (4) - 2w . (22)
r' ar' ar' ' (,2) B

It is evident from Eq.(22) that there is considerable latitude in

determining stationary solutions that depend on both r' and 9' in

the rotating frame. Once the functional form of ne (*) is specified,
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then Eq.(22) is solved numerically or analytically, as appropriate,

for the stream function *(r',9) = c (r',O)/B 0 - rr' 2/2. The

boundary conditions consistent with zero tangential electric field

at the perfectly conducting walls in Fig. 1 are given by [see

Eq.(8)]

[---I *(rIe)] = a = 0 = [-- *(r',9')] = (23)

In addition, it is assumed that the inner and outer conductors are

maintained at a constant potential difference corresponding to

(r' = a,e) = 0 and *(r' = b,e) = V, or equivalently,

1 2
*(r' = a,e') = -- a

2
(24)

cV 1 2
*(r' = b,0') = - - b

B0 2

where V is the potential difference.

C. Example of Large-Amplitude Vortex Solutions

Depending on the choice of ne(), there is considerable latitude

in determining stationary solutions to Eq.(22) that depend on both

r' and e' in the rotating frame. In this section, we consider a

simple example which is analytically tractable and corresponds to a

large-amplitude vortex solution. In particular, it is assumed that

ne (*) is specified by the linear function

n (w) = ie (C0 + C 1 ) , (25)

where C0 and C1 are constants, and ne = const. is a measure of the

characteristic electron density in the interval a < r < b. Intro-

ducing the effective diocotron frequency ub = const. defined by

4n fi eceb= (26)
B
0

Poisson's equation (22) becomes
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al a 2 '-- '-- + -- 2= - 2w + I . (27)
r' ar' ar' r'2  2 Ab' o r (Cl*

The (linear) differential equation (27) can be solved exactly for

(r',0') subject to the boundary conditions in Eqs.(23) and (24).

We examine solutions to Eq.(27) of the form

*(r',e') = 40(r') + a,*,(r')cos(Xe') (28)

where k 0 0 is an integer and a. is a constant amplitude factor.
Substituting Eq.(28) into Eq.(27) then gives

-r + k2 *(r') = -CO 2 , (29)
r' ar' ar'

and

(18 2
r' - + k - -- ] (r') = 0 , (30)

r' ar' ar' r,2)*'

where k2 N -AC 1 > 0 is assumed. The solutions to Eqs.(29) and

(30) in the interval a < r < b are linear combinations of J0 (kr')

and N%(kr'), and J,(kr') and NZ(kr'), respectively. Here, JX(x) is

the Bessel function of the first kind of order Z, and N,(x) is the

Neumann function of order k. For present purposes, we also consider

the class of solutions in which the electron density is equal to
zero at the outer conductor, i.e., n e(r' = b,e') = R e[C0 +
C1*(r' = b,9')] = 0. Making use of *(r' = b,e') - cV/B0  w wrb2 /2

[Eq.(24)], this condition relates the constants C0 and C 1 -k
by

( cV 1 2

BO=-C -- wb2 . (31)
B 0 2

We solve Eqs.(29) and (30) for *0 (r') and * i(r') and substitute

into Eq.(28). Enforcing the boundary conditions in Eqs.(23) and

(24) then gives the desired solutions for the electrostatic

potential c(r',e')/B0 = *(r',e') + wrr' 2/2 and the electron density

10



ne(r',9') = ne [C0 + C1'P(r',9')]. In laboratory-frame variables

(r,e,t), some straightforward algebra gives

c cV (A) 2 2 4
B-(r, E,t) = r - r2 +
B0 B0 2 k

[ WV (br 2 2 1 O(kb)NO(kr) - NO(kb)JO(kr)- - - -b - a + ;
B 0 2 k) JO(kb)NO(ka) - NO(kb)JO(ka)]

(32)
2 or r N0 (ka)J0 (kr) - Jo(ka)No(kr) 3

k2 N0 (ka)Jo(kb) - JO(ka)NO(kb)j

+ a.4 Z(kr) - J,:ka) N,(kr) cos[W( - Wr t)
Nz ka)

and

(r,,t) [e-2- N 0(ka)JO(kr) - JO(ka)NO(kr)

