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ABSTRACT

This report contains descriptions of programs for computing absolute instability proper-
ties of the cyclotron resonance maser (CRM). These programs, which can be read from
[DAVIES.CRM] on the MIT PFCVAX, are based on the linear theory of Briggs and Bers.
Included are a program for computing temporal CRM instability growth rates, a program
for computing images of the (complex w-plane) inverse Laplace contour in the complex
k-plane, and several programs for rapidly computing approximate and exact pinch point
coordinates (k.,.). Also included are programs for computing parameter regions of abso-
lute instability for the CRM. Some of the programs are readily modified to accommodate
dispersion relations other than that for the CRM.



I. INTRODUCTION

This report describes several computer programs which are useful for computing ab-

solute instability properties of the cyclotron resonance maser (CRM). Fortran files of these

programs can be copied from [DAVIES.CRM] on the MIT PFCVAX. The basic formalism

upon which most of the programs are based is the pinch-point theory of Briggs1 and Bers2

Specific formulas used by the programs are discussed in the remainder of this section. For

detailed derivations of these formulas see Refs. 3-7. An overview of the relationships among

the programs is given in Sec. 2. Individual programs are discribed in detail in Sec. 3.

The approximate CRM dispersion relation employed is5

D(k, Z)= 2o k2 - 1-(1+i)(1 )2 2 )_ ( -k# 1 1 - sb)2 + e = 0. (1)
Vmn - m rw

which couples the TEmn waveguide mode and the beam mode. In the above equation,

the normalized frequency L2 and wave number k are given by LZ = w/w, and k = k 1l/kmn,

where k11 is the longitudinal wavenumber and w, = ckmn is the cutoff frequecy for the

TEmn waveguide mode. The quantity kmn is given by kmn = vmn/rw , where vmn is the

n-th zero of the first derivative of the Bessel function Jm. The quantity 6 is the skin depth

of the waveguide wall, 01, is the dimensionless axial electron velocity, and s is the beam

harmonic. The quantity b = e/we,, where Qc = eBo/yomc is the relativistic electron

cyclotron frequency and yomc2 is the relativistic electron energy. For an annular beam

with all electron guiding centers located at r = rb, the coupling constant e is given by

4#j2 [Jam(kmnrb)J (kmnrL)2I

yoo31 (v - m 2)Jm2(vn) A (

where #I is the dimensionless perpendicular electron velocity, and rL = cP/3/f2c is the

electron Larmor radius. The beam current is given by I, and IA = mc 3 /e = 17.045kA. In

the case of a solid beam with a spatially uniform distribution of guiding centers for r < rb

the coupling constant e is obtained by multipling the expression in Eq. (2) by factor K

given by
2 rb/rw

=2 J-2 (kmnrb) yJ,2-m(vmny)dy. (3)

To test for the presence of absolute instability, first consider an inverse Laplace contour

in the complex c-plane which is above all of the zeros of D(k,c') for real k. [Here it is
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assumed that the Fourier-Laplace components used to derive the dispersion relation are

of the form exp(ikz - iwt).] Images of the inverse Laplace contour in the complex k-plane

are obtained by solving the dispersion relation [D(k,c ) = 0] for k. Absolute instability is

present if an image from above the real k-axis merges with one from below to form a pinch

point as the inverse Laplace contour is lowered to the real C'-axis.1 ,2 A pinch point is a

saddle point of the function LZ(k) (as determined from dispersion relation) in the complex

k-plane. However, a saddle point is not necessarily a pinch point. Conditions for a saddle

point are1,2

D(k,C) = 0,

(4)
8D(k, c.)

=k 0.

From Eqs. (1) and (4), the following saddle point conditions are readily derived for the

CRM,

( - #I - Sb)+# 2 k 1-(i+1)( + 2 2 = 0,

(5)

pie = k(p -Ilk - sb) 3.

Pinch-point coordinates (k,,L,) can be obtained by solving the conditions in Eq. (5) si-

multaneously for k and L2. However, care must be taken that the result is a pinch point

and not some other saddle point which is not a pinch point.

Exact analytic conditions for the existence of absolute instability have been determined

for the case of zero skin depth 6 [i.e., b = 0 in Eq. (1)]. If sb > 1 in Eq. (1), then absolute

instability will be present in the CRM mode. In Ref. 6, conditions are derived for the

existence of absolute instability when sb < 1. Absolute instability will be present when

the coupling constant e is greater than a critical value e,. Over most of the useful range

of values of 01, and sb, it is given by

ec = 27#2fP,(6)
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where k, is the pinch-point coordinate at the onset of absolute instability. It is given by

1 ( 80- #2S2 202)1_ 2 1

=( f){-4jsb + [16 1sb2 + 2(1+8# )(1 - sb2)} (7)

The corresponding frequency is

c, = 4311 k, + sb. (8)

