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ABSTRACT

This paper contains a linear analysis of pulse shapes produced by a spatial and temporal
delta-function disturbance of cyclotron-resonance-maser modes for the case where the ini-
tial equilibrium state is free of radiation. A pinch-point analysis based on the theory of
Briggs and Bers is employed. Numerical and analytical techniques are developed for the
straightforward calculation of pinch-point coordinates in a reference frame moving with
arbitrary velocity in the axial direction. Examples analyzed include the absolute instabil-
ity in the waveguide operating mode, in higher harmonics of the operating mode, and in
lower-frequency waveguide modes when the operating mode is a higher-order waveguide
mode. Effects of waveguide wall resistance on pulse shapes and the effectiveness of such
resistance in suppressing or reducing the growth rates of absolute instabilities are also
analyzed.



1. INTRODUCTION

During the past three decades considerable interest has developed in the employment

of the cyclotron-resonance-maser instability for the efficient generation of high power radi-

ation with centimeter to submillimeter wavelengths (Schneider 1959; Flyagin et al. 1977;

Bratman el al. 1981; Fliflet 1986; Chu & Lin 1988). Devices employing this instability are

generally referred to as cyclotron resonance masers (CRMs). The two principal operating

regimes for the CRM are that in which the phase velocity of waveguide radiation is much

greater than c and that in which the phase velocity is close to c. Devices operating in the

former regime are referred to as gyrotrons, whereas those operating in the latter regime

are referred to as cyclotron autoresonance masers (CARMs). Much of the work presented

in this paper is an outgrowth of theoretical and computational work done in support of

present and proposed CARM experiments at M.I.T. (Pendergast et al. 1988; Danly et al.

1988; Danly et al. 1989). This paper also compliments an earlier paper on pulse shapes in

the free electron laser (FEL) (Davies, Davidson & Johnston 1988).

A problem which must be addressed in CRM design is the presence of absolutely un-

stable CRM modes (Lau et al. 1981 a, b; Lin, Chu & Bromborsky 1987; Chu & Lin 1988;

Lin, Lin & Chu 1988; Davies 1989). The growth of radiation in such modes may suppress

the growth of radiation in the desired CRM mode, which is typically a convective mode.

An instability in an unstable medium is convective if the respouse of the medium to a

perturbation (localized in time and space) propagates as a growing pulse away from its

source. The instability is absolute if the response is a growing pulse which encompasses its

source. The nonrelativistic, linear theory of the shapes of such pulses is given by Briggs

(1964) and Bers (1983). The relativistic theory appears in Bers, Ram & Francis (1984),

and a detailed summary of the latter work is given in Davies et al. (1988). Consequently,

we give only a brief, qualitative summary of the theory. The response of a one-dimensional,

spatially-unbounded medium to a delta-function disturbance in space and time can be ex-

pressed in the form of an inverse temporal Laplace transform and an inverse spatial Fourier

transform. The laboratory-frame dispersion relation for a system [D(k, w) = 0] gives rise

to images in the complex k-plane of contours in the complex w-plane. In particular, the
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contour for the inverse Laplace transform (referred to as the L-contour), has images in

the complex k-plane. The existence of absolute instability is determined by lowering the

L-contour towards the real w-axis and observing the behavior of its images in the complex

k-plane. If during this process two L-contour images (one from above the real k-axis and

one from below this axis) merge to form a saddle point in w(k), then absolute instability

is present. Such a saddle point is called a pinch point, and it is characterized by the com-

plex coordinates (k,,w,) of the saddle point. The temporal growth rate of the absolute

instability is given by Im(w,) > 0. Pulse shapes, giving the time-asymptotic response of

the system to a delta-function disturbance 6(z)6(t) are obtained by carrying out such a

pinch-point analysis for a general reference frame moving with an arbitrary normalized ve-

locity 0, = v/c in the spatial direction (z) of variation of the one-dimensional system. The

general-frame dispersion relation is D,(k',w') = D(k(k',w'),w(k',w')) = 0, where (k,w)

and (k', w') are related by the Lorentz transformation. The time-asymptotic pulse ampli-

tude G(z,t) (relative to the laboratory frame) is given by InG(z = vi,t) ~ tIm(w')/7,,,

where w' refers to the pinch point in the general frame and -t, = (1 - '6)- Such a pulse

is conveniently represented by a plot of t-'lnG(z = vt,t) = Im(w')/y, vs. #,. If the

pulse encompasses the point # = 0, absolute instability is present. The growth rate of

the absolute instability is the height of the pulse at 8v = 0.