( b N0 (ka)J0 (kb) - J0 (ka)NO(kb)J

k 2 [ cV ( b2 2 
+ ][J 0 (kb)NO(kr) - NO(kb)JO(kr)

k b Bo 2 k2)J[ J0 (kb)N0 (ka) - N0 (kb)J0 (ka)J

(33)

k2a. Jk(ka)
- e J (kr) - Np(kr) cost( - r t)]

('b N,(ka)I

Here, a. is the constant amplitude factor, Z - 1,2,3,--- is an

integer, and the parameter k is chosen to satisfy

J Z(kb)N,(ka) - J,(ka)N,(kb) = 0 . (34)

From Eqs.(32) and (34), it follows trivially that the electrostatic

potential *(r,e,t) satisfies the boundary conditions [flr = a = 0,

M*]r = b = 3 r - a = 0 , and [a /aE]r = b = 0, consistent

with Eqs.(23) and (24). In addition, from Eqs.(33) and (34), the

electron density is equal to zero at the outer conductor in Fig. 1,
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i.e., ne(r = b,e,t) = 0. On the other hand, evaluating Eq.(33) at
r = a gives the steady value ne(r = a,9,t) = ne (a), where

2
k cV W 2 2n (a) a ne- -- - - (b - a (35)
u4 L B0  2

Evidently, Eqs.(32) and (33) describe structured potential and
density profiles which rotate azimuthally about the z-axis in Fig. 1
with angular velocity wr = const. Note that the profiles are
stationary (independent of time) in the rotating frame. Further-
more, for specified integer k, the profiles described by Eqs.(32)
and (33) have azimuthal periodicity 2n/k in the rotating frame. In
particular, insofar as Eqs.(32) and (33) represent a coherent vortex
structure, k = 1 corresponds to one vortex, k = 2 corresponds to two
vortices, etc. As a further important point, for the solution in
Eq.(33) to be physically acceptable, it is required that the
electron density profile satisfy

ne(r,9,t) 0 (36)

in the entire region a < r < b and 0 < E < 2n between the conducting
cylinders in Fig. 1. This places restrictions on the allowed values
of the dimensionless parameters kb, wr/' and k2cV/cBo, and the

dimensionless amplitude k at/u of the oscillatory (9-dependent)

term in Eq.(33).

Figures 2-5 illustrate properties of the solutions for * and ne
in Eqs.(32) and (33) for disturbances with azimuthal mode number

x= 1 (Figs. 2 and 3) and 2 = 2 (Figs. 4 and 5). Because the

structures in Eqs.(32) and (33) rotate azimuthally about the z-axis

with angular velocity wr = const., the information in Figs. 2-5 is

displayed at time t = 0 without loss of generality.

12



r = b

Fig. 2. Plots of the equipotential contours *(r,9,t - 0)

= const. calculated from Eq.(32) for z = 1 and the system

parameters in Eq.(37). The arrows indicate the direction

of the circulating electron flow V = -(c/BO)Vx z

The choice of system parameters in Figs. 2 and 3 corresponds to

Z =1 and

a WA

-=0.3 , kb = 4.7058 r = 0.2

bb 
(37)

k2cV k2a
- = 2.2144 , - 4.4289

Here, kb = 4.7058 is the first zero of Eq.(34) for X = 1 and a/b =

0.3. Figure 2 shows plots of the equipotential contours,

*(r,e,t = 0) = const., calculated from Eqs.(32) and (37). From

Eqs.(3)-(5), the flow velocity V = -(c/B0 )V x z is tangential to

the contours * = const. Therefore, the local flow velocity

13



8.0

6.0

0

4.0

2.0 e 7r/2 (or 37r/2)

0=

1.0 1.583 2.167 2.750 3.333

r/a

Fig. 3. Plots versus r/a of the density profile

ne (r,E ,t = 0) calculated from Eq.(33) for A = 1 and values

of e corresponding to e = 0, e = n/2 (or e = 3n/2), and

E = n. The choice of system parameters is the same as in

Eq.(37) and Fig. 2.
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circulates in the direction indicated by the arrows in Fig. 2. Evi-

dently, the structure centered around 9 = n in Fig. 2 corresponds to
a large-amplitude vortex localized between r = a and r = b. The
corresponding radial dependence of the density profile ne (r,9,t = 0)
calculated from Eqs.(33) and (37) is illustrated in Fig. 3 for
e = 0, G = n/2 (or e = 3n/2), and e = n. It is evident from Fig. 3

that the density compression is large at the center of the vortex.
Note also from Eq.(33) that the profile for ne(r,9 - n/2, t = 0)
plotted in Fig. 3 is the same as the azimuthally averaged density

profile
2n

1
<n >(r,t = 0) e- d ne(r,et = 0)