However, Eqs. (6)-(8) are applicable if and only if

,- -- >0. (9)
oil

If the condition in Eq. (9) is not obeyed, then the critical coupling constant is given by

ec . (bk', - /311sb) 3 , (10)

where

b #(11)

The coordinates of the pinch point at the onset of absolute instability are given by

k'= [sb + b(2  +±8b)2, (12)

and

Ol'- (13)

A plot showing regions of absolute instability is presented in Fig. 1. Each curve on the

plot shows ec as a function of Oll for the value of sb shown against the curve. A CRM mode

is absolutely unstable if its parameter point (#ii, e) lies above that curve corresponding to

its value of sb. The curve AB on the plot separates the left-hand region where Eqs. (10),

(12), and (13) are applicable from the right-hand region where Eqs. (6)-(8) are applicable.

Approximate pinch-point coordinates are readily obtained from Eq. (5) for the case

of sb > 1 and b = 0. These approximate expressions are given by7

3 (k2_ j9e)k
- + 3 (k - (1 + iV3),

4 -k-)

(14)

k, - +(k_-+ 2#0-)
3# 11k
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where

k- = 1 [sbflll - (s2b2 - bo ,
0

(15)

C' =o -+sb.

Some of the CRM programs presented in this report are designed to compute CRM

absolute instability properties relative to a reference frame moving with arbitrary velocity

P, in the axial direction. Such computations are useful for determining pulse shapes8 for

absolute and convective CRM instabilities. Details for the CRM are given in Ref. 7. All

of the formulas discussed in this section can be extended to the general frame by replacing

noninvariant quantities by primed quantities. The quantities k' and L' are related to k and

cZ by the usual Lorentz transformation of wave numbers and frequencies. The velocities 0

and 011 are related by the velocity addition rule. In addition,

b' = by-1'(1 - /3#ii)1,

(16)

f= C /v/11<2

where -y, = (1 - 2 [However, see Eqs. (20) and (25)-(27) of Ref. 7 for details of the

extension of Eqs. (14) and (15) to the general frame.] Those readers interested only in

laboratory-frame results should set Ov = 0 in programs referring to the general frame.

A final remark is that three of the programs (CRMDISP.FOR, CRMWK.FOR and

CRMPIN.FOR) are readily modifed to accommodate dispersion relations other than

Eq. (1). In each of these programs the dispersion relation is contained in a single sub-

routine.
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II. SUMMARY OF PROGRAMS

Fortran programs which can be copied from [DAVIES.CRM] are briefly described

below.

A. CRMDISP.FOR: Using the dispersion relation in Eq. (1), this program computes

complex w vs. real k over a range of k selected by the user. For each k, all C roots are

computed, but only that root having the the largest value of Im(v) is printed out. Because

the CRM dispersion relation in Eq. (1) appears only in subroutine FN, it can easily be

replaced with other dispersion relations. CRMDISP.FOR is useful for determining ranges

of c and k to be used in the program CRMWK.FOR.

B. CRMWK.FOR: This program locates pinch points graphically by plotting images

in the complex k-plane of the lowered Laplace contour in the complex G-plane. Numerical

results obtained from the program CRMDISP.FOR are useful in selecting the range of Cj to

be used in CRMWK.FOR. The interesting range of Im(c.) lies between Im(cZ) = 0 and the

maximum value of Im(Co) obtained from CRMDISP.FOR. The interesting range of Re(c)

roughly coincides with the interval of Re(Cv) for which Im(Z) > 0. The CRM dispersion

relation in Eq. (1) appears only in the subroutine FCN and is easily replaced by other dis-

persion relations. The graphical method of determining pinch-point coordinates accurately

is very time consuming. Consequently, it is recommendated that, once an overview of the

stability properties of a dispersion relation are obtained through the use of CRMWK.FOR,

more rapid methods of computing pinch-point coordinates be derived. In particular, some

of the programs listed below (CRMPIN.FOR and CRMPINCHV.FOR) are used to deter-

mine CRM pinch-point coordinates rapidly. [Methods for rapidly calculating pinch-point

coordinates for the free electron laser are discussed in Ref. 9.] CRMWK.FOR runs very

slowly on the MIT PFCVAX. A CRAY version of the program called CRMWKC. can also

be read from [DAVIES.CRM].

C. CRMWKC.: This program is the CRAY version of CRMWK.FOR.

D. CALEPS.FOR: This program calculates the coupling constant e in Eqs.(2) and (3)

for the cases of a thin annular beam and of a uniform solid beam.

