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Abstract

A theoretical and experimental study of the nonlinear performance of a free electron laser

(FEL) amplifier operating in the collective (Raman) regime is reported. The FEL generates

up to ~ 100KW of RF power at a frequency of 9.3GHz and an efficiency of - 10%. Power

saturation, efficiency, and synchrotron oscillations are studied as a function of RF input

power, electron beam energy, current, wiggler field amplitude, and axial distance within

the helical wiggler. The influences of the nonlinear electron motion in the ponderomotive

potential and space charge waves are studied by measurements of the dependence of gain

and efficiency on the initial radiation intensity. Excellent agreement with a nonlinear theory

that takes cognizanse of electron trapping in the combined ponderomotive and space charge

potential well is obtained.
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I. Introduction

Free electron lasers (FELs) are currently under investigation because of their remarkable

properties, which include their high efficiencies and output powers, their potential as coherent

short wavelength sources, and their inherent frequency tunability. Subsequent to the original

envisioning1' 2 of the FEL and the first proof-of-principle experiments,' detailed comparisons

of experiment and theory have been made in the linear" and nonlinear regimes.6 ,7

In this paper we study the non-linear behavior of a microwave FEL. Previously, the small

signal linear gain behavior of this device was investigated,' and is now well understood. Fur-

ther investigations found good agreement between numerical simulation and measurements

of the nonlinear amplitude and phase of the RF wave.' Here we examine the influence of

RF input power on the saturation and detuning characteristics of the laser, and examine the

power as a function of the beam current and the wiggler field amplitude and length. The

physics of our collective FEL is well described by electron trapping in the potential formed

by the combined action of the ponderomotive and self-consistent space charge forces.

The major differences between the microwave regime FEL theory studied here and the

standard optical (Compton) regime FEL theory3 10 are corrections for the excitation of a

collective space charge wave on a finite radius beam propagating in a waveguide, the trans-

verse structure of the waveguide mode,"1 1 1 2 three-dimensional wiggler fields, the presence of

an axial guide magnetic field, and the relatively low velocity (v/c - 0.6) of the electron

beam. Three-dimensional effects are included by using appropriately calculated coupling
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coefficients as input parameters and solving transcendental expressions for the transverse

electron motion." These extended one dimensional model input parameters are found an-

alytically through the evaluation of the overlap between the waveguide mode and electron

beam, and the evaluation of space charge reduction factors. The FEL equations are solved

using a numerical simulation that tracks macro-particles in a single ponderomotive wave-

length. The simulation is itself one-dimensional, and propagates only the TEII waveguide

mode. There are no adjustable parameters. Parts of this paper expand on previous compar-

isons between experiment and theory reported earlier,' and parts report new studies of the

influence of input wave power on the FEL efficiency and gain.

Section 2 derives our nonlinear model and numerical simulation. Section 3 discusses

the space charge wave, which is particularly important in our parameter regime. Section 4

contains the linearization of the model and comparison with previous linear theories. Section

5 compares the experimental and theoretical results, and reports the first measurements of

the shift in optimum detuning and changes in efficiency scaling which result from increasing

the RF input power.
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II. Derivation of the Nonlinear Model

In this section we derive the nonlinear model of the FEL for the parameter regime of our

microwave FEL experiment. The model couples single particle orbits in combined helical

and axial magnetic fields with the the slowly varying amplitude and phase of the TEI1 mode

in a circular waveguide. The nonlinear equations of motion are one dimensional, but allow

for the effects of transverse field variations through the evaluation of waveguide mode-beam

overlap integrals and space charge reduction factors. The influence of the three dimensional

wiggler fields on the electron orbits is analyzed by solving the well-known transcendental

equations relating the energy y and the normalized perpendicular and parallel velocities O3j

and 01 for an electron on an ideal orbit. We do not assume that -y >> 1.