2n
0

The choice of system parameters in Figs. 4 and 5 corresponds to
Z = 2 and

a
- = 0.3 , kb = 5.4702 , = 0.4,
b O(38)

k 2cV k 2a,
- = 5.9847 , 2.9923

Here, kb = 5.4702 is the first zero of Eq.(34) for k = 2 and
a/b = 0.3. Figure 4 shows plots of the equipotential contours,

(r,9,t = 0) = const., calculated from Eqs.(32) and (38). The

direction of the local flow velocity is indicated by the arrows in

Fig. 4. Evidently, for i = 2, there are two large-amplitude vor-
tices centered around 9 = n/2 and 9 = 3n/2. Moreover, the density

compression is large at the center of the vortices. This is evident

from Fig. 5 which shows the radial dependence of the density profile

ne (r,e,t = 0) calculated from Eqs.(33) and (38) for 8 = 0 (or e = n)

and E = n/2 (or 9 = 3n/2).

To summarize, Figs. 2-5 and the analysis in Secs. II.B and II.C

demonstrate that a simple cold-fluid guiding-center model of a low-

density nonneutral plasma supports large-amplitude vortex solutions

which are stationary in the rotating frame. What is most striking
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r b

r

Fig. 4. Plots of the equipotential contours *(r,9,t 0)

- const. calculated from Eq.(32) for X - 2 and the choice

of system parameters in Eq.(38). The arrows indicate the

direction of the circulating electron flow V = -(c/BV

xe(

-Z
is that the coherent structures described by Eqs.(32) and (33) are

very rich in detail for the case in which ne(*) is assumed to have a

simple linear dependence on * with n (*) = fe(C0 + Ci). Even more

structure would be present in the nonlinear case where a quadratic

term is included with n (w) = fe(C0 + CIp + C2*2). Finally, it

should be emphasized that the present analysis addresses only the

existence of coherent structures which are stationary in the

rotating frame. The question of accessibility of such solutions

from prescribed initial conditions ne (r,e,t = 0) is not addressed by

the present analysis, although the constants wr/", k2a,/ (, etc.,

occurring in Eqs.(32) and (33) can be related to the initial
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5.0

4.0

o 3.0
e = 7r/2 (or 3 -r/2)

2.0

1.0 -

e=o(or 7r)

0

1.0 1.583 2.167 2.750 3.333

r/a

Fig. 5. Plots versus r/a of the density profile

ne(r,9,t - 0) calculated from Eq.(33) for k - 2 and values

of 9 corresponding to e = 0 (or e = n), and 9 = n/2 (or

e = 3n/2). The choice of system parameters is the same as

in Eq.(38) and Fig. 4.

conditions by the global conservation constraints in Eqs.(10) and

(11). In addition, the stability of such large-amplitude structures

requires an analysis of the evolution of small-amplitude per.tur-

bations, Sne and & , about the solutions in Eqs.(32) and (33).
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III. COMPUTER SIMULATION OF THE NONLINEAR ELECTRODYNAMICS

OF RELATIVISTIC MAGNETRONS

In relativistic magnetrons,22-30 pulsed high-voltage diodes

(operating in the several hundred kV to MV range, say) are used to

generate microwaves at gigawatt power levels. Although magnetrons

are widely used as microwave sources, a fundamental understanding of

the underlying interaction physics is still being developed,3 1

particularly in the nonlinear regiime. Much of the theoretical

challenge in describing multiresonator magnetron operation arises

from the complexity introduced by the corrugated anode boundary 30

and the fact that the electrons emitted from the cathode interact

with the electromagnetic waves in the anode-cathode gap in a highly

nonlinear way. This is manifest through strong azimuthal bunching

of the electrons and the formation of a large-amplitude "spoke"

structure in the circulating electron density. In this regard,

computer simulation studies32-35 provide a particularly valuable

approach to analyze the interaction physics and nonlinear electro-

dynamics in magnetrons. In this section, we summarize recent

computer simulations35 of the multiresonator A6 magnetron configura-

tion of Palevsky and Bekefi26 using the two-dimensional (3/az = 0)

