
PFC/JA-89-45

Growth and Frequency Pushing Effects

in Magnetron Phase-Locking

Chen, S.C.

Plasma Fusion Center

Massachusetts Institute of Technology

Cambridge, MA 02139

October 1989

This work was supported by Harry Diamond Labs (Army) Contract DAALO2-89-K-0084



Growth and Frequency Pushing Effects in Magnetron Phase-Locking

S.C. Chen

Plasma Fusion Center

Massachusetts Institute of Technology, Cambridge, MA 02139

ABSTRACT

A magnetron-specific equivalent-circuit model has been developed which takes into

account the unconventional magnetron growth characteristics as well as the frequency

pushing effect. These effects, which owe their origin to the highly nonlinear electron-wave

interaction, are shown to play important roles in the magnetron phase locking process.

The model predicts a wider locking-bandwidth and a shorter locking time than those in

conventional locking theory. The phase-locked amplitude resonance occurs, as the results

indicated, at an injection frequency different from that of the free-running oscillator.
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I Introduction

The past ten years have seen the rapid progress made in the research on high power

microwaves. 1-3 Phase control of high power oscillators appears to be the logical and the

promising means for harnessing and enhancing the unprecedented power output.4-6 The

relativistic magnetron, with its reentrant nature and high efficiency, is an especially desir-

able candidate as the heart of a phase-locked system.7- 9  Research in this area has been

very active and major results were achieved recently in a short-pulse experiment. 0 Long-

pulse operation"1 4  and the subsequent phase-locking" of relativistic magnetrons,

provide more interesting application possibilities and involve greater technical challenges

not encountered in the short-pulse experiments.

Frequency pushing effect, which has been observed experimentally in relativistic mag-

netrons recently,' 6 was identified and proved to be of critical importance in obtaining

phase control. 17
,"

8  On the other hand, phase locking of pulsed oscillators - especially

those with a cavity fill time comparable with (or not much longer than) the pulse length

- requires attention to the details of the magnetron growth process. The ubiquitous

van der Pol equation' 9 lacks both the magnetron-specific growth and frequency pushing

effects; hence will not serve the purpose of a magnetron model equation. However, the

highly nonlinear crossed-field interaction in magnetrons involves very complex geometry

and particle dynamics, hence the grow-frequency characteristics (or, equivalently, the dis-

persion relation) cannot be calculated easily from first principles. It is the purpose of

this paper to temporarily de-emphasize the differences between the relativistic and the

conventional magnetrons, and to apply the conceptually simple approach - modelling

the growth/frequency features within the lumped-circuit model - to obtain fundamental

understanding of the phase-locking behavior in magnetrons.

Section II discusses the operating features of magnetrons and justifies the choice of

model equations for the electronic conductance and susceptance using two independent

simulation techniques. An equivalent circuit model based on the model equations is con-

structed, followed by an analysis of the free-running oscillator state. In section III, phase
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locking with weak injection near the oscillator frequency is analyzed. Important effects

due to the magnetron-specific features are identified.
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II. Signal growth and frequency-pushing in magnetrons

One distinct feature that sets magnetrons apart from other oscillators is the growth

and saturation characteristics. This is illustrated qualitatively in Figure 1, in which the

electronic conductance 9 (the ratio of RF current and RF voltage) is plotted against the RF

voltage. The conductance curve for magnetrons (Figure la) assumes a "concave" shape

with a second derivative greater than zero. This phenomenon, namely the existence of

finite RF current even with very small RF voltage, has long been observed in magnetron

operation. 20 ,21 The state of zero current is extremely unstable which, with very small

perturbation, breaks into a state of large current. This behavior, which differs drastically

from that of most conventional self-excited oscillators (Figure 1b), leads to some unique

properties in magnetrons to be described in the following.