The purposes of this paper are to investigate pulse shapes for the CRM and concur-

rently to present numerical and approximate analytic methods for determining absolute

instability growth rates both for the case of zero and nonzero waveguide-wall resistance.

The feasibility of suppressing absolute instability by introducing waveguide-wall resistance

is also investigated. The treatment in this paper is limited to the case of TE,,, waveg-

uide modes. In §2 the laboratory-frame CRM dispersion relation, for the case of zero wall

resistance, is extended to a general reference frame moving with arbitrary velocity 6,3c in

the z-direction. The simplified form of this dispersion relation used in the analysis is given

by (7). In §3 straightforward techniques are developed for determining pinch points of (7).

Approximate expressions are determined for general-frame pinch-point coordinates valid

when sb' > 1, where s is the beam harmonic and b' is the general-frame normalized applied

magnetic field strength in (8). These approximations appear in (25)-(27). We have not
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developed approximate expressions for pinch-point coordinates over intervals of fl, where

sb' < 1. However, at the end of §3, a simple, straightforward method is presented for

numerically computing exact pinch-point coordinates when sb' < 1.

In §4 several numerically computed examples of CRM pulses are presented. For an

applied axial magnetic field sufficiently stronger in comparison with the grazing field (typ-

ical of the CARM), there are two pulses: an upshifted pulse which is convective, and a

downshifted pulse which may show absolute instability. In normal operating regimes, the

FEL also has two such pulses. However, the two CRM pulses are connected at a value of

3, approximately equal to the beam velocity, whereas typically FEL pulses are separated.

As the applied magnetic field is reduced to (or below) the grazing value (typical of the

gyrotron), the CRM pulses merge into a single pulse. Examples are presented for abso-

lute instability in the waveguide operating mode, absolute instability in higher harmonics,

and absolute instability due to operation in a waveguide mode above the lowest frequency

waveguide mode.

In §5 we analyze finite skin-depth effects on pulse shapes and on growth rates of

absolute instabilities. In §5.1 the laboratory-frame CRM dispersion relation with 6/re >

0 is extended to the general reference frame for the special case of TEO, modes. For

simplicity, it is also assumed that the waveguide-wall permittivity and permeability are

exactly one in the laboratory frame. In a numerical example, it is found that the effect

of increasing 6/r, is to move the left edge of the pulse to the right (i.e. to larger values

of 0'). A shift of this edge from negative to positive #, converts an absolute instability

into a convective instability. In §5.2 we consider the effectiveness of a nonzero value of

6/r, in suppressing or a least reducing the growth rate of an absolute instability. The

treatment includes TEmn modes for arbitrary values of m. The discussion covers the

range of 0.5 < 81 < 1.0, which is the range of interest for the CARM. Figure 11 can

be used to determine whether or not the use of wall resistance to suppress an absolutely

unstable mode is a practical possibility. Approximate analytical formulas giving the effects

of 6/r, on laboratory-frame pinch-point coordinates are developed. Equations (48)-(50)

are applicable to the case where sb > 1. Equations (51) and (52) are of general applicability

and give finite wall-resistance corrections to previously computed pinch-point coordinates
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for 6/r, = 0. Two numerical examples are presented in §5.2. In the first example, the

waveguide-wall resistance is found to substantially reduce the growth rate of an absolute

instability in the second beam harmonic when the operating mode is the first harmonic for

a TE11 mode. In the second example, wall resistance is found to be ineffective in reducing

the growth rate of an absolute instability in the TE11 mode when the operating mode is

the higher-order TE13 mode.