E. CRMPIN.FOR: This program computes exact pinch-point coordinates for the CRM
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by solving the conditions in Eq. (4) simultaneously for k, and , Newton's method is

used. The result will be the pinch-point coordinates (if a pinch point exists) provided

that the initial estimates for solutions used in Newton's method are sufficiently close to

the exact solutions. Otherwise, the result will be the coordinates of a saddle point that

is not a pinch point. The programs APCVPIN.FOR and CRMPINCHV.FOR provide

initial estimates for solutions. CRMPIN.FOR can determine pinch points for all values

of sb and 6 in Eq. (1). However, it is recommended that CRMPINCHV.FOR be used

instead of CRMPIN.FOR if sb < 1 and b = 0, because the former program is much easier

to use than the latter. The CRM dispersion relation is used only in subroutine of FCN

of CRMPIN.FOR. Consequently, the program is readily modified to accommodate other

dispersion relations.

F. APCVPIN.FOR: This program computes approximate CRM pinch-point coordi-

nates relative to a general inertial frame of reference moving in the axial direction, provided

that sb' > 1 and 6 = 0. Users interested in general-frame computations should refer to

Eqs.(25)-(27) of Ref. 7. Users interested only in laboratory-frame computations should set

the input variable BETV = 0.0. Then, the program solves Eq. (14). The laboratory-frame

approximation is good to excellent for sb > 1.2, but becomes increasingly bad as sb ap-

proaches one. The results are invalid if sb < 1. APCVPIN.FOR provides initial estimates

for the pinch-point coordinates in CRMPIN.FOR for the case of sb > 1.

G. CRMPINCHV.FOR: This program calculates exact pinch-point coordinates for a

general reference frame moving in the axial direction for the case of sb' < 1 and 6 = 0.

Users interested only in the laboratory frame should set the input variable BETV = 0.0.

Then the program first computes the critical coupling constant e, given in Eq. (6) or (10)

and the critical pinch-point coordinates (ICe,) at the onset of absolute instability given

by Eqs. (7) and (8) or Eqs. (12) and (13). The interval between the coupling constant

e and the critical coupling constant E, is divided into small increments. After a small

positive imaginary part is added to c, Newton's method is used to successively compute

pinch-point coordinates after each increment of the coupling constant until the value 6 is

reached. If sb < 1 and 6 = 0, then it is suggested that CRMPINCHV.FOR be used instead

of CRMPIN.FOR. If sb < 1 and 6 > 0, then coordinates obtained from CRMPINCHV.FOR
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can be used as initial estimates for solutions in CRMPIN.FOR.

The program functions in a similar way for general-reference-frame computations

(BETV 0 0.0). The general-reference-frame critical coupling constant e', is given in Eq. (30)

or (34) of Ref. 7 and the pinch-point coordinates at the onset of absolute instability are

given in Eqs. (31) and (32) or Eq.(33) of Ref. 7.

H. EXEPSCRIT.FOR: This program computes regions of absolute instability for the

CRM for the case of 6 = 0. (Note that for 6 = 0 all CRM modes are absolutely unstable

if sb > 1.) The plot in Fig. 1 was obtained using EXEPSCRIT.FOR. For a given value of

sb, EXEPSCRIT.FOR computes one curve on the plot over a specified range of 0#1 using

Eqs. (6) and (7) or Eqs. (10) and (11).

I. GENCARM.FOR: This program computes parameter regions of absolute instabil-

ity for the CRM for arbitrary values of 6. Like EXEPSILON.FOR, the program GEN-

CARM.FOR computes e, over a range of 61 for a given value of sb. However, EXEP-

SCRIT.FOR should be used for the case of 6 = 0, because it is much less difficult to run

and uses much less CPU time than GENCARM.FOR. Input for GENCARM.FOR includes

approximate pinch-point coordinates for one value of #11 and a value of e which is estimated

to be larger than any value of e, over the range of 01 of the computation. These coordinates

can be obtained from CRMPIN.FOR, APCVPIN.FOR, and CRMPINCHV.FOR.

J. GENCARMC.: This program is the CRAY version of GENCARM.FOR.
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III . DESCRIPTIONS OF PROGRAMS

A. Description of Program CRMDISP.FOR

PURPOSE: CRMDISP.FOR computes complex L7 for a sequence of real values of k by

solving CRM the dispersion relation in Eq. (1). All roots c are computed but only that

root with the maximum value of Im(C) is printed out.

ALGORITHM: The real value of k is incremented from an initial value XKINIT to a final

value XKFINL in steps of DLTAK. For each value of k, Muller's method is used to compute

the four roots (.Z) of the CRM dispertion relation . A sort routine selects that root having

the maximum Im().

FILES: The source file, the input file and the output file are described in the following:

1. CRMDISP.FOR: This is the source file written in double precision. Since the IMSL

library is employed, the execute file is generated by the link command: LINK CRMDISP,

IMSL$:IMSL/LIB.

2. INCRMDISP.DAT: This is the input file which contains the input data. The following

values are input in the format 4F15.5 in the following sequence.

