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An alternate representation of the dielectric tensor eij(k,o) for a

relativistic magnetized plasma in thermal equilibrium is presented. This

representation involves an infinite series expansion in powers of

c2k / ao2, as well as an asymptotic expansion for large c2k2 / acoc2. Here,

oc=eBo/mc is the nonrelativistic cyclotron frequency, kic is the

wavenumber perpendicular to the magnetic field Boez, and a is the

dimensionless parameter defined by a=mc 2icBT. The present work

generalizes Shkarofsky's representation [1966, Phys. Fluids 9, 561].

Moreover, unlike Trubnikov's formal result [1958, in Plasma Physics and

the Problem of Controlled Thermonuclear Reactions, Pergamon, New York]

in which the k_ -and k,-dependences of eCU(k,o)are inexorably coupled, the

present representation naturally separates the k - and k,-dependences of

8,i(k,o). As an application, the general expression is simplified for the case

of a weakly relativistic plasma, and the dispersion relation is obtained for

electromagnetic waves including first-order relativistic effects. The

method developed in this paper can be used for other nonthermal

distributions.
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1. INTRODUCTION

The relativistic dielectric tensor e;j(k,o) for a magnetized plasma in

thermal equilibrium was first derived by Trubnikov (1958). Trubnikov's

formulation leads to an elegant representation of ejj(k,o)(see Appendix

A), but unfortunately the results are very difficult to simplify in limiting

regimes of physical interest. For the case of weakly relativistic plasma

(a = mc2IBT >> 1), Dnestrovskii, et al. (1964) have simplified Trubnikov's

result. However, their analysis is applicable only to the case of

electromagnetic waves propagating exactly perpendicular to the applied

magnetic field B0 = Bo z. Generalization of Dnestrovskii et al.'s method to

the case of arbitrary angle of propagation was carried out by Shkarofsky

(1966). Since Shkarofsky's work, similar methods have been used for a

wide range of applications (Bornatici et al. 1983; Lee & Wu 1980;

Pritchett 1984; Robinson 1986; Wong, Wu & Gaffey 1985) to weakly

relativistic plasma both in thermal equilibrium and for other choices of

distribution function. Other attempts have been made to simplify

Trubnikov's original expression (Shkarofsky 1986), or to express the

dielectric tensor eij(k,w) in a more tractable form (Airoldi & Orefice 1982).

In the present analysis, we obtain an alternate expression for the

dielectric tensor e;j(k,co) utilizing a representation that naturally separates

the kz-dependence and the ki-dependence in an infinite series expansion

in powers of c2k_/ ao2. An asymptotic expansion of eij(k,a) for large

values of c2k / a0? is also presented. The series expansion in powers of

c2k2/ a(02 is exact, and is a generalization of Shkarofsky's result obtained

for the weakly relativistic regime. Moreover, unlike Trubnikov's

expression, which cannot be directly manipulated to give an expansion
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for large values of c2k C / ac, the alternative formulation presented here

leads to a large-c2k / ac2 asymptotic expansion of eij(k,o).

In the present analysis, we make use of the following notation

a=mC2 1KB T,

o= 41r'e 2 Im,

coc= eB 0 /mc. (1)

Here, Mc 2 is the electron rest mass energy, -e is the electron charge, c is

the speed of light in vacuo, T is the electron temperature, Kb is the

Boltzmann constant, n=const. is the ambient electron density, and B0 = Boez

is the uniform applied magnetic field. For simplicity, the positive ions are

treated as an infinitely massive background providing overall charge

neutrality. The final expressions for eij(k,o) are readily generalized to the

case of several active plasma components.

The organization of this paper is the following. In Sec. 2 and

Appendix B, the expressions for Eij(k,co) are derived for a relativistic

plasma in thermal equilibrium. These elements are simplified in the

weakly relativistic regime in Sec. 3. As an application of the formal result,

the dispersion relation for transverse and longitudinal electromagnetic

waves in a relativistic plasma is obtained including first-order relativistic

effects. For completeness, Trubnikov's expression for eij(k,o) is presented

in Appendix A.