In the Appendix, the effects of wall resistance at very small small values of 011 are

discussed. In this regime, it is shown that wall resistance is destabilizing instead of stabi-

lizing.
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2. GENERAL-FRAME DISPERSION RELATION

We consider a CRM configuration in which a cold, annular electron beam of radius

r, propagates through a lossless, circular waveguide of radius r, in an axial magnetic

field B 0 . If the laboratory-frame dispersion relation for such a configuration is given by

D(kii, w) = 0, then the dispersion relation for a general reference frame moving in the axial

direction with velocity v (with respect to the laboratory frame) is given by

D, (k' , w') = D(kjj (k' , w'), w(ki , w')) = 0. (1)

In the above equation, k11 and w are the longitudinal wave number and the frequency

relative to the laboratory frame. They are related to the corresponding general-frame

quantities by the Lorentz transformation (Jackson 1975),

ck = y,(ck'1 + L, w'),

(2)

S= 'YV(w' + 0, ck'i),

where

3'= v/c,

(3)

V -

The CRM dispersion relation in the laboratory frame (for the case of a lossless waveg-

uide) is discussed by Lau et at. (1981 a), and a detailed derivation is given by Chu & Lin

(1988). Applying the procedure in (1) to the laboratory-frame CRM dispersion relation,

we find that the general-frame CMR dispersion relation describing the coupling of the

TEmn waveguide mode and the beam mode is given by

t2 2u12 4N'e 2  (w' 2 - c2 k' 2 )/' Hsm (kmnrb, kmnrL)
W - ckii +1 1 - VI2 +Q)

y' merwKmn (w' - kivj - 2

(4)
(w' - klv')Qsm(kmnrb, kmnrL)

(w' - k'v - sO'2)
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In the above equation,

H,m(x, y) = J'-m, ()J 2(y),

Kmn = Ji (/mn)[1 - M2/ , (5)

Qsm(x, y) = 2Hm(x, y) + JM-1(X)J'(y)J'_1(y)

1
- J$-M+1(X)J'1(y)J'1+1(F)A.

Quantities appearing in (4) and (5) that are invariant under the Lorentz transformation

are the waveguide radius r, the beam radius rb, the waveguide-mode cutoff frequency we,

and the electron Larmor radius rL = coI3/0'. The cutoff frequency is given by We = ckmn

where kmn = Vmn /rw. The quantity Vmn is the n-th nontrivial root of the first derivative of

the Bessel function Jm. The quantities y'mec 2 , c 1 , and ' are the general-frame electron

energy, transverse velocity, and longitudinal velocity, respectively. The relativistic electron

cyclotron frequency is

Q/ cB0
' = y Mec' (6)

where BO is the (invariant) axial magnetic field. Finally, N' is the general-frame number

of electrons per unit length in the axial direction.

Close to resonance both the uncoupled waveguide dielectric function (w' 2 - c2k 2- w2)

and the beam dielectric function (w' - k'v - sQ') are close to zero. Consequently, we

neglect the second term in the square brackets in (4) and approximate the factor w' 2 -c 2k12

in the first term by w2. (Note that the ratio of the two terms in the square brackets is

an invariant, so that the validity of this approximation is independent of the reference

frame.) The resulting approximate dispersion relation can then be written in the following

dimensionless form,

D, = ('2 _ k12 _ 1)(' - 8' k' - sb') 2 + E' = 0, (7)

where ' = w'/we and k' = ck'i /w, = k' /kmn. The dimensionless magnetic field strength

b' is given by

6' = Q'/we. (8)
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Its general-frame value is related to the laboratory-frame value (b) by

b' = by;'(1 - (9)

The coupling constant E' is given by

4N'es/32H,,(kmnr, kmnrL)
y'm1 w?2 2 (10)
'mrWWp2Kmn

where the general-frame value is related to the laboratory-frame value (E) by

f=-V y 2 (1 - (11), 2
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3. PINCH POINTS IN THE GENERAL REFERENCE FRAME

Consider a CRM mode which is initially in an equilibrium state with no radiation

present. The normalized Green's function d(z = vt,t) = G(z = vt,t)/w, giving the

response of the mode to a delta-function disturbance 6(z)6(t) has the time-asymptotic

behavior

t-IlnG(vt, t) ~ iC-Im(',), (12)

where c' is the pinch-point coordinate for the general reference frame moving with the

normalized velocity /3 = v/c relative to the laboratory frame (Bers et al. 1984).