BEE EPSIL BETAP DELTA

XKINIT XKFINL DLTAK XN

The quantities in Eq. (1) represented by the above FORTRAN input variables are b=BEE,

e = EPSIL, 011=BETAP and 6/r, = DELTA. The initial and final values of k and the

increment in k are given by XKINIT, XFINL and DLTAK, respectively. The quantity XN

is the number of roots solved for by the Muller's method routine. In this program, its

value is 4.0, because Eq. (1) is a fourth-degree polynomial in G.

3. OPCRMDISP.DAT: This is the output file. First, it lists the input parameters. This

list followed by a table giving the real and imaginary parts of Co for each value of k. The

format of the table is:
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imomega=

In the table, xk=k, reomega=Re(s), and imomega=Im(c). The output is also printed on

the screen.

REMARKS: The dispersion relation is in subroutine FN and is easily replaced by another

dispersion relation. Users also may find it is necessary to modify the read statements,

write statements, variable declaration statements, and common statements.

10
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B. Description of Program CRMWK.FOR

PURPOSE: Program CARMWK locates pinch points graphically by plotting images in

the complex k-plane of the lowered inverse Laplace contour in the complex c-plane for the

CRM dispersion relation in Eq. (1). For selected values of Im(c) for the lowered Laplace

contours, the program prints out the k-coordinates of points on the image curves. The

program also prints a graph of the k-plane images for each of the lowered inverse Laplace

contours.

ALGORITHM: The program computes k-plane images for each member of a sequence

of lowered inverse Laplace contours. These inverse Laplace contours are shown in Fig. 2

by solid lines. The inverse contours are confined in a rectangular region of the complex

Co-plane defined by the input variables WINIT and WFINL as shown in Fig. 2. The

distance between any two successive contours is given by an input variable DLTIW. Along

any particular contour, the k-plane image is determined by solving Eq. (1) by Muller's

method for k at intervals of Re(LZ) given by the input variable DLTRW. CRMWK first

computes the image of the contour connecting point WINIT and A in Fig. 2. Then the

program repeats the same procedure for the next contour. This procedure is repeated until

the imaginary part of the contour exceeds Im(WFINL). For each inverse Laplace contour,

both a numerical table of coordinates of image points and a graph of the images are printed

out.

FILES: The source file, the input file, and the output file are described in the following:

1. CRMWK.FOR: This is the source file written in double precision. Since the IMSL

library is employed, the execute file is generated by the link command: LINK CRMWK,

IMSL$:IMSL/LIB.

2. INCRMWK.DAT: This is the input file which contains the input data. The following

values are input in the format 4F15.5 in the following sequence:
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BEE EPSIL BETAP DELTA TST

Re(WINIT) Im(WINIT) Re(WFINL) Im(WFINL)

DLTRW DLTIW

XN

HWD DRKMIN DRKMAX DIKMIN DIKMAX

CH CV

The quantities in Eq. (1) represented by the above FORTRAN input variables are b=BEE,
e = EPSIL, #61=BETAP and b/r, = DELTA. The variable TST controls the amount of

numerical data which is printed out by the program. As the routine traverses an inverse

Laplace contour in steps of DLTRW, data is printed out only at the end of every TST-th

step. The quantity XN is the number of roots solved for by Muller's method. In this

program, its value is 4.0, because Eq. (1) is a fourth degree polynomial in k. The graph of

the k-plane images is printed by the printer with the Re(k)-axis printed vertically on the

page. Several of the above input variables control the size of this graph and the maxima and

minima of the axes. HWD is the length of the Re(k)-axis in terms of printer line spaces. A

value of 30.0 to 100.0 is recommended. The limits of the Re(k)-axis are controlled by the

input variables CH, DRKMIN, and DRKMAX. There are just two values for CH, which

are 0.0 and 1.0. If CH = 1.0, then the minimum and maximum of the Re(k)-axis are

given by DRKMIN and DRKMAX, respectively. If CH = 0.0, then the limits of the axis

are the minimum and maximum values of Re(k) computed. Similarily, the input variables

CV, DIKMIN, and DIKMAX control the limits of the Im(k)-axis. The remaining input

variables have been described in the summary of the algorithm.

3. OPCRMWK.DAT: This is the output file. The output lists the input parameters. Then

for each lowered inverse Laplace contour a table and a graph are printed.

The format of the table is as the following:

rw= iw= real k= imag k= matrh= matrv=
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In the above table rw=Re(cZ) and iw=Im(c), where Z is a point on the lowered inverse

Laplace contour. Moreover, real k=Re(k) and imag k=Im(k), where k is an image of C.

The graph of the k-plane images immediately follows the table. This graph is printed by

the printer. The quantities matrh and matrv, appearing in the table, give the respective

coordinates of Re(k) and Im(k) in terms of printer spaces. If the graph is held such that

the Re(k)-axis is horizontal, then the printer-space coordinates of the lower-left corner of

the graph are (1, 1). Isolated dots appear on the graph. Their printer-space coordinates

are (11,11), (11,21), (21,11), etc. Matrh and matrv allow the user to determine the value

of Re(c') associated with each point on the graph.