A. Particle Equations

Electrons orbit in the combined axial magnetic field

.o = Bo(1)

and helically polarized wiggler field given by

B.(r, 0, z) = 2BA sin(kz - O)i + I(A) cos(k\z -
A

(2)

where A = kwr, k. = 2r/l is the wiggler wavenumber, I, is the modified Bessel function,

' denotes derivative with respect to the total argument, and we use cylindrical coordinates
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(r, 0, z). Neglecting the influence of the radiation field, and assuming an ideal wiggler en-

trance, the electron orbits are described by"

L =,3.L (sin(k .z - O)k- - cos(k~z - 4)),(3)

where the normalized perpendicular velocity R_ is found from the simultaneous solution of

the equations

P-L 2SI.ck,.Ii(A)/A(4

01, c~jIk.-y - 1o - 2f.ck.I(A)

and

1
Oil =2 5 (5)

In Eq. 4, the velocities O_ and 81 are normalized by the speed of light c, f. Go are

the wiggler and axial cyclotron frequencies, y = 1 + eV/moc 2 is the beam energy, and

A = 3./Og = ikr is the normalized size of the orbit, with A = -kr if flo > yk,O1jc and

A = +k,,r, if 1o < yk,3j1c. We assume that electrons remain on these orbits during the FEL

interaction. Thus we neglect the detailed effects of the precession due to off axis injection"

and emittance; this is a good approximation for the high quality electron beam used in this

experiment. In addition, the direct influence of the radiation field on the perpendicular

motion is very small for the low powers at which this FEL operates. Thus the radiation field

influences the particle motion only through the energy relation dy/dt ~-6 -9; consequently,

the perpendicular and parallel energies evolve so that the electron stays on the orbit given

by the Eqs. 4- 5.

With the time t replaced by the axial position z as the independent variable, the electron
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(charge -e, mass mo) energy evolves according to

d- = A( J sin(k,,z - O(z)) cos(O, + (z))
dz mo2 311 k.L a

+J'(a) cos(kz - 4(z)) sin(O, + 4(z))) - e E., (6)
moc2

where 6. = k.z + V(z) - wt(z), the amplified wave frequency, axial wavenumber and perpen-

dicular wave number are given by w, k,., and k_, respectively, ko = w/c is the normalized

frequency, E. is the axial component of the electric field due to the beam bunching, a = kir,

the impediance of free space is Zo, and J is a Bessel function. In deriving Eq. 6, the trans-

verse components of the waveguide mode are taken from Table 1. Furthermore, the amplified

wave amplitude, A(z), and phase, p(z), are assumed to be slowly varying on the spatial scale

A. = 2irc/w. The radial space charge field also contributes to the electron motion,'but does

not generate a large slowly varying term in the energy equation. As described below, the

expression for E. includes the influence of the conducting waveguide wall through an appro-

priately calculated coupling parameter.

For our experiment, the electron beam is small compared to the radial gradients in the

transverse radiation field, so that a < 1 ( typically, a - .36). With the simplification that

J, (a) =: a/2, the energy equation reduces to

dy e O13 A(z)ZokAo sin e (7)
dz moc3 1  2kx Moc2

where , is the slowly varying phase of the particle in the ponderomotive wave. It is convenient

to introduce the dimensionless field amplitude

a, = (8)moc2/e
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and the length scale

C koP 1
2

C2 = (9)
\ 27rk.r2(p'u2 _ 1)(9)P'u)

where r, is the waveguide radius, p', is the first zero of Jj(z), and P is the EM wave power.

With these definitions, the electron energy and phase evolve according to

d~y _ 1 ed--= -C-a, sin- ' E. , (10)
dz oil mOc 2

and

= k,+ kz- W + . (11)
dz c~ll dz

B. Field Equations

The Maxwell equation

2 8
=-o (12)

for the electric field can be simplified by assuming that the electric field is composed of a

vacuum waveguide mode with a slowly varying amplitude and phase, as shown in Table 1,

and a space charge field E,(4',r, z), also with a slow z dependence. The divergence free

electric field of the TEI1 mode satisfies

-. W2 ZOk J1(kr) - c dA
-72 2k -- E -= 2kL sin(O, - 4)i+ J',s~cs6 - 4 zC2  kg kir dzl6  ~k ~~ ~

Zok0 J1 (kjr) d-2k.A- I cos(O, - O)r + J'(k.r) sin(6, - d
k.L k.Lr dz

=-p .(13)



TE 1 Waveguide Mode Field Components

E,- A(z)(koZo/kir)Ji(kir) cos(O, + 4)

-A(z)(koZo/k)J(k-r)sin(, + )

E. 0

H,. A(z)(k./k±)J'(k.r)sin(G+ )

H6 A(z)(k./kIr)JI(ksr) cos(, + )

H -A(z)Ji(kir) cos(9, +)

Z 1 = koZo/k.