2. DIELECTRIC TENSOR FOR RELATIVISTIC MAGNETIZED PLASMA

IN THERMAL EQUILIBRIUM

In this section, we obtain formal expressions for the elements of the

dielectric tensor. The positive ions are assumed to form an infinitely
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massive, neutralizing background. In equilibrium ( a / at =0), it is assumed

that the electrons are distributed according to the relativistic thermal

equilibrium distribution

fo(u)=a exp (- ay)/4rK2 (a), (2)

where a=mc2 / 1cBT is defined in (1),

y= (1 + u2 ) 112 (3)

is the relativistic mass factor,

u = p /MC (4)

is the normalized momentum, and p is the mechanical momentum. In

(2), K, (a) is the modified Bessel function of the second kind of order n.

Following a standard analysis of the linearized Vlasov-Maxwell

equations (Trubnikov 1958; Davidson 1983), the dielectric tensor Eij(k,o)

for the thermal equilibrium distribution in (2) can be expressed as

,cj ko) = O5j , a 2  (dJ d' u
(k+ 4 iK 2 (a) d r

x uiDjexp[- (a- i) y] (5)

xexp - kz uL uisin ( + Nz) - sin - i fk-ur}

Here, the indices ij denote x,y,z, and Dx, Dy and D, are defined by

D, = u. cos (wcr /o ) - uY sin (ocr o ) ,
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DY =uy cos (pr/o))+ usin (or/o), (6)

Dz=uz .

Moreover, making use of the standard Bessel function identity

exp (z sin 0)= 1 Jn(z) exp (ine) ,
n= -00 (7)

where Jn(z) is the Bessel function of the first kind of order n, the

expression for Ei (k,o) in (5) can be expressed as

eij (k,o) = 8j + a2 ()dr exp - s r)

W2 47rK2 (a) is_

x Jd~u ViV*exp -(a - ir) y- i ckz uzr
j0) (8)

In (8), Vs is defined by

VS = u I s J s(b), -iu-LJs' (b), uz Js (b),Jb)() (9)

and the argument b of the Bessel function Js (b) is given by

b = cku 1 /oc . (10)

In obtaining (5), it is assumed that Im w > 0 and k = k + k . Moreover,

Js' (b) = (d /db) Js (b) in (8)

In the nonrelativistic regime, the relativistic factors 7 in (5) and

(8) are all set equal to unity, except when 7 appears in the combination

ay = a (1 + u 2 / 2). Moreover, the modified Bessel function K 2 (a) is replaced

by its asymptotic form K2 (a)=(7r/2a)1 2 exp(-a). In the nonrelativistic

regime, it is customary to carry out the orbit integral over r first in (8),

and the resulting expression leads to an infinite summation over
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gyroharmonics (Davidson 1983). In the present relativistic treatment,

however, the summation over gyroharmonics is not a particularly useful

representation, because of the relativistic mass dependence of the

gyrofrequency. For sufficiently energetic electrons, the individual

harmonic structure is smeared by relativistic effects. In the present

formalism, we first carry out the mome-tum integration over u in (5) and

(8), and the resulting elements of the dielectric tensor are expressed as a

series expansion in powers of the dimensionless parameter

A=c2k /aco=k I KBT /m&, or in terms of an asymptotic expansion for large

values of A= c2k 2 / a 2 .

A. Series Expansion in Powers of A=c2k 2 / a

For present purposes, we begin with the expression for ei (k,o) in

(8). The elements of the tensor V' V*' are proportional to Js(b), Js(b)Js'(b)

or [Js'(b)]2, and use is made of the following series representations

Js2 (b) = s ~ b 2s+2m

m=0

Js (b) Js' (b)= Bs b2s+2m -1

m=0

s 2 C b2 s+2m -2

m=O (1 )

where

A s - (_1) m (2s + 2m)!
22s+2 m m ! (2s +m )! [(s + m)!]2

Bs = (s + m) As,

C = [(S + r) 2 - (2s + m) m
S=2s + 2m -1 A' (12)
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In (11), care must be taken when applying the series expansions to the

case where s = 0. In this case, we make use of JO (b) JO'(b) =-J 0 (b) Ji (b) and

[Jo' (b)] 2 = J2 (b) to express

Jo (b) Jo' (b) = (m+2) AI b2m + 1

m=O

[Jo'(b)]2= Am= Ib 2m+ 2

M 0 (13)

Using (11)-(13), we rewrite (8) as

5ijk+ )= Ep2 a 2  d du
02 47rK 2 (a )Jo f

x exp -(a -ir) 'Y- i -1 u 4rXexpLO( 1ZY~V (14)