particle-in-cell code MAGIC.3 6

A. Simulation Model and A6 Magnetron Configuration

The MAGIC simulation code includes cylindrical effects, and

relativistic and electromagnetic effects in a fully self-consistent

manner. Unlike previous computer simulations,32-34 the magnetron

oscillations in the present studies3 5 are excited from noise, i.e.,

without preinjection of a finite-amplitude rf signal or preferential

excitation of 2n-mode or n-mode oscillations. In addition, the

present simulations3 5 are carried out in cylindrical rather than

planar32,33 magnetron geometry. Figure 6 shows the cross section of

the A6 magnetron diode.26 The cold, field-emission, graphite

cathode is located at radius a = 1.58 cm. The inside radius of the

anode block is b = 2.11 cm, and six vane-type resonators with outer

radius d = 4.11 cm are used, with angle * = 200 subtended by the

resonators on axis. The axial magnetic field Bf z prior to

18



d

b r
//q

//

Fig. 6. Schematic of the A6 magnetron used in the com-

puter simulations. The rf power is partially absorbed by

the dispersive window (dashed line) located at r - d =

4.11 cm in the open resonator. Here, a = 1.58 cm,

b = 2.11 cm, d - 4.11 cm, and W = 20*.

formation of the circulating electron layer (the so-called "fill"

magnetic field) ranges from 4-10 kG in typical operation.26 The

axial length of the anode block is L = 7.2 cm, and the operating

voltage is 300-400 kV. The annular interaction space between r = a

and r - b together with the periodically-spaced vanes can be viewed

as a coaxial microwave resonator. For transverse electric (TE)

modes with SE perpendicular to B fz and 6B parallel to B f z, the

vacuum electric field pattern is such that SE is in phase in

adjacent resonators for the 2n mode, whereas SE is out of phase in

adjacent resonators for the n mode.

In circumstances where the magnetically insulated electron flow

is described by an ideal Brillouin flow model,22 the cylindrical

19

DISPERSIVE
WINDOW



expressions for the Hull cut-off voltage VH and the Buneman-Hartree

threshold voltage VBH can be expressed relativistically as31

22
H H + 4 1 , (39)

m c m2c bee

and

eVBH eBf b2 (- a2  1/2

e2j - [- (1- ]. (40)
m ec m ec 2

Here, p c is the phase velocity of the electromagnetic wave excited

in the interaction region. For steady Brillouin flow in a cylin-

drical diode with specified fill field Bf, the inequality V < VH is
required to assure magnetic insulation of the azimuthal flow from

contact with the anode at r = b, whereas V > VBH is required for
interaction of the outermost electrons with the electromagnetic wave

field.

In the simulations, Maxwell's equations and the particle orbit

equations are solved relativistically and electromagnetically, using

(typically) more than 3000 macroparticles and a nonuniform, two-

dimensional grid consisting of approximately 3000 cells. When a

voltage VD(t) is applied across the diode shown in Fig. 6, the elec-

trons are emitted from the cathode through a space-charge-limited

emission process in which the instantaneous electric field normal to

the cathode surface vanishes. The radial momenta of the emitted

electrons are randomly distributed from 0 to 0.02 m ec. On the other

hand, electrons are absorbed by the anode or cathode whenever they

strike the surface. The simulations are carried out with one open

resonator, which is modeled by a dispersive window placed along the

dashed line in Fig. 6 at r = d = 4.11 cm. At the window, the

boundary condition is such that most of the electromagnetic wave

energy is absorbed, while a small fraction of the wave energy is

reflected back into the cavity. Such a window yields a finite Q

factor for the system. The rf power output is determined from the

net flow of electromagnetic energy expressed as an area-integral of

the Poynting flux over the window surface shown in Fig. 6.
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A quasi-static model is used.in the simulations to describe the

high-voltage pulse applied to the diode. In such a model, the diode

voltage is given by VD(t) = Z(t)Vo(t)/[Zo + Z(t)], where Vo(t) is
the voltage pulse provided by the power supply, Z0 = const. is the

impedance of the power supply, and Z(t) is the magnetron impedance.