All of the output is also printed on the screen of the terminal.

REMARKS: The dispersion relation appears only in subroutine FN and is easily replaced

by another dispersion relation. Users may find that it is also neccessary to modify the read

statements, the write statements, the variable declaration statements, and the common

statements.

C. Description of Program CRMWKC.

This program, written in single precision, is the CRAY version of CRMWK.FOR.

Directions for running it are the same as those for CRMWK.FOR, except that a CRAY

routine such as COSMOS must be used to compile the program. The input file is named

INPUT, and the output file is named OUTPUT.
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D. Description of Program CALEPS.FOR

PURPOSE: CALEPS.FOR computes the coupling constant (e) for the CRM dispersion

relation in Eq. (1). Two values of e are computed; that for a thin annular beam and that

for a solid beam with a uniform distribution of guiding centers.

ALGORITHM: This program calculates the coupling constant for a hollow beam using

Eq. (2). Then Simpson's rule is used to evaluate the integral in Eq. (3) in order to obtain

the coupling constant for a uniform solid beam.

FILES: The source file, the input file and the output file are described in the following:

1. CALEPS.FOR: This is the source file written in double precision. Since the IMSL

library is employed, the execute file is generated by the link command: LINK CALEPS,

IMSL$:IMSL/LIB.

2. INCALEPS.DAT: This file is the input file. The following parameters are input in the

format 4F15.5 in the following sequence.

BEE BETPAR BETPER XI RW

RB XMM XNN XS XNF

Input variables appearing in Eqs. (1)-(3) are b=BEE, #11= BETPAR, O3±=BETPER, I=XI

in units of Amperes, r,=RW in centimeters , rb=RB in centimeters, and the s=XS. The

TEmn mode indices are given by m= XMM and n= XNN. XNF is the number of increments

of the interval between 0 to rb/r, to be used in the evaluation of the integral in Eq. (3) by

Simpson's rule. XNF must be odd. The suggested value is XNF=101.0. If XNF is even,

then the program stops and a notice 'CHANGE XNF TO AN ODD INTEGER' shows on

the screen.

3. OPCALEPS.DAT: This is output file. The input parameters are listed first, followed

by the coupling constant for the hollow beam, the coupling constant for the solid beam,

and the ratio of the coupling constant for the hollow beam to the coupling constant for

the solid beam. The output is also printed on the screen of the terminal.

14



E. Description of Program CRMPIN.FOR

PURPOSE: This program computes exact pinch-point coordinates (k,, ,) of CRM dis-

persion relation in Eq. (1) by solving the conditions in Eq. (4) simultanously. Newton's

method is used. The result will be the pinch-point coordinates if the initial estimate for the

solutions used in Newton's method are sufficiently close to the exact solutions. These initial

estimates can be obtained from the programs APCVPIN.FOR or CRMPINCHV.FOR.

ALGORITHM: Newton's method is used to compute pinch-point coordinates (k,,,). At

each step of the computation, corrections (8k, &v) are obtained to the values k and w

obtained at the end of the previous step. To make the procedure stable, each of the

corrections is multipled by the factor WEIT to obtain the new approximate values k + k *

WEIT and LZ' + &Z' * WEIT. WEIT should be less than one. A value of 0.2 works well in

most applications. The iteration terminates in either one of two ways:

(1) The procedure terminates when every one of the ratios Re(bk)/(Re(k) + a),

Im(bk)/(Im(k)+ a), Re(bw)/(Re(L)+ a), and Im(Sw)/(Im(C)+a) is less than the input

value XTOL, where a = 10~. A value of XTOL~ 10-7 is recommended.

(2) The procedure terminates when the number of iterations exceeds the input variable

XMAXIT. The statement "THE ITERATION DID NOT CONVERGE" appears in the

output if this type of termination has occurred. The suggested value for the input variable

is XMAXIT = 1000.0

FILES: The source file, the input file and the output file are described in the following:

1. CRMPIN.FOR: This is the source file written in double precision. Since the IMSL

library is employed, the execute file is generated by the link command: LINK CRMPIN,

IMSL$:IMSL/LIB.

2. INCRMPIN.DAT: This is the input file which contains the input data. The following

values are input in the format 4F15.5 in the following sequence:
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BEE EPSIL BETAP DELTA

S XM XN

Re(X(1)) Im(X(1)) Re(X(2)) Im((X(2))

XTOL XMAXIT WEIT

The quantities in Eq. (1) represented by the input variables are b=BEE, e = EPSIL,

011= BETAP and 6/r,=DELTA. The TEmn mode indices are given by m = XMM and n=

XNN, and s=S is the beam harmonic. X(1), X(2) are the initial estimates for the respective

pinch-point coordinates k, and cZ, to be used in Newton's method. These initial estimates

can be obtained by running APCVPIN.FOR or CRMPINCHV.FOR. The input variables

XTOL, XMAXIT, and WEIT have been described in the discussion of the algorithm.