C 2 _ sl + M - 1 sl+2
x exp (-i SCr m _ + 2 mT 

S CO M- (

Here, the elements Tf" are defined by

- s 2 A'Is

ck4

=- =-s , M

Ts= Ts=s Ack uz,Xc X(15)

3c

T =-Ti'=i(m+2)A' k u 0 s iB'sck-L uz (1- so),
w3 o

c2k 2

Tsm= A' I U2
zz M OC? z
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Note that the double summations I in (14) can be expressed as
s=- -m=0

00 *2 s+m -1

exp -z--) C2k _U 21sl + 2 m S

S=o m =0 ( O (c2*)

(C2k _r 2 - 1 0021 + o s=m cik u LT'" m 'm~0+exp Ts'ii T ~' - (16)M = I c c2k Iu-L s=-m(s*O) 0

The expression in (16), which involves a single infinite summation and a

finite summation for each m, is substantially simpler than a

representation in terms of double infinite summations, for obvious

reasons.

The momentum integral required in the evaluation of the dielectric

tensor Eij is typically of the form (see Appendix B)

Jexp (-y- iuz = 29q ! Kq 1 ( 2

4r y q (2 +n)(q +1)/2 (17)

Using the integral representation in (17) and its derivatives with respect

to 71, we can readily obtain the desired expression for the dielectric tensor

Eij in terms of an infinite series expansion in powers of A= c2k / a ac2

Before proceeding further, it is convenient to introduce the following

notation

A=c2k /aoc

n= ckz /o,

z = a ce/ o. (18)

Here, A-c2k /a o2 is proportional to the Larmor radius-squared of an

electron with thermal energy KB T, n, = ckz / o is the field-aligned
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component of the index of refraction, and z = a o) / w is proportional to the

ratio of the cyclotron frequency to the wave frequency. Furthermore, we

introduce the functions $q and Pq defined by

(pq (a ,n,z )= - dr exp (- i szz) Ke ()

SKq(a()
(pq(a,nz)(pq (a,n,z) i dr Kq (19)

where
2 2+(nzr)2. 

(20)

The desired series representation for Ei is then given by

0)2 2K2 (a) m = 1 (21)

Here, making use of (14)-(20), the quantity Cmi is defined by

I*"x S samm+1,S=-M

oy=2A(m+1)al(Pm+2+ (m2as'+asn -1),pms+ 1 ,

xry= oYX= s am (pm+1,

S = - Mr22

s=-m (2
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c2kjkz(m+1) (1- n)2 M, a +m a S
O"~c [ - D nz - s=- M az

o= +n± a_ ~)(m+1)atm (Pm+ 2 +X ' as qPms+ 2]
anz . mS=- M.

In (22), the notation I' denotes X(s#0), and the coefficients asm are defined
S S

by

(-1)m+s (2m - 1)!!
(m -s)! (m +s) O<s <. (23)

For example, for m =1, al = 1 ; for m =2,a?= - 1/2, and a2 = I / 8 ; form =

3, a' = 5 / 16, a=- 1 / 8, and a 1 / 48 ; ... etc. This shows that the

series representation of Eii given by (21) converges rapidly. For example,

if we are investigating the behavior of a mode ((o,k) which satisfies the

condition for small Larmor radius A << 1, then it is necessary to retain

only the first few terms in the infinite series I
m=1

B. Asymptotic Expansion for Large A=c2k2 /aoc2

For A>> 1, it is useful to start with the representation in (5). The

momentum integral in (5) can be carried out in closed form, and the

resulting expression for the dielectric tensor has been derived previously

by Trubnikov (1958). However, for many practical purposes, Trubnikov's

result is not very simple to apply, even though it has many elegant

features. For this reason, the present paper focuses on the derivation of

simplified expressions for Eij , which are particularly useful in regimes
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where A << 1 (previous subsection) or A >> 1 (this subsection). Moreover,

the techniques developed here can be generalized readily to the case of

nonthermal distribution functions, for which closed-form simplifications

of the Trubnikov integrals are generally not tractable.