P'1 = 1.841 = kLr,

Power A- (Z)Z1 ( '( p /2k4

Table 1: TEI1 waveguide mode.

9
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Note that the vacuum relation w2 /c 2 = k2 = k2 + k2 has been used.

The current can be expressed as a function of z,

7= -e t;(z)6(fi - f(z))6(t - ti(z))/311i(z), (14)
i

where i;j(z) is the transverse position of a particle, the index i is a particle label, and O.

and O1 are found from Eq. 4 and Eq. 5. Multiplication of Eq. 13 by

( -J (k r) sin(6. - )i + J{(k r) cos(6. - ) ,
kLr

using Eq. 14, and integrating over the waveguide cross section yields

kok.ZO 2 dA W/10 ( n (15)

where I is the current. The average of a function F of the particle variables (1-, 011, -y, 0) is

defined as
Np

,,,)= (#1 , , y ,#), (16)
P i=1

where N, is the number of particles in one ponderomotive wavelength.

In terms of the normalized variables,

-a r1)- sin (17)
dz IA 011

where C is defined in Eq. 9, and IA = 17kA is the Alfen current. The phase evolution is

found through multiplication of Eq. 13 by the factor

J,(kjr)cos(G, - k)i-+ Jj(kir) sin(G, - 0)
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and integration over the waveguide cross section, to be

dw 2,rCI OLd-7 - cosi '. (18)
dz -Isa, \pI

The space charge wave field, which results from the beam bunching at the ponderomotive

wavelength, is assumed to be of the form

. = 5E,,(xi,z)cosn + f,(xi,z)sinnVk, (19)

where the axial variation of E,,, and E, is slow compared to the radiation wavelength. The

z component of the space charge wave then evolves, from Eq. 12 as

- E + tO eo- . (20)4; E e az at

By expanding the current and density in a series as in Eq. 19, using the continuity equation

and equating the Fourier components on both sides of Eq. 20, it can be shown that

1 - f=2 V E =- " (21)
n2(k. + k,)2 "L) " eon(k. +k)'

2

1 + k _2 Ex = ( (22)
n2(k. + k,2 "' eon(k. + k,,)'

where n is the harmonic number, p, and p,, are the Fourier components of the charge density

= 1/ 1 - VP2/c 2 , and v, = w/(k.+k,,) is the phase velocity of the ponderomotive wave.

For simplicity, the normalized electric field which enters the simulation is not found by

solving the above equations for E_. Instead, as in earlier work,4 '6 a space charge reduction

factor, pi, is utilized. This factor, which is ~ 0.5 for the parameters of our experiment,

can be found in the literature1" (with corrections for -y > 1) for the case of an unbunched
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electron beam with a uniform density profile. Recently, several careful treatments of the

space-charge wave in the FEL have been made."- 19 All of these treatments indicate that

the model presented here is quite satisfactory for the parameter regime of this experiment.

The electric field used in the one dimensional simulation presented here is then

E. 2p2wp, Nh (sin n1/) cos n1/ - (cos n1/) sin n (23)
moc2/e C2(+k ) E

where n is the harmonic number, r. is the radius of the beam, w2 e2no/eomo, and

no = I/ecirr2011o. For the parameters of interest here, the factor p, varies only slightly for

differing harmonics n. In general, p, cannot be removed from the summation and will be a

function of n. For experiments with strong space charge forces, such as the one herein, the

use of only the first harmonic will lead to erroneous results in the nonlinear regime.