Suggested values are XTOL=0.0000001, XMAXIT=1000.0, and WEIT=0.2.

3. OPCRMPIN.DAT: This is output file. It gives input pararmeters and the computed

pinch-point coordinates. A warning is printed if the iteration failed to converge (i.e., that

the number of iterations exceeded XMAXIT.) The output is also printed on the screen.

REMARKS: The dispersion relation is in subroutine FN and is easily replaced by another

dispersion relation. Users also may find it is necessary to modify the read statements, the

write statements, the variable declaration statements, and the common statements.
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F. Description of Program APCVPIN.FOR

PURPOSE: This program calculates approximate pinch-point coordinates for the CRM

dispersion relation in Eq. (1) in a general reference frame, moving with velocity /, in the

axial direction relative to the laboratory frame. Use of the program is limited to the case of

6 = 0 and sb' > 1, where b' is defined in Eq. (16). General-frame pinch-point coordinates

are useful for determining pulse-shapes for absolute and convective CRM instabilities. 7,8

Users interested only in the laboratory frame should set the input variable BETV=0.0.

ALGORITHM: The CRM dispersion relation in a general frame has the same form as in

the laboratory frame in Eq. (1), but with all the noninvariant quantities primed. First the

program transforms the laboratory-frame input parameters b, e and 011 in Eq.(1) to their

general frame values, b', e' and #'1 with the aid of Eq. (16) and the velocity addition rule. If

sb' < 1, then a notice 'SBV< 1 HERE. THIS PROGRAM IS ONLY APPLICABLE FOR

SBV > 1' appears on the screen of the terminal and the program stops. If i3 - I6 > 0,

then the approximate pinch-point coordinates are computed using Eq.(25)-(26) of Ref. 7.

Otherwise the approximate coordinates are computed using Eq. (25) and Eq.(27) of Ref. 7.

Eqs. (25)-(27) of Ref. 7 are the generalization of Eq. (14) to the general frame.

FILES: The source file, the input file, and the output file are described in the following:

1. APCVPIN.FOR: This file is the source file written in double precision.

2. INAPCVPIN.DAT: This file is the input file. The following values are input in the

format 4F15.5 in the following sequence:

BEE EPSIL BETPAR S

BETV

The quantities in Eq. (1) represented by the FORTRAN input variables are b=BEE,

E = EPSIL, and 011= BETAP. It is emphasized that these are laboratory frame param-

eters. BETV represents the dimensionless velocity of the general reference frame (0,)

relative to the laboratory frame. Users interested only in the laboratory frame should set

BETV=0.0.

3. OPAPCVPIN.DAT: This is output file containing the following values:
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a. Laboratory frame input parameters.

b. The general frame values of the parameters.

c. The upshifted (k', &G) or the downshifted (k', ') intersections of the uncoupled beam

and waveguide general-frame dispersion relations.7

d. The approximate pinch-point coordinates: Re(k'), Im(k'), Re(J'), and Im('). The

format for those values is:

rkp= xikp= rwp= xiwp=

The output is also written on the screen of the terminal.
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G. Description of Program CRMPINCHV.FOR

PURPOSE: This program calculates pinch-point coordinates for the CRM dispersion rela-

tion in a general reference frame moving with velocity &3 in the axial direction. Use of the

program is limited to the case of 6 = 0 and sb' < 1, where b' is defined in Eq. (16). General-

frame pinch-point coordinates are useful for determining pulse-shapes8 for absolute and

convective CRM instabilities. Users interested only in the laboratory frame should set the

input variable BETV=0.0.

ALGORITHM: The CRM dispersion relation in a general frame has the same form as

in the laboratory frame [Eq. (1)] but with all the noninvariant quantities primed. The

program transforms the laboratory-frame input parameters b, e and 3j1 in Eq. (1) into

their general-frame (primed) values b', e' and fl'11 with the aid of Eq. (16) and the velocity

addition rule. If sb' > 1, a notice appears on the screen of the terminal and the program

stops. Next, the program computes the general-frame critical coupling constant e' and

the corresponding pinch-point coordinates (k', ') in the general frame using Eqs. (28)-

(34) of Ref. 7. [These equations are the same as Eq. (6)-(13) with all the noninvariant

variables primed.] If e' < e', then the program prints the message "THERE IS NO PINCH

POINT" and stops. The interval e' - e' is broken into a sequence of values of the coupling

constant in the general frame starting with (E' + &'), ending with e', and incremented

by 6e'. Here 6c' is (e' - c')/XNEPS, where XNEPS is an input variable. The program

successively computes pinch-point coordinates for each member of the sequence by using