In the simulations, the voltage pulse V0 (t) is assumed to have the

form

0 ,t < 0,

V0(t) = (t/t0m , 0 < t < to ' (41)

Vm , t > to '

where t0 and Vm are the rise time and maximum value of the voltage

pulse, respectively. The rise time assumed in the simulations is

t0 = 4.0 ns, corresponding to the experimental value.26 Although

the applied high-voltage pulse in the simulations is described by

Eq.(41), it should be emphasized that all extraordinary-mode rf

excitations (6B = 6B zz and SE = SEr r + SE, .) are treated fully

electromagnetically.

B. Simulation Results

Typical numerical results are presented in Figs. 7-10 for the

case of an ideal power supply where Z0 = 0 and VD(t) = Vo(t).
Figure 7(a) shows the time history of the integrated rf field

profile

Ve(t) = d9 r8E (r. ,,t) (42)

P1

for the choice of system parameters Bf = 7.2 kG, Vm = 350 kV and t0
= 4.0 ns. In Fig. 7(b), the Fourier transform of the signal in Fig.

7(a) is plotted versus frequency f. Here, the integration path

corresponds to the dotted line in Fig. 6 from P1 to P2 at r = r =

3.7 cm. In Fig. 7(a), the nonlinear saturation of the magnetron

oscillations occurs at t = 10 ns, where the ratio of the saturated

amplitude V and the applied diode voltage VD = m is V /VD = 0.85.
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Fig. 7. Shown in Fig. 7(a) is the time history of the
P2

integrated rf field profile Ve(t) = I de rx SE(r ,',t)
P1

obtained in the simulations at radius r = r = 3.7 cm in

the open resonator for the choice of system parameters B =
7.2 kG, Vm = 350 kV, t0 = 4.0 ns, and Z = 0. Figure 7(b)

shows the magnitude of the Fourier transform, IVe(f) , of

the signal in Fig. 7(a). The two distinct peaks at f = 2.0

GHz and f = 4.0 GHz correspond to n-mode (. = 3) and

2n-mode (2 = 6) oscillations, respectively.
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In Fig. 7(b), the two distinct peaks at the frequencies f = 2.0 GHz

and f = 4.0 GHz correspond to n-mode and 2n-mode oscillations,

respectively. The 2n-mode oscillation frequency f = 4.0 GHz is 14%

lower than the frequency f = 4.55 GHz observed in the experiment, 2 6

which may be due to the absence of finite-axial-length effects in

the simulations (where a/az = 0 is assumed). Although both the

n-mode and 2n-mode excitations have nearly the same wave amplitudes

in Fig. 7(b), the (higher frequency) 2n mode delivers more rf power

than the n mode.

By evaluating the area-integral of the outward Poynting flux

(c/4n)6E8 &Bz over the surface of the dispersive window at r = d

= 4.11 cm in Fig. 6, the peak rf power output in the simulations is

calculated for various values of the applied magnetic field Bf.
The dependence of the normalized rf power on magnetic field is shown

in Fig. 8. Here, the dots correspond to the experimental values,2 6

and the triangles are obtained from the simulations with ZO = 0. In

Fig. 8, the normalization is chosen such that the maximum values of

the rf power in both the simulations and the experiment are equal to

unity. The actual value of the maximum rf output per unit axial

length in the simulations is 4.3 GW/m. For the A6 magnetron, with

axial length L = 7.2 cm, this corresponds to P = 0.3 GW, which is

somewhat less than the maximum rf power P = 0.45 GW measured in the

experiment.26 (The values of power quoted here are rms values.)

Apart from a constant scale factor, it is evident from Fig. 8 that

the simulations are in excellent agreement with the experimental

results. The difference in scale factor may be due to the fact that

a larger fraction of the rf power in the simulations is reflected

back into the cavity, and the effective 0-value in the simulations

(0 - 100) is greater than in the experiment (0 ~ 20-40). As Bf is

decreased below 6 kG, crossing the Hull cut-off curve at a diode

voltage corresponding to VD = 350 kV, it is found that the 5n/3-mode

(i = 5) becomes the dominant rf excitation in the simulations.
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Fig. 8. Plots of the normalized peak rf power versus the

applied magnetic field Bf. The dots correspond'to the

experimental results [A. Palevsky and G. Bekefi, Phys.

Fluids 22, 986 (1979)], and the triangles correspond to

the simulation results for Vm = 350 kV, t0 = 4.0 ns, and

Z = 0. The maximum rf power is 0.45 GW per open port in

the experiment, and 0.3 GW in the simulations.