Returning to (5), we define the following quantities

=a(l -it),

17 = (ck±/oc) sin (zr),

77y = (ck/oc) [cos (zr) - 1] , (24)

77z = a nzr,

where z= awe /o and n,= ck, /o are defined in (18). Using (24), it can be

shown that (5) can be expressed as

P a,3 uep( ,y-iT.uiij - 02 K2 (a) dr Ti f 4-r7 (25)

where the elements of Tij are the differential operators defined by

TXX Cos (z) -- sin (zr) ,

32 2

TYY= cos (zr) + sin (zr)

a77Y aflxal7y

Txy= -Tyx = sin (zr) -+ cos (zr) , (26)

a 77X a77a'7

y2
Tyaz=-Tzy=7,
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a 2

Tzz= 2
a Z

Again note that the u-integration in (25) can be carried out in closed

analytical form. Indeed, the the u-integration in (25) is a special case of

the more general result in (17). As mentioned earlier, if the u-integration

in (25) is carried out by means of (17), then we recover the well-known

result of Trubnikov. However, it is not straightforward to understand the

properties of the resulting integral in the parameter regime

corresponding to large values of A=c2k/c2. For this reason, we

reformulate the u-integration in order to obtain an asymptotic expression

valid for large A, or equivalently, valid for large values of hi=(i77 +77y)

This reformulation is not exact, but it gives a satisfactory asymptotic

result. We proceed by expressing

;dluexp(-y i 7ij 1u - i 7zfuz) dx (1+x 2 ) 1/2 exp (- i 77x)

x fdv 1/exp- ( (1 + x 2 ) 1/2(1 + y 2 ) 1/2 -i 7_(1 + X2) 1/2y

f 2 3+y2 ) 1/2

0'

To leading order, after some straightforward algebraic manipulation, we

obtain the following approximate expression for the dielectric tensor

.ij= 8ij+i 1 O 0 dr M (r) (28)
)22 2K2 (a [ - cos (zz)] 2

Here, A=c2k /aoc2 and z= aoc/o, and the elements of the tensor Miy(r) are

defined by
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M = [2 + cos (zr)] KO (a4)

Myy= - [2 - cos (zr)] Ko (a4)

Mxy = - My = sin (zir) KO (a4'),

Mxz = MZX = c2 kk sin (zr )K, (a(2)

(t) ( (29)

Myz= - Mzy- c2kjkz r [I - Cos (zr )] K, (a
0 (DC

K, (a4) 2 (aa()
Mzz= - -2' nzj

where nz = ckz / and 2 2( - ir) 2 + (nzr)2.

Note that (28) and (29) can also be expressed in terms of the

function qP (a ,n,z) defined in (19). Upon making use of the series

expansions of cos (zt ) and sin (zt ), we obtain

2 2 ), (30)

where

M = m 2 
4Pm

Myy = (4 - M2 ) M

MXY= MyX = - i m (pOM

M =M C2k, k, D m
xz= zx- ck ) (P 1 , (31)

wc az

M= - Mz =C2k4k ,
YZ~~ ) MCO a Z

(M2 - 1) (P' +a '
ZZ 6 a aZ2 9

To summarize, in this section we have presented an alternate

representation of the elements of the dielec'-ic tensor for a relativistic

plasma in thermal equilibrium. The electrons have been treated as the

only active component; however the present analysis can be extended to



14

a multispecies plasma in a straightforward manner. The alternate

representation developed in this paper involves a series expansion which

is useful for small values of A=c2kI/ao)?< 1 [see (21) in Sec. 2.A], and an

asymptotic expansion valid for large values of A=c2k /a& >1 [see (28)

or (30) in Sec. 2.B]. Although the present formalism is equivalent to

Trubnikov's approach (Appendix A), the expressions in (21), (28) and

(30) are tractable in various limits (A > 1, A <1, a > 1 or a <1), whereas

Trubnikov's results do not simplify in a straightforward manner. It

should be noted that Trubnikov's result can be manipulated to give a

series expansion in A in the weakly relativistic regime (a > 1). By

comparison, the present formalism leads to an expansion in A which is

valid for all values of a . Moreover, the large-A asymptotic expression in

(30) is particularly useful because Trubnikov's formal result cannot be

simplified directly in this regime. We also note that the present technique

can be applied to other nonthermal distributions (Davidson & Yoon 1989)

for which the closed expression for integrals of the Trubnikov-type are

generally not tractable.

3. DISPERSION RELATION IN THE WEAKLY RELATIVISTIC REGIME

In this section, we take the weakly relativistic limit of the results

obtained in Sec. 2, which is characterized by the inequality

a= Mc2 IkBT >> 1. In the weakly relativistic regime it is possible to express

the various quantities in the definition of Eij in terms of functions which

are mathematically tractable. For example, following Dnestrovskii et al.