Newton's method to solve the conditions in Eq. (4) simultaneously. Initial estimates for

each value of the coupling constant are those obtained for the previous value of the coupling

constant in the sequence. Initial estimates for the first value in the sequence (ec + Se')

are (P', ' + iSIMAG). Here, SIMAG is a small positive number, which the program

instructs the user to input from the screen. This small positive value is needed to insure

that the computation leads to the pinch-point coordinates instead of the coordinates of

a saddle point which is not a pinch point. If s2 b' 2 > b= 1 - #, then the program

computes an approximate value of the maximum of the growth rate curve (Im(V') vs.

real '), obtained from the CRM dispersion relation in Eq. (1), before requesting a value
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for SIMAG. It is suggested that SIMAG be set equal to this maximum value divided by

XNEPS. If s2b'2 < b, ) then no aid is given the user in the selection of SIMAG. Values

in the range of 10- to 10-6 usually result in successful computation of the pinch-point

coordinates. [Note that an unsuccessful computation is indicated by a zero or negative

value of Im(',).]

FILES: The source file, the input file and the output file are described in the following:

1. CRMPINCHV.FOR: This is the source file written in double precision.

2. INCRMPINCHV.DAT: This is the input file. The following values are input in the

format 4F15.5 in the following sequence:

BEE BETAP EPSIL S

BETV XNEPS

XTOL XMAXIT WEIT

The quantities in Eq. (1) represented by the above FORTRAN input variables are b=BEE,

e = EPSIL, #11=BETAP, 6/r, = DELTA and s=S. These are laboratory frame val-

ues. BETV represents #,, the velocity of the general reference frame in the axial di-

rection relative to the laboratory frame. Users interested only in the laboratory frame

should set BETV=0.0. XNEPS is the number of increments between e' and c', dis-

cussed in the description of the algorithm. The value suggested is XNEPS=100.0. The

input variables XTOL, XMAXIT, and WEIT are described in the description of the

program CRMPIN.FOR. Suggested values for these parameters are XTOL=0.0000001,

XMAXIT=1000.0, and WEIT=0.2.

3. OPCRMDISP.DAT: This is output file. It first lists the laboratory-frame values of

the input parameters. This list is followed by a list of their values relative to the general

frame. The general-frame critical coupling constant e' and the corresponding pinch-point

coordinates are given next. Finally, the general-frame pinch-point coordinates (c',, k')

corresponding to the general-frame coupling constant e' are listed in the following format:

rekp= imkp= rewp= imwp=

The output is also typed on the screen of the terminal.
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H. DESCRIPTION OF PROGRAM EXEPSCRIT.FOR

PURPOSE: Program EXEPSCRIT.FOR computes the critical coupling constant 6, for

the CRM absolute instability as a function of #11, over an interval of p1j, for a given value

of sb. The program was used to construct the plot in Fig. 1. Use of EXEPSCRIT.FOR

is limited to the case of zero waveguide skin depth [i.e., S = 0 in Eq. (1)]. The program

GENCARM.FOR is applicable to the case of a nonzero skin depth.

ALGORITHM: The program calculates the critical coupling constant e,, for a sequence of

values of 01 starting from BETPAR, incremented by DBETP, and ending with BETPF. If

the condition in Eq. (9) is satisfied, then e,, and the corresponding pinch-point coordinates

(k,, &,) are computed using Eqs. (6)-(8). Otherwise Eqs. (10), (12), and (13) are used.

FILES: The source file, the input file and the output file are described in the following:

1. EXEPSCRIT.FOR: This is source file written in double precision.

2. INEXEPSCRIT.DAT: This is the input file. Input the following parameters in format

4F15.5 in the folowing sequence:

BEE BETPAR BETPF DBETP

In the above , BEE =sb, given in Eq. (1). BETPAR, BETPF and DBETP have been

described in the ALGORITHM above.

3. OPEXEPSCRIT.DAT: This is the output file. It gives the input value of sb, followed

by a table giving the critical coupling constant e,, and the corresponding pinch-point

coordinates (k,, C,) for each value of #1. The format of the table is:

betpar= epsilon= xk= xw=

Here, betpar= 11, epsilon=e,, xk =k,, and xw=cZ,. The output is also typed to the screen

of the terminal.
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I. Description of Program GENCARM.FOR

PURPOSE: Program GENCARM computes the critical coupling constant e, for the CRM

absolute instability as a function of #1, over an interval of 81, for a given value of sb. The

program is useful in constructing graphs similar to that in Fig. 1 for arbitrary values of

the skin depth 6. If b = 0, then the user should employ the program EXEPSCRIT.FOR

instead of GENCARM.FOR, because the former program is much easier to use and requires

much less CPU time than the latter program.

ALGORITHM: The program computes e, for the initial value of Oil specified by the input

variable BETAP. This value is successively incremented by the input variable DBETAP

until 01, exceeds the input variable BETAPF. For each value of 811, the program first

computes pinch-point coordinates for a value of the coupling constant specified by the

input parameter eo=XI. XI must exceed ec for all values of # over the interval of the

computation. XI is then decremented by the value of the input parameter DXI, and the

pinch-point coordinates (k,,Cu,) are recalculated. This process continues until Im(Co,) < 0.