The conditions for a saddle point in the general reference frame are

D, = 0, (13)

and

OD, (V',')
Ok = 0, (14)

(Briggs 1964; Bers 1983, 1984). Substituting (7) into (14), we obtain the saddle-point

condition

k'(V - 01k'i - sb') + #1i(2 - k12 _ 1) = 0. (15)

Then substituting (15) into (7), we obtain a second independent saddle-point condition

1 1 le = kl(V' - #"I V - 8b') 3 . (16)

Saddle-point coordinates for the general frame are obtained by solving (15) and (16) si-

multaneously. However, in order that such a saddle point be a pinch point it is necessary

that the saddle point be formed by the merging of an L-contour image from above the real

k'-axis with one from below and that at the saddle point Im(V') > 0.

For the case of sb' > 1, approximate pinch-point coordinates are obtained by writing

kic = 4 + 64,1

(17)
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where k' and c4 are the simultaneous solutions of the uncoupled waveguide dispersion

relation

' _ 2 - 1= 0, (18)

and beam dispersion relation

C'- ii' - sb =0. (19)

These quantities are given by

= = [sb'Oi' (s212 - b'2)
0

(20)

O44 = ' + s

where

= (1 - 62)1. (21)

The quantity b' is called the grazing value of b' (Lau et al. 1981 a). By substituting (17)

into (15) and (16) and retaining only lowest order powers of bk' and 6b24, it is found that

at a saddle point

27 N#ie
8 ( '- k')3'

(22)

In the following analysis, 64' and k' are referred to as upshifted solutions and to 6'_

and 6k' as downshifted solutions.

It is necessary to investigate whether or not the approximate saddle points given by

(22) are formed by the merging of an L-contour image from above the real k' axis with

one from below. Substituting (17) into the CRM dispersion relation in (7) and retaining

only lowest powers of 6b1 and 644, we obtain the approximate dispersion relation

2(Cv's - k6$'k)(644 - ,66')2+ E' = 0. (23)
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For large positive Im(&4), the solutions of (23) behave asymptotically as

Im(6bk) ~ Im(6J'), (1 solution)

(24)

Im(bk') ~ , , (2 solutions)

Consequently, a pinch point can be can be formed only if < 0 and c' and k' have the

same sign, or if 0 > 0 and C' and k' have opposite signs. Using (20) it is straightforward

to show that the upshifted solutions (6k', 6') can give rise to pinch points only if 01 < 0

and sb' > 1. Moreover, the downshifted solutions can give rise to pinch points only if

3i'1 > 0 and sb' > 1. Therefore, by choosing solutions in (22) for which Im(&24) > 0, the

following approximate pinch-point coordinates are obtained,

= +% + (+ )2

3 + f 3___

= -'_ + ( i6), (25)

+ 4 (k3' (26)

and

(',+ ='+ ' . (27)
30 '

The above equations are applicable only if sb' > 1. Equation (25) is to be used only if

Oi < 0, and (26) is to be used only if 01' > 0. Approximate pulse shapes are obtained from

(12), (25) and (26). The pulse obtained from (25) is referred to as the upshifted pulse and

that obtained from (26) as the downshifted pulse.

The above analysis does not imply that pinch points do not exist for sb' < 1. It does

imply that a power series expansion in 6/4 and bc4 about k' and C' will not converge

to the pinch point for sb' < 1. Instead, the power series converges to another saddle point

which is not a pinch point.

We make some remarks concerning circumstances under which the laboratory-frame

limit of (26) can be used to calculate approximate growth rates of absolute instabilities
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(i.e., circumstances under which sb > 1). Ordinarily, a CRM is designed to generate

or amplify radiation characteristic of the first beam harmonic (s = 1) and a selected

waveguide mode referred to as the waveguide operating mode. The laboratory-frame value

b is usually chosen to be less than one to avoid the absolute instability in the operating

mode that will result from a negative value of k at the downshifted intersection of the

uncoupled, laboratory-frame dispersion relations for the waveguide mode (18) and the

beam mode (19). This intersection is given by k.- in the laboratory-frame limit of (20).

Under these circumstances, (26) cannot be used to estimate the growth rate of any absolute

instability which may still be present in the operating mode. On the other hand, (26) is

useful for approximating growth rates of absolute instabilities associated with higher beam

harmonics (s > 1). Moreover, if the CRM is operating in a high-frequency waveguide mode,

(26) may be useful in approximating growth rates of absolute instabilities in some of the

lower-frequency waveguide modes (e.g., an absolute instability in the TE11 mode when

operating in the TEO, mode).