To model this magnetron feature, Slater 20 ,21 suggested using

1 VD C
g-1) (1)R V

to relate the conductance to the rms RF-voltage (see Figure la). This is to be compared

with the more conventional expression for other oscillators (Figure 1b)

V2

9=go(1~ 2) (2)
V 2VDC

(where go is the small-signal gain) which can often be derived from first principles.19

In addition to the in-phase component of the RF current which governs the temporal

growth, of equal importance is the contribution from the out-of-phase RF current which

determines the output frequency. Frequency-pushing, namely the frequency change caused

by the presence of the electron space charge - the same space charge responsible for the

gain -, is modeled by the following expression 20 ,21

b = bo - g - tana. (3).

The relationship between the real and imaginary parts of the frequency (susceptance b and

conductance g) is evident from Figure 1. It should not be surprising that the frequency
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pushing effect, represented by the pushing parameter a of order unity, plays a major role

in magnetron phase locking since the angle a characterizes the phase lag between the

electron bunch and the resonant wave. In simple devices like reflex klystrons, the angle

a is found to be the deviation of the average transit-time from 2pr (for 1-mode) in the

repeller region.2 1 It is believed the angle a in magnetrons is directly related to the angle

between the rotating electron spoke and the RF voltage peak.

To justify the choice of the model equation (1), we have22 extended an existing semi-

empirical model of conventional magnetrons 23- 27  and applied the model to examine

the behavior of the electronic conductance. The important variable in this theory is a,

the relative phase angle between the rotating space charge spoke and the RF-peak. By

assuming the existence of spokes with shapes suggested by particle simulations 28 ,29 , and

with a charge density distribution given by the Brillouin model"0 , the electron currents are

calculated under synchronism conditions. Each spoke is treated as one macroparticle with

assigned charge and calculated average velocity components. The RF field in the cavity

is calculated from the energy conservation equation, which involves modeling the particle

loss mechanisms in the anode and cathode as well as the RF loss due to the finite cavity

Q. With the system of equations, it is possible to find the operating point self-consistently,

and to predict the saturated power level and the output frequency. Such a model scales

correctly over a wide range of known magnetron designs. 23

We have developed a computer program based on this model and applied it to the

4J50 magnetron (high power X-band, see Vaughan2 3 for tube parameters). By changing

the loading level at the output, the corresponding operating RF-amplitudes under steady-

state condition were monitored. The result is shown in Figure 2a. We have22 successfully

reproduced the gain characteristics ( Figure 2a) described by Eq.(1).

A second approach was taken by Dombrowsky3 1 using a more elaborate simulation

scheme.3 2 The result of the simulation is shown in Figure 2b.

The spoke model 22 and the Dombrowski simulation3 1 thus provide independent means

of confirming the 1/V1.pF dependence of the magnetron growth.
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Based on the magnetron-specific models for g and b described in equations (1) and

(3), we then proceed to construct an equivalent-circuit model and study the steady-state

and the phase-locking operation in magnetrons.

The model is based upon the general oscillator equation derived from the standard

parallel RLC circuit (see Figure 3). The magnetron gain mechanism is repr-esented by a

shunt electronic admittance g + ib. The single-mode oscillator equation for this circuit is

g-+ib W wo 1 G-+ iB
= -( )+ + , (4)

CWO WO W Qo Qe!t

where G + iB is the voltage-dependant nonlinear complex admittance of the load. In the

equation, w is the output frequency, wo = , Qo = RCwo, and Q..t is the external Q.

Inserting (1) and (3) into (4), and separating the real and imaginary parts, the steady-

state values of the amplitude VRFO and frequency w' for a free running magnetron are found

to be
VDC 1

'RFO 2RC lwo( ±R O) (5),

and
1 bo Bwo wo - tana
= C Qezt 2 QL

Equation (6) contains both the frequency pulling (B) ) as well as the pushing 2"QLtn

terms. We define a growth parameter

1 1 1(7
y= -wo( + )(7)