Then the current value of XI is increased by DXI, DXI is reduced by a factor of 10, and

the process of decrementing XI is continued. The critical coupling constant e, is selected

to be that value of XI for which Im(c,) < 0 and DXI/XI first becomes less than DXIM,

where DXIM is an input parameter.

FILES: The source file, the input file, and the output file are described in the following.

1. GENCARM.FOR: This is the source file written in double precision. Since the IMSL

library is employed, the execute file is generated by the link command: LINK GENCARM,

IMSL$:IMSL/LIB.

2. INGENCARM.DAT: This is the input file. Input the following parameters in format

4F15.5 in the folowing sequence:
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BEE DELTA

BETAP BETAPF DBETAP

XMM XNN

XI DXI DXIM

Re(X(1)) Im(X(1)) Re(X(2)) Im(X(2))

XTOL XMAXIT WEIT

Quantities in the CRM dispersion relation in Eq. (1) represented by the FORTRAN input

variables are b=BEE and 6/r,=DELTA. The initial value, increment, and final value

of #, are BETAP, DBETAP and BETAPF, respectively. The TEmn mode is specified

by m=XMM and n=XNN. The FORTRAN variables XI, DXI, and DXIM have been

described in the description of the algorithm. DXIM determines the accuracy to which

6c is determined. The value DXIM=0.0001 is typical. However, selecting a smaller value

does not greatly lengthen CPU time. The selection of a proper value for XI requires

some experience in running the program and familiarity with Refs. 6 and 7. The use of

Fig. 1 is also helpful. The selection of a value of XI that is too large results in undue

use of CPU time. If the value selected is too small, then XI will not exceed 6, over

the full range of Oil and the program will stop before completing the computation. The

proper choice of DXI also requires some experience in the use of the program. In order

to calculate the pinch-point coordinates when decrementing XI by DXI, the program uses

the coordinates obtained in the previous step as the estimates for Newton's method in

the current step. Consequently, a choice of DXI which is too large may results in the

calculation of coordinates for a saddle-point which is not a pinch-point. The program will

then compute an incorrect result for e,. On the other hand, a choice of DXI which is too

small will result in undue use of CPU time. In order to compute pinch-point coordinates

at the first step of the algorithm (i.e., for e=XI and f31=BETAP), the program requires

initial pinch-point coordinate estimates (k,&,) for Newton's method. These are provided

by the complex input variables X(1) and X(2) for k, and c,, respectively. Values for X(1)

and X(2) can be obtained with the aid of the programs CRMPIN.FOR, APCVPIN.FOR,

and CRMPINCHV.FOR. The input variables XTOL, XMAXIT, and WEIT are described
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in the description of the program CRMPIN.FOR. Suggested values for these parameters

are XTOL=0.0000001, XMAXIT=1000.0, and WEIT=0.2.

3. OPGENCARM.DAT: This is output file. The output first lists the input variables.

Then follows a table of three columns, marked as I, betap and epsilonc. Here betap = #1,

and epsilonc=Ec. A value I=1 indicates that the iteration in Newton's method converged

for the last step of in the calculation of ec for the corresponding value of #11. A value I=0

shows that the computation terminated after MAXIT steps, indicating that the iteration

did not converge. The format of the table is as below:

I betap epsilonc

The output is also typed on the screen of the terminal.

REMARKS: For reasons that have not been investigated, it is very difficult to make the

computation in GENCARM.FOR converge for small values of sb (i.e., sb < 0.4). If the

skin depth is zero, then the program EXEPSCRIT.FOR should be used instead of GEN-

CARM.FOR, because the former program is much easier to run and uses much less CPU

time than the latter. GENCARM.FOR runs very slowly on the PFCVAX. The CRAY ver-

sion of the program is GENCARMC.. The dispersion relation is in subroutine FN and is

easily replaced by another dispersion relation. Users also may find it is necessary to mod-

ify the read statements, write statements, variable declaration statements, and common

statements.

J. Description of Program GENCARMC. This program, written in single precision,

is the CRAY version of GENCARM.FOR. Directions for running it are the same as for

GENCARM.FOR, except that a CRAY routine such as COSMOS must be used to compile

the program. The name of the input file is INPUT, and the name of the output file is

OUTPUT.
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FIGURE CAPTIONS

1. Plot showing parameter regions of absolute instability for the CRM for the case of

zero waveguide-wall resistance. The coupling of the beam mode and the waveguide

mode produces absolute instability if the point (01, e) lies above the curve of sb for

the beam-mode harmonic.

2. Schematic plot illustrating the input variables WINIT, WFINL, and DLTIW for the

programs CRMWK.FOR and CRMWKC..
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