(1964) and Shkarofsky (1966), one can approximate the function (4 by

the Shkarofsky function
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K2 (p4 (a ,nz,z) -*Fq+12 a 1 sOc a C2k,,21  (32)

where Fq+112 is defined by

Fq+1/2 (z , p)= i exp (-p) dr exp i (z -pu),r+ P
( 0  (1 _ i* )q+1/ 2  [ (1d-r)- (33)

with Im(z -P.) > 0. The Shkarofsky function is related to the Fried-Conte

plasma dispersion function. This approach is extensively used in various

physical applications, and it is particularly useful in studies of the

detailed properties of the absorption of plasma waves near the

gyrofrequency. In the present section, however, we concentrate on the

dispersive behavior of electromagnetic waves with weak dissipation,

including first-order relativistic effects. For present purposes, the

function (P4 is approximated by (Imre 1962)

a(pqs(a,n,z)~ -4 F 2-4 q+112 1 .z.

K2 (a) 1 -sz 2a a 1 - sz a -sz)2 ' (34)

which is valid provided

a >>1, and I1-c2k2/0 2 <a. (35)

With this approximation, we obtain the following approximate

expressions for the dielectric tensor in the weakly relativistic regime

EXX= 5 02+ 0c2
0)2.- ,2 2 a W2 _ ,2

c 2 k2 w2 ( 2+ 2) 3c2k1 2

, -_ O2 a (602 - ( 2 4(C02w aO -~2)c24co2)'
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y= +2 c2k 2o

a )2 2

ex = - c = - 5 _ _
0) 022) 22 - oc22

c2k2 (32 + C2) 26 2k
a2 a ( - 2)( 42) 2 '(36)

E0= x - ac2-4(
)22

yz = Ezy I C 2 -O ) 2

a 0) 2 _ 022

O 1( 5 3c 2k2 2 c2k2

O 2 2a a )4 a O (02 _ )2

Using (36), the dispersion relation for electromagnetic waves in a weakly

relativistic plasma is given by

D (k ,o)=0=det [Cj 5- _ . (37)
C02 k21

The dispersion relation (37) can be solved exactly for c2 k'w2  and

c2k2 ) in the two limiting cases corresponding to electromagnetic waves

propagating parallel to the magnetic field Boez and perpendicular to the

magnetic field, respectively. For waves propagating exactly parallel to the

magnetic field (kz* 0, k1 = 0), three independent solutions are found, which

correspond to right-hand and left-hand circularly polarized

electromagnetic waves, and to longitudinal (electrostatic) plasma
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oscillations. For longitudinal plasma oscillations, the dispersion relation

for k 1 =0 and a>>1 is given by

w2 = = 2 C+ )- (38)

On the other hand, for right-hand and left-hand circularly polarized

electromagnetic waves with kj_=0, the index of refraction-squared c2 kN2co2

is given by

c2kz -= + 1- ) 5 0) ,
(02 a 3)±Oc( 0 ~ aC O (39)

Here, the upper (+) and lower (-) signs correspond to left-hand and right-

hand circular polarizations, respectively, and a>> 1 is assumed.

For waves propagating exactly perpendicular to the magnetic field

(kI 0, k, = 0), the solutions to (37) consist of the electromagnetic

extraordinary mode (X-mode) and ordinary mode (0-mode) branches,

and the electrostatic upper-hybrid mode. For k, = 0 and a >>1, the O-mode

branch (SE parallel to Boi') is described by the dispersion relation

2k - 1 +1 _ i 5 (40)
(02 a (2 _ W2 02 2a )