Figure 9 shows radial plots of the charge density,

2n

e<ne>(r,t) = -J ene(r,,t)d9 ,
2n

0

(43)

averaged over the azimuthal angle 9, at several instants of time for

the same values of system parameters as in Fig. 7. In Fig. 9, the

outer radius of the electron layer [r = rb t).designated by the
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Fig. 9. Plots of the azimuthally averaged charge density

e<ne>(r,t) versus radial distance r obtained in the simu-

lations at times t . 2.0, 3.0, 4.0 ns for system parameters

the same as in Fig. 7. Here, the arrows designate the

location of the outer envelope (r = rb) of the electron

layer calculated from a simple Brillouin flow model.

arrows, is calculated from a simple Brillouin flow model22 for Bf =
7.2 kG and diode voltages VD(t) - 0.5 Vm, 0.75 Vm, 1.0 Vm, corre-

sponding to t = 2.0, 3.0, 4.0 ns. It is clear from Fig. 9 that a

substantial fraction of the electrons occupy the region between

r = rb and the anode (r = b). The existence of a long tail in the

electron density profile indicates that the electron flow differs

significantly from the ideal Brillouin flow model. For the A6

magnetron operating at Vm = 350 kV, cylindrical and relativistic
effects are relatively mild. For example, at t = t0 = 4.0 ns, the
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layer aspect ratio is A = a/(rb - a) = 1.15. We define the local

self-field parameter s (r) by

(A) (r)/ye(r)
s (r) = 2 2  ' (44)

where w (r) = e<B >/m c is the nonrelativistic cyclotron frequency,
2 ce 2 Z e

Wpe(r) - 4n<n >e /m is the nonrelativistic plasma frequency-

squared, and ye(r) = (1 - V 2/c2-1/2 is the relativistic mass
ee

factor of an electron fluid element. Under ideal Brillouin flow

conditions, 22 the self-field parameter satisfies se = 1 (in the
planar approximation). In the simulations, however, it is found

that se (r) decreases considerably as r increases from r = a to
r = rb and beyond. For example, at t = t0 = 4.0 ns in Fig. 9, the

self-field parameter decreases from se(r = a) = 1 at the cathode, to

se (r = rb) = 0.5 at r = rb'
Although the azimuthal bunching of the electrons is relatively

small for times up to 4 ns, by t = 6 ns the system begins to enter a

nonlinear regime characterized by large-amplitude spoke formation.

Highly developed spokes are evident in Fig. 10(b) which shows

density contour plots at t = 8 ns for the choice of system param-

eters Bf = 7.2 kG, Vm = 350 kV and t0 = 4 ns (similar to the condi-

tions in Fig. 7, and the maximum power simulation point in Fig. 8).

As the system evolves, the spokes rotate as coherent nonlinear

structures in the azimuthal direction for hundreds of electron

cyclotron periods. In addition, by t = 7 ns, there is current flow

from the cathode to the anode. At saturation, which occurs at t =
10 ns, the time-averaged diode current per unit axial length is ID
100 kA/m, and the amplitude of the integrated rf field profile
b
fdrSEr (r,O,t) is comparable with the diode voltage VD = Vm = 350 kV.
a

To summarize, with regard to the dependence of rf power on mag-

netic field, the simulation results are in excellent agreement with

experiment (within a constant scale factor). Also, in terms of rf

power output, the simulations confirm that the A6 magnetron oscil-

lates preferentially in the 2n mode. In the preoscillation regime,

it is found that the electron flow differs substantially from
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Fig. 10. Density contour plots for n (r,e,t) obtained in

the simulations at (a) t 3.0 ns and (b) t - 8.0 ns for

the same system parameters as in Fig. 7.

Brillouin flow conditions. In the nonlinear regime, the saturation

is dominated by the formation of a large-amplitude spoke structure

in the circulating electron density. The simulations also show that

the magnetron performance and rf power generation are degraded when

the impedance Z0 of the external power supply is increased (in

agreement with experiment) from the ideal value Z= 0. As a

general conclusion, based on the results presented here, it is

expected that the MAGIC simulation code can be used as an effective

tool for developing a fundamental understanding of the large-

amplitude spoke dynamics and saturation in magnetrons, as well as

for experimental magnetron design.
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