In summary, Eqs. 4, 5, 10, 11, 17, 18, and 23 constitute the model of the FEL which

is implemented numerically in this study of nonlinear FEL phenomena. The simulation

assumes that as the electrons exchange energy with the wave, they do not deviate from the

ideal wiggler orbits given by the solution to Eqs. 4 and 5. We ignore the influence of the

transverse gradients of both the radiation field and the space charge wave on the amplitude

of the perpendicular motion. Note that since A = k..r. < 1, 11(A) = A/2, the right hand

side of Eq. 4 is only a weak function of A unless the electron is close to resonance. As the

power approaches saturation, the fundamental (n = 1) and the harmonics (n > 1) of the

space charge wave generate rather complicated particle orbits.
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III. Space Charge Forces in the Collective FEL

Examination of the coupled FEL equations shows that the particle bunching in the pon-

deromotive beat wave between the wiggler and radiation fields will result in space charge

forces which, for the low energy beam of this experiment, can be comparable in strength

to the ponderomotive force. This is apparent in the Fig. 1, where the particle phase space

(y, ) and force (d-y/dz, ,O) are plotted at four axial positions in the 2m wiggler. Initially, in

Fig. la-b, the particles are unbunched and the force is nearly zero; then, for small bunching,

Fig. 1c-d, the force is nearly sinusoidal. The power saturates near z = 1m, and subsequently

the force has large harmonic content (Fig. le-f). The phase space portraits are seen to be

substantially distorted from the usual FEL pendulum motion, where after sturation, tight

bunches would form inside clearly defined seperatix. The power and phase evolution for

these runs are shown in Fig. 2a-b.

The strong influence of the space charge forces on the particle motion is illustrated in

Fig. 3a-b. Here the electrons are injected at the resonant energy, where the Raman regime

FEL gain is small. The input power is sufficient to produce at least one synchrotron oscilla-

tion during the interaction. At high current, the space charge is strong enough to debunch

the beam and the particles oscillate only slightly (Fig. 3a) , while at low current, the particles

move on pendulum-like orbits (Fig. 3b). Approximating the space charge wave with only

one harmonic yields results different from the simulation, (which includes four harmonics,)

by a few percent before saturation, and by 10-15 percent after saturation. Efficiency en-
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hancement schemes are also rendered more difficult by the space charge debunching. For

the low wiggler fields of this experiment, the product -yO << 1, and efficiency enhancement

must rely on a wiggler wavelength downtaper. Numerous numerical schemes were examined

and, for our typical system parameters, detrapping during the taper severely limited the

efficiency. Thus our studies indicate that FEL operating deep in the Raman regime will be

difficult to taper.

IV. Linearized Equations

The FEL interaction can be described by particle bunching in the ponderomotive wave

coupled to concomitant field growth driven by the synchronous component of the current

density. The bunching arises primarily from the phase change due to an energy shift. Lin-

earization of the single particle model with space charge has been performed for planar and

helical wigglers 20 and for circular wiggler,21 but not for the helical wiggler and guide field

case discussed here. We will follow the formalism of these references, which may be consulted

for further details . We will find that the linearization of our model, under the (good) ap-

proximation that the dominant term in the field equation is the phase bunching which arise

from energy changes, results in a cubic dispersion relation found previously22 using kinetic

theory.

For simplicity, the FEL equations may be written in the complex form as

d-y _iC'3L ______ e (e-'~
- -. ae + C.C., (24)

dz 2 C(k +k-) n n
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dO = kw+kz-
dz Oi

da i27rCI P _i
dz IA ( '11

where the complex field a = a,e"5. The linearization proceeds by defining

AK = k,+ k. - - ,
C01=0

8 = 80 + AKz+ 60,

(25)

(26)

(27)

(28)

(29)

(30)

(31)

-y = yo +&Y,

p11 = 00+ 016,

2irCI
IT- = IA

The injected beam is initially unbunched:

(ei(So+AKz) 0 (32)

The dispersion relation is easily found by assuming exponential forms for the perturba-

tions,

&y = 3iei(So+AKz+rz) + c

66 = i(o+AKz + c.c.

(33)

(34)

(35)a = seirz

Combining the equations for &y and 60 and averaging over the particle distribution yields an

expression for the phase bunching

(-isq) = - (WCALO 80110/(AK + r)2), (36)
xII \ 20,10 01 /
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where

X = 1 - W/(AK + r)2. (37)
k. + k.)2 \C2 a-y

Note that, in the absence of the radiation field, Eq. 36 yields X1 = 0, which becomes, with

w/(k. + ku) ::: c1o

S0 1 . (38)
0i1o(AK + r)2C2 -y

Solving Eq. 38 for r yields the longitudinal beam plasma frequency (along with the arbitrary

shift AK).