For the X-mode branch (SE perpendicular to Boez), the dispersion relation

for kz = 0 including first-order relativistic effects (a >> 1) is given by

c2k )2 12)2 ( )2+4 _2[t2(2w-2(22_)2 1

02 ) a 22 (w2 _4 2 _2 ) 2

022 2 + 0)2) )2 02+0)2-2 2 -

2 2 _( 2 w2421)2 2(w2+22 2 (
~2 c2o2 2) 2a (0)2a2(~
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Here, o= 0? + 0, is the upper-hybrid frequency-squared. Finally, an

electrostatic upper-hybrid mode also exists (3E parallel to k±L'x). For the

upper-hybrid oscillation the dispersion relation for kz=0 and a>>1 is

given by

620 5 -5 62 6 ) c2k1
2a 2a 5 I (-442

Finally, for general propagation angle, the dispersion relation for

a>> 1 is determined as follows. For the longitudinal branch, the oscillation

frequency a) is determined in terms of k, and k1 from the dispersion

relation

0 = xxL + z + 2 Exkz (43)
k2 Z k2 ' k2

For the two branches with mixed polarization, the index of refraction-

squared n 2= c2(k 2+ k2)/0)2 can be expressed as

2  2(A-B+C)
n=12A-B (B2-4AC)l12 '(44)

where
2
ekj + zzk2+2kzx

k2 k2  k2

B =Aey + Exxezz + eXy- +2E ( 45)

C =(cXxeyy + c y) Ezz .

In (45) we have neglected terms proportional to 1 / a2 . In the above, the

upper sign (+) corresponds to the branch that reduces to the left-hand

circularly polarized wave (L-mode) in the case of parallel propagation,
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and to the O-mode in the case of perpendicular propagation. On the other

hand, the lower sign (-) corresponds to the branch that reduces to the

right-hand circularly polarized wave (R-mode) for parallel propagation,

and to the X-mode for perpendicular propagation.

To summarize, in this section we have simplified the dispersion

relation for electromagnetic waves in weakly relativistic plasma including

relativistic effects to first order in 1/a. The influence of relativistic effects

on the dispersive characteristics can be important (for example) in the

problem of synchrotron maser amplification of electromagnetic waves by

energetic electrons (Yoon 1989).

4. CONCLUSIONS

In this paper, we have presented an alternate representation of the

dielectric tensor Ei (k,o) for a relativistic magnetized plasma in thermal

equilibrium. The representation involves an infinite series expansion in

powers of c2k /ao, [see (21) in Sec. 2.A], as well as an asymptotic

expansion valid for large values of c2ki/aw? [see (28) or (30) in Sec. 2.B].

As an application, the dispersion relation is simplified in Sec. 3 for

electromagnetic waves propagating with weak dissipation in a weakly

relativistic plasma. In Sec. 3, relativistic effects are included to first order

in 1/a.
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APPENDIX A. TRUBNIKOV DIELECTRIC TENSOR

Trubnikov's expression for the dielectric tensor for a relativistic

plasma in thermal equilibrium in a uniform, applied magnetic field is

given by

_a_ K2(a) c2kL K 3(aC)
j = ij +i P K2(a dS Tij - 2- (A.1)

Here, a = mC2 / icBT is the ratio of the electron rest mass energy to the

thermal energy, and C 2, Tij and Sij are defined by

2= c 2 c2k 2
S(21_ir) 2 + 2 k 1 - cos (awcr/w)]+ z r2

a 2 ,2 2 (A.2)

T,, = Tyy = cos (awr /o) ,, = 1,

Txy=-Ty,=-sin (acer/o),Txz =Tzx =Tyz = TZY=0, (A. 3)

and

S = sin 2(awcr/w) , Sy= - [1 - cos (awer/w )]2

S y = - Syx = - sin (awcr/w ) [1 - cos (awer /o)

Sxz = Szx = (kz/kI)(awr o/) sin (ao/er /o), (A.4)

Syz= -Szy = (kz/k)(awer/w )[1 - cos (awcr o)]

Szz = (kz/k) 2(aocr /) )2
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APPENDIX B. REDUCTION OF THE MOMENTUM INTEGRAL (17)

Consider the following integral

dU U q exp (- y- i?7uz)

du exp (- dx (1 - x2)q exp (- iiiux), (B.1)

where x = cos 6, and e = tan ~ (u1 luz) is the pitch angle. The x-integration in

(B.1) can be expressed as

) dx (1 - x2)q exp (- ijux) = 2 q-I q! - -q a sin (iu (B.2)
i- u2q 1 a17 17u

Substituting (B.2) to (B.1) gives the desired result used in (17), i.e.,

dU U4 exp (- y- i77uz
f41ry I

= 2 q! ( a q f du .l ep sin (7u)

= 2q q! - a KJ( 2+172) 1/2]

=2 q Kq 1 (2+f72) 1/2]_
2 q 2 +7 2)(q+12 (B .3)
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