2 QL RCwo

for later convenience. The amplitude and frequency evolution in magnetron start-up phase

can be calculated under situations when the frequency is much greater than the growth

rate w > -y, hence the growth process can be approximated adiabatically by a succession

of instantaneous steady-state solutions. The oscillator equation is then modified by the

addition of a temporal growth rate -ir(t) to the frequency w

g+ib . w -iF wo 1 G+iB
COO WOo -Li; Qo Qezt

where

P(t) = (9)
VBF
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The real part of (8) again governs the growth

g 1 2
S- -(t). (10)

CWo QL wO

Inserting (1) into (10) and using the definition of f (Eq. (9)), one obtains the RF amplitude

equation

VRFO)
"R F S 7-( R. (1

VRF

The solution of (10) gives the RF amplitude evolution in magnetrons

VRF(t) VRFO - (1 - e(12)

where

1 - ~ 1 (13)
VRF

characterizes the initial signal level in the tube. The interesting implication is that the

stage of starting from noise is rapidly passed through, and a linear (not exponential) build-

up then brings the system to saturation in a manner similar to a capacitor charging up.

The detail mechanism behind these observations for magnetrons, however, remains largely

unexplored.

Solving the equation obtained by taking the imaginary part of (8), one finds that the

output frequency evolves according to

w(t) = w' - tana 1 (14)

and approaches the steady-state free running frequency w' defined in Eq.(6).
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III. Phase locking of magnetrons

We follow the techniques developed in previous work 20 ,2 1 ,3 3 ,3 4 and treat the locking

source as part of the magnetron load which injects counter propagating I, and Vi at a

frequency wi. The total admittance, including the locking source, at the load for the driven

magnetron is

Ie''o + Ieiw'i I 1 + ife"'i(WIw)t

Vei '' + V ies"' V 1 + -yei(w 1-w )t ( )

- [1 + (El - Ev)e' 'Iw)t + (,2 - EVEI)e2i2,i-,)t + O(C3)],

where

eV 1  '1 (16)V I

Consider the case of injection locking with a weak reference signal and neglect the

O(E2,) terms in (15), the admittance simplifies to

Y (t) ~ (G + iB) - (1 + (ci - ev)ei(wi'W)t), (17)

where G + iB is the matched load admittance as in Figure 3. It is convenient to define the

injection parameter p , the injection phase 9i, and the relative phase 0 as follows:

1 -p = 2(,E - ev) - v/G2 + B 2  (18)
2

Oi = sin1 B (19)
v/2+ B2

0(t) = q-Ma(t) - (wit + 9i). (20)

Introducing the total load admittance (17) into the oscillator equation (4)

g +ib w wo 1 G + iB + 2pe-i[-('t+Oi)]
S  (- -) + +Q, (21)

cWO WO W Q0 Qezt

and separating the real and imaginary parts, we have

g 1 2pcos9 (22)
cWO Q Qemc

b 2(w - WO) B 2psinB (23)
cWO Q.t Qext
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In deriving (23), we have assumed w ~ wo for simplicity. This formulation is valid for

oscillators in general, since the form of g and b has not been specified yet.

It is interesting to point out that although the magnetron-specific features (1) and (3)

were repetitively described and emphasized in Slater's work20 '2 1, they were not included

in his phase locking calculations. 20 Here we introduce Eqs. (1) and (3) into Eqs. (22)

and (23) , and obtain the equations for driven magnetrons. The equations governing the

amplitude and the frequency evolution are

1
VRF (t) = VRFO pwoco4(t))

1+ QewtY

and

w(t) - W' = 0) (sinB(t) - cosD(t) . tana). (25)

To simplify the equations, we normalize all frequencies with respect to wo and introduce

the dimensionless injection and detuning parameters into (24) and (25)

y = , - . (26)
Qex' LOO

The resultant equations

1
VIRF = VRF(O(t)) = VRFO (27)

(1 + Cos 0(t))

and

dt sin(9 - a) + a (28)
dt |Cosa |

describe the amplitude and the relative phase evolution. It is important to realize the

parameter range in which the analysis is valid. The assumptions we have made so far can

be conveniently collected in terms of a simple inequality which relates frequency, growth

parameter, injection amplitude, pushing parameter, and frequency difference:

1= WO > -y > P >1 0- . (29)
1 cosa I

The condition under which phase locking occurs is obtained by setting (28) to zero

for steady-state,

> -, (30)
cosal
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which reduces to the familiar Adler's condition3 5 p ;> o when the frequency pushing

parameter a is zero. The widening of the locking frequency range can be quite appreciable

depending on the amount of frequency pushing. The experimentally observed magnitude

of a ranges roughly from 0 to 1.5 depending on the operating DC voltage. Under normal

operating condition, it is on the low side. An a of 0.25 is chosen as the typical value and is

used in the following analysis. The final relative phase of the locked system is also modified

by the nonzero pushing parameter a

Oc = Sin-1(-- 0 1 CosaI) +a. (31)
Y

To summarize the steady-state behavior of the weak injection phase locking system

near the fundamental locking zone, we combine the phase and amplitude equations (27)

and (28) by cancelling the O-dependance. The resultant equation

( -1)2 To0R 1)2 - (f)2 cosa + - sina)2 (32)

contains the dependance of output amplitude VRF on three parameters: the injection

parameter p' = p/1 cosa | , the pushing parameter a, and the detuning parameter a. The

effect of the frequency pushing can be singled out by comparing the above equation with

the case when a = 0
VRO-1)2 .2

Figure 4 illustrates this comparison by showing the loci of the steady phase-locked states

on the e-VRp plane for -y = .1. Different curves correspond to different values of injection

amplitudes it. Figure 4 depicts the dependance of VR on a for the case of (a) no frequency

pushing (a = 0), and (b) finite frequency pushing (a = 0.25). The free-running state is

represented by the point o = 0, Vp.F/VRFO = 1. It is clearly seen in Figure 4a, that

the loci of the phase locked states for weak injection form a family of "ellipses" with

an eccentricity e = V1 - -y2. The deviation of the "ellipses" from exact elliptical shape

is caused by the unconventional form of the growth model (1); the results obtained for

conventional oscillators based on (2) form evenly spaced ellipses with a common geometric
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center. Characterized by an injection parameter ji, each ellipse in Figure 4 consists of

two branches. The result of a stability analysis established the existence of a stability

criteria (cos 0 1,k < 0), shown in Figure 4 as the dashed line. Only the upper branch of

the double-valued ellipses constitutes the stable solutions.

A nonzero a causes the ellipses to rotate around the origin (Figure 4b) . In phase-

locked states, the frequency pushing effectively rotates the ellipses by an angle

01 = tan-'(-y sina), (34)

which results in a wider locking bandwidth, as described by (30), than the conventional

Adler's condition. The maximum power output, that is, the amplitude resonance, occurs

at an injection frequency detuned from the free-running value

n = [I sina. (35)

The amount of detuning, namely the difference of the optimal injection frequency and the

free-running frequency, can become appreciable with large p. For example, the detuning

can be 1% for a p of 0.4.

The boundary between the stable and the unstable branches, shown in Figure 4 as

the dashed line, is also tilted by an angle

_ _ _sin2a 1 sin2a
02 = tan - tan- . (36)

2-y(1 - (11111)2) 27

The tilting effectively makes the phase-locked power output asymmetrical with respect to

the injection frequency.

Transient behavior is of special interests in the case of phase locking pulsed oscillators.

The transient solution for the locking process is obtained by integrating (28) with respect

to time. For the locking case (o < tt'), the relative phase evolves according to

0(t) = 2 tan -1 - + A 1 + DeAt
U a I - DeAt
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where

A = '2_2 (38)

is the characteristic time and

o tan~ 0 - +1 - A
D =0 2 .(39)o tan -- + '+ A

is the parameter characterizing the amplitude of the transient. It is easily shown that

0(0) = -0j, and 0(oo) = Olock. As (37) indicates, phase locking is a continuous process

which occurs on a time scale T 0ck. The locking time TOcIk is a function of (A,D), which

in turn depends on the parameter set (I, u, a, Oi). Using (37)-(39), it can be proved, and

has been demonstrated by numerical examples, that the frequency pushing effect (a / 0)

shortens the locking time independent of the sign of a!