Employing Eq. 36 in the linearized equations for 3f, 66, and d results in the dispersion

relation

2rCI /'#o wCO6-0 o3 /(AK + r)2

IAr \ p 1o 2q131 a- /

+ I WCiO-L /3<1(AK + r)2 (3w ao80o(AK + r)2)) = 1.(39)
(k. + k.)c2xI ( 2c3' 597 )(11 \ 2 O c qn61y

In deriving Eq. 39, We only included the 66 term in the linearized a equation. There is also

a 6-v term in the a equation which, if included, would slightly modify Eq. 39. For a cold,

tenuous beam, the factor AK is equal for each electron, and only lowest order in W2 need

be retained after multiplication of Eq. 39 by x1. Then a simplified cubic dispersion relation

can be derived:

S+ 2AK (AK _ _ w C2/ 31 = + 0. (40)
CO 0 (k.±+ kC)C2) 1

The factor 8 can be expressed, using Eqs. 4 and 5 and restricting to the limit A << 1,
a8f
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as

20110 X(41)
07 70110 ij 1

where -yf = 1/(1 -32) and

X = 2a .(42)
(c3 11k,, - 1o)l

With this expression for 8 the cubic dispersion relation Eq. 40 is identical to the cubic
8-v

dispersion relation previously obtained by previous authors22 and the space charge wave may

be unstable in a suitable parameter regime. 23
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V. Comparisons with Experiment

The FEL experiment has been described in detail elsewhere,5'6 and the reader is refered

to these references for a detailed description of the apparatus. Free electron laser physics is

studied here by measuring the output RF power with varying beam energy, beam current,

wiggler field, input RF power level and interaction length. The wiggler has a 3.3cm period

with an adiabatic entrance over six periods. The length of the interaction region is adjusted

by an axially moveable "kicker" magnet that deflects the beam into the waveguide wall.

The input power source is a 9.3GHz high power (- 30KW) short pulse magnetron, which

saturates the FEL at approximately 1m. The axial location of saturation can be shifted by

changing the wiggler field, as shown in Fig. 4, where the power is plotted as a function of

axial position for three wiggler field amplitudes. The general behaviour of the experiment is

reproduced by the theory, but at the stronger wiggler fields the experimental measurements

are larger by - 15% than are predicted.

The output powers shown in Fig. 4 are for the fixed beam voltage V that gives the

greatest gain at the beginning of the wiggler (z "' 60cm). We find that the voltage that

yields the maximum output power increases steadily for interaction lengths longer than the

saturation length. At the peak gain voltage, the FEL saturates at approximately z :s 115cm,

after which a synchrotron oscillation causes the output power to decrease. As shown by the

simulations of Fig. 5, at higher beam voltages the FEL interaction proceeds more slowly,

and saturation is delayed past z = 115cm. Thus, at large z the output power is maximized
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at higher beam voltages.

This phenomenon is shown experimentally in Figs. 6 and 7. In Fig. 6, we plot the output

power as a function of beam voltage for three axial positions. In both the data and in

the simulation the voltage corresponding to peak gain increases - 2% as z increases from

81cm to 155cm. Figure 7 shows the voltage for peak gain as a function of interaction length

between z = 81cm and z = 155cm.

The peak gain voltage depends on axial position past saturation. In addition, at high

power, nonlinear phenomena exist well before saturation (z ~" 60cm). These effects cause the

voltage that gives the maximum output power to differ from both the predictions of linear

theory and from measurements at small input signals. For example, at 30KW the computed

beam energy that maximizes the unsaturated gain is approximately 2% higher than is found

with small signal linear theory. This effect is explained schematically in Fig. 8. The electron

beam energy corresponding to peak linear gain, -,, is, in the Raman regime, upshifted from

the resonant energy, 7,., by a factor proportional to the beam plasma frequency. When

the input power is small, the ponderomotive potential bucket height is also small compared

to -y, - -y,.. In this case the input beam energy corresponding to maximum unsaturated

output power is just the -f from linear theory. However, when the input power is increased

sufficiently, the trapping bucket approaches the linear optimized beam energy -y. When this

occurs the output power can be increased by increasing the beam energy above the energy

-, predicted by linear theory.

