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KINETIC RAY TRACING IN TOROIDAL GEOMETRY WITH
APPLICATION TO MODE-CONVERTED ION-BERNSTEIN WAVES

A. K. Ram and A. Bers

Plasma Fusion Center, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02189, U.S.A.

ABSTRACT

We discuss results of detailed numerical and analytical studies on the propagation
of ion-Bernstein waves (IBW) in a toroidal plasma. Such waves can be excited by mode
conversion of an externally launched fast Alfvén wave near the ion-ion hybrid resonance
(or near the second harmonic resonance for a single ion species plasma) in a tokamak. We
find that there is a significant upshift in the poloidal mode numbers of the IBW over short
radial distances of propagation so that the IBW can Landau damp onto the electrons. The
numerically obtained results are corroborated by a simple analytical model.

INTRODUCTION

It is well known that, for small k; (the component of the wave vector along the total
magnetic field), the fast Alfvén wave can couple to the IBW near the ion-ion hybrid (or
second harmonic) resonance layer. We study the propagation of this IBW in a toroidal
plasma using a numerical ray trajectory code that evolves the amplitude of the IBW along
the ray. Results show that there is a substantial upshift in k| as the IBW propagates
essentially radially and that the amplitude of the IBW decreases significantly in the region
where there is damping. The energy of the IBW is Landau damped onto the electrons. This
could partially explain the electron heating that has been observed in the ICRF heating of
various tokamak plasmas. We give details of the numerical and analytical models used for
studying the propagation of the IBW and discuss some of the results obtained from these
models.

NUMERICAL RAY TRAJECTORY ANALYSIS

A numerical code has been developed which solves for the propagation of rays in
three-dimensional toroidal geometry [1]. The local dispersion function, D(k,w ,7), used for
following the rays is obtained from the fully electromagnetlc hermitian dielectric tensor
[2,3] describing a kinetic, hot Maxwellian plasma. Here 7= (r,8, ¢) is the position vector
where r is the radius measured from the magnetic axis of the torus, 6 is the poloidal
angle, and ¢ is the toroidal angle; k= (kr,m,n) is the wave vector with components k,, m
and n in the radial, poloidal and toroidal directions, respectively; and w is the frequency.
The spatial profiles of the density, temperature, and the magnetic field components are
included, in a WKB sense, explicitly in D. Besides the usual ray trajectory equations:

dk _ (dD/oF) dF _ (0D/oFk) )
dt  (8D/ow)’ dt  (8D/dw) W



the numerical code also solves for the variation of the wave energy density, U, along the
rays [2,3]:
oU -
- +V- ( U ) + aa” =0 (2)
ot
where 5 is the hermitian part of the conductivity tensor and & is the slowly varying
(complex) part of the electric field of the wave. The relation between U and 4 is given by:
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where o a is the anti-hermitian part of the conductivity tensor, k2 =k- k c is the speed of
light, I is the unit tensor, and det(D) = D(k,w, 7). The second term in Eq. (2) describes
changes associated with the convergence and divergence of a bundle of rays and the third
term describes changes in U due to damping of the wave energy on the particles.