For the unlocked case (o > i'), the relative phase evolves according to

A'q + (kt'q + o) tan Lt
O(t) = 2 tan-'( 2) + a, (40)

A' q - (aq + p') tani-t

where

A' = -2  _ j12  (41)

and

q tan 2 (42)

In the extreme case when the two frequencies are far apart (p' < a), simple beating is

recovered

O(t) = - + 0 - t. (43)



IV. Conclusion

We have constructed a magnetron-specific equivalent-circuit model for the study of

the steady-state and the phase-locking operation in magnetron oscillators. The unconven-

tional magnetron growth characteristics lead us to believe that the state of pre-oscillation

equilibrium is extremely unstable which, with very small perturbation, breaks into a state

of large current. The magnetron growth process rapidly passes through the stage of start-

ing up from noise, followed by a linear (not exponential) build-up which then brings the

system to saturation. More theoretical effort is needed to explain the phenomena.

Besides the growth characteristics, the frequency pushing manifests itself in many

important effects in magnetron phase locking. Among which: the locking bandwidth is

wider than the usual Adler condition; the resonance of the phase-locked amplitude occurs

at frequencies different from the free-running frequency; the time required for locking to

occur is shortened by the frequency pushing effect; and the relative phase of the locked-

state is modified by the pushing parameter.

Recently, the importance of frequency pushing effect on the phase locking of regener-

ative oscillators has also been identified and studied by modeling the nonlinear frequency

shift with a Duffing (cubic restoring force) term in a van der Pol oscillator."," The connec-

tion between the two frequency pushing effect models - namely the van der Pol/Duffing

oscillator and the magnetron equivalent circuit model - is currently under study. It

is also possible to construct a magnetron oscillator differential equation containing both

the growth and the frequency features, which will be applied to the modelling of general

magnetron related phenomena on the oscillation time scale.
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Figure Captions

Figure 1 Electronic conductance g and susceptance b as functions of the rms voltage in the

RF-field for (a) magnetrons, and (b) conventional regenerative oscillators.

Figure 2 Calculated magnetron electronic conductance g as a function of Va . (a) The 4J50

magnetron operating at steady-state with three different DC-voltages are calculated

using macro-spoke model (Chen). (b) The 2J32 magnetron starting up from injected

noise is calculated using macro-particle simulation (Dombrowski). Both (a) and (b)

produced the g-dependance described by the model equation (1).

Figure 3 Equivalent circuit used in modelling magnetron operation. g+ib is the complex admit-

tance describing the electron-wave interaction. G+iB represents the load admittance.

RLC-circuit models the magnetron resonance cavity with loss.

Figure 4 Amplitude (i V ) versus normalized frequency difference a in the phase-locked states

for three injection amplitudes y = 0.01,0.02,0.03. (a) No frequency pushing, each

ellipse corresponds to an injection parameter p. (b) The effect of frequency pushing

(a = 0.25) rotates the ellipses and results in a wider locking bandwidth and a shifted

amplitude resonance frequency.
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Figure 1 Electronic conductance j and susceptance b as functions of the rms voltage in the

RF-field for (a) magnetrons, and (b) conventional regenerative oscillators.
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Figure 4 Amplitude (d'z) versus normalized frequency difference o in the phase-locked states

for three injection amplitudes 1i = 0.01,0.02,0.03. (a) No frequency pushing, each

ellipse corresponds to an injection parameter u. (b) The effect of frequency pushing

(a = 0.25) rotates the ellipses and results in a wider locking bandwidth and a shifted

amplitude resonance frequency. 21
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