This effect is observed experimentally and is reproduced in the simulations. The dashed



20

line in Fig. 9 is the computed energy for peak gain as a function of the input power. For

low power, the peak gain energy is equal to the linear regime peak gain energy. However,

when the power is sufficiently large, (the bucket height is of order -t, - ,.), the input energy

corresponding to peak gain increases.

Efficiency measurements constitute another test of nonlinear FEL theory. We find that

the well known"3 theoretical collective regime efficiency scaling with current, 7 oc P/2 is

not observed for high input power and low beam current. Linear theory predicts that the

difference -f - -y,. also scales as 1/2. As indicated in Fig. 8 , when the beam current is

reduced, the -y of linear theory moves inside the ponderomotive bucket at z = 0, and then

the peak gain energy is no longer -y,. Under these conditions experiments and simulations

show that more power can be extracted by increasing the initial beam energy. The efficiency

is then only a weak function of the current. In Fig. 10 we plot the numerically predicted

efficiency, on log-log scales, for two input powers, as a function of the beam current. The

low input power line, marked with the dots, is linear. The high input power plot, marked by

triangles, is linear at high current, but flattens at low current. The experimentally observed

efficiency,6 marked by the crosses, is taken at high power only. As expected, the efficiency

is roughly flat over the measured beam current range.

VI. Conclusions

We find that our measurements of the spatial RF growth, saturation, and subsequent de-

cay in our collective (Raman) free electron laser amplifier are well explained by a nonlinear
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theory which takes into account electron trapping in the potential wells formed by the com-

bined action of the ponderomotive and beam space charge forces. Scaling of the power and

efficiency with electron beam current and voltage are likewise in agreement with theoretical

predictions. Many of the results presented in this paper are for input powers comparable

to the output power; however despite appearances, this is not an artificial regime. It is in

fact precisely the operating regime of a low gain, multi-pass oscillator.. The various energy

shifts and scaling law changes demonstrated in this paper must be carefully considered when

optimizing the behavior of such an oscillator.
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Figures

FIG. 1. Particle phase space (-y, #i) (a,c,e,g) and force (dy/dz, V;) (b,d,fh) at z = 0 (a,b),

z = 60cm (c,d), z = 120cm (e,f), and z = 180cm (g,h).

FIG. 2. The RF power (a) and RF phase (b) vs. interaction length z for the simulation

shown in Fig. 1.

FIG. 3. Particle phase space (dy,V;) at the end of the two meter FEL with injection at the

ponderomotive velocity (zero detuning). Here B. = 188G, B11 = 1510G, Pi = 4KW,

and z = 6m. In 3a, I = 3.3A. In 3b, I = 0.01A.

FIG. 4. Power as a function of interaction length z for three values of wiggler fields. Circles

(B. = 243G), crosses (B. = 173G), and squares (B. = 115G) are from the experiment.

The lines are from simulation. Here B11 = 1450G, I = 3.5A, P. = 32KW, and f =

9.3GHz.

FIG. 5. Simulation of RF output power vs. interaction length z for three values of beam

energy.

FIG. 6. Power vs. beam energy y for three values of the interaction length z. The solid

lines are from the experiment. The dashed lines are from simulation. Here B, = 187G,

B11 = 1470G, I = 4.5A, Pm, = 32KW and f = 9.3GHz.

FIG. 7. Voltage (-y) for peak gain vs. interaction length z. The dots are from the experiment

and the line is from simulations. Here B. = 187G, B11 = 1470G, I = 4.5A, P. = 16KW,



25

and f = 9.3GHz.

FIG. 8. Schematic of the ponderomotive bucket.

FIG. 9. Normalized voltage (-y) for peak gain vs. input power P,.. Here z = 115cm, B. =

188G, B11 = 1500G, I = 3.3A, and f = 9.3GHz.

FIG. 10. Peak efficiency 17 vs. beam current I. The triangles and circles are from the sim-

ulation, and the line graphs the simplistically predicted 1 oc I1/2 dependence. Here

B. = 1880, B11 = 1510G, and f = 9.3GHz.
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