The ray trajectory code can describe the propagation of waves of different frequencies
in a variety of plasma equilibria. We have used it to study the propagation of the IBW
in an axisymmetric plasma with no equilibrium radial magnetic field. For the results
obtained in figs. (1-4) we have used JET-type parameters assuming a deuterium plasma
with a 4% hydrogen minority (i.e. the ratio of the hydrogen to deuterium densities is 0.4),
peak electron density of 2.8 x 1013 ¢m.™3, peak electron temperature of 1.8 keV, peak ion
temperature of 1.7 keV, toroidal current of 2 M A, minor radius of 125 cm., major radius
of 300cm., a toroidal magnetic filed on axis of 2 Tesla, the ¢ = 1 surface at r = 50 cm.,
and w = 1.93 x 10® sec™!. The electron temperature profile is as given in [4], and the ion
temperature and the electron and ion densities are assumed to vary like [1 — (r/a)?]*® (a
being the minor radius) with their peak values being on the magnetic axis. Fig. 1 shows the
poloidal projection of two IBW trajectories starting off at » = 16.9 cm., 6 = 2.58 radians
(ray 1) and r = 17.6 ¢cm., 8 = 2.51 radians (ray 2). These initial points are on the high
field side and very close to the mode conversion region. Both rays at the starting point have
m = 0. The rays start propagating essentially in the radial direction before turning into
the poloidal direction. The intersection of the rays is an artifact of the poloidal projection
as the rays are separated toroidally at this point. The distances of propagation shown are
very small compared to the minor radius. Fig. 2 shows the change in m as a function of wt
(the normalized time of propagation of the rays). (The time period shown is exactly that
over which the ray trajectories in fig. 1 are plotted.) There is a significant enhancement
in |m| for short distances of propagation. The evolution of the amplitude of the electric
field, |@|, (assumed to be unity at ¢ = 0) is shown in fig. 3. The initial increment in |a] is
due to the convergence of the nearby rays. Thereafter, the rays diverge toroidally leading
to a decrease in |@|. The sudden drop in |d| after wt ~ 350 is primarily due to the damping
of the waves. This can be observed in fig. 4 where we have plotted the electron Landau
resonance parameter (Yoe = w/ [\/§|k” |v¢e] Where vy is the electron thermal velocity) along
the rays. Prior to wt =~ 150, yo is much larger than three. The sudden drop in |d| is
closely associated with yo. &~ 1. Thus, the IBW Landau damps onto the electrons after a
short distance of propagation. The damping is due to a considerable enhancement of the
poloidal mode numbers.
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ANALYTICAL MODEL FOR THE UPSHIFT OF POLOIDAL MODE NUMBERS
In the vicinity of the mode-conversion region where k; p; < 1 (p; is the ion Larmor
radius, and k is the component of k perpendicular to the total magnetic field) an approx-
imate form for the local dispersion function, D®PP, is obtained by expanding the full D to
fourth order in k p;. Since k; p. < 1, D*PP contains only the cold electron contributions.
For a deuterium-hydrogen plasma, we obtain:

D" = oo k% + a, K2 + a3 (4a)

where:
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and, y, = (w — nwcd)/(\/ilk“]vtd) for n = 0,2; weca (wpq) is the local deuterium cy-
clotron (plasma) frequency, Z is plasma dispersion function, € = (v2;/w?2,) with vy as
the deuterium thermal velocity, and 7 is the ratio of hydrogen to deuterium ion densi-
ties. Here we have assumed that the two ion species are at the same bulk temperature.
Eqn.(4a) can be written in a coupled mode form and the propagating IBW is then given
by (k1 )35 = —(a1/ap) away from the mode-conversion region. We use this form of (k, )rp
with the added assumption that k is small (so that the asymptotic form of Z-functions
can be used). Since the numerical results show that the IB ray propagates for short radial
distances we ignore the variation in temperatures and density along the ray and include
only the poloidal and radial variations of the magnetic field. The rate of change of m is
related to the poloidal variations of D®P? so that the toroidicity included in the magnetic
fields is important. The resulting equation relating the change in m to a change in r is
given by:

2 wfd ( v2, wi, rsind
- 2+11 -4 “ Ar

Am 3 k2, TS ) (R + rcosb) (5)
where we assume that k, = (k. );B. For the parameters shown in figs. (1-4) we find
that Am ~ —0.82Ar for ray 1, Am =~ —0.92Ar for ray 2. With Ar = 20cm. this gives
Am = —16.4 and —18.4 for the two rays, respectively. This is in good agreement with the

numerically obtained results in fig. 2.
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Figure 1: Ray trajectories in the
poloidal plane.
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Figure 2: Poloidal mode numbers (m)
along the rays.
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Figure 4: Electron Landau resonance
parameter along the rays.

Figure 3: Amplitude of the electric
field along the rays.