Equations (25) and (26) are usually useful in estimating pulse shapes for the case of

s = 1 even when b < 1. The behavior of b' as a function of #, is given in (9). Its value is

zero when 0, = ±1, and it approaches a maximum value of b/bO at 0, = 011, where bo is

defined in the laboratory-frame limit of (21). This maximum value is often greater than

one. As a consequence, (25) and (26) often give very good approximations of the upshifted

and dowashifted pulse shapes in (12) over much of their &,-intervals even though (26)

may not give an approximation of the pulse height at # = 0 (i.e., the absolute instability

growth-rate). Moreover, once (26) is used to provide initial values for determining exact

pinch-point coordinates numerically for a reference frame with #, > 0 , the resulting

coordinates can be used as initial values for the numerical determination of pinch-point

coordinates for reference frames with sb' < 1.

A more direct method of determining pinch-point coordinates (k,,) numerically for

the case of sb' < 1 is based on earlier work in which the critical value cc of the coupling

constant E for the onset of absolute instability was derived (Davies 1989). This work

(carried out in the laboratory frame) is easily extended to the general reference frame,

because the form of (7) is the same for all frames. Subject to the rather weak condition
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[stated without primes in Davies (1989)] that

- ki',/j >0, (28)

a pinch point will be present in the general reference frame when the coupling constant E'

in (7) obeys

E > ee (29)

where the critical coupling constant is given by

c' = 27,3121 4  (30)

At this critical value of E', the pinch point lies on the real k'-axis with the coordinate

' (+ 8!3' 1
2 f-{-4kI'jsb' + [16,3 1

2 2 b' 2 + 2(1 + 8# 1
2 )(1 _ s2b' 2)]}. (31)

The corresponding real frequency is

c' = 40'i+ b'. (32)

The saddle point at the onset of becoming a pinch point is of third order (Davies 1989),

so that no linear expansion about the saddle point exists to approximate pinch-point

coordinates for the case of E' > '. However, initial values for a numerical computation of

pinch-point coordinates in this case are provided by k' in (31) and ' in (32) with a small

positive imaginary part added to c'. We divide the interval between E' and ' into small

increments, and (starting with ') successively compute the pinch-point coordinates after

each increment using Newton's method to solve (15) and (16) simultaneously.

If the condition in (28) is not obeyed [with 1' and c' defined in (31) and (32)), then

the saddle point at the onset of becoming a pinch point is of second order. The general-

frame saddle-point coordinates for the critical coupling constant are no longer given by

(31) and (32). Instead,

= '1 [sb'+ (822 + 8b'2)2

(33)

',= N'/
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The general-frame critical coupling constant is now given by

'= T (bk' - (34)

Equations (33) and (34) now provide a starting point for computing pinch points for e' > e.
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4. EXAMPLES OF PULSE SHAPES

Several of the numerical examples of pulse shapes presented in this section are relevant

to present or proposed CARM experiments at M.I.T. (Pendergast et al. 1988; Danly el

al. 1988, 1989). The physical properties of such experiments are usually given in terms of

the frequency of the radiation to be generated or amplified, the beam kinetic energy, the

beam current, the ratio of the perpendicular to the parallel electron velocity,

a= (34)

the waveguide and beam radii (r, and rb, respectively), and the detuning parameter A.

The detuning parameter (Bratman et al. 1981; Danly et al. 1988) is defined by

2(1 - -11/b-) (36)
A _ 3 I_ - 2) [1 - 01/0- b(1 - 0)2(6

where 04 is the phase velocity of the waveguide radiation given by

( c 2 2 
-4

S = n -'""(37)r2 2

The value of A is proportional to the laboratory-frame value of the beam-mode dielectric

function CZ' - l1 k - 1. Once these physical properties are specified, laboratory-frame values

of the parameters appearing in the CRM dispersion relation (7) are obtained as follows.

The parameter 01 is obtained from the beam kinetic energy and (34). The normalized

magnetic field strength b is obtained from (36), (37), and the specified radiation frequency.

This calculation is carried out for a specified waveguide mode which we refer to as the

waveguide operating mode. The laboratory-frame coupling constant E is obtained from

(10). A convenient expression for this constant is

L4 j.,-m(kmnrb)J'(kmnrL)]2

7011 (vl, - M2)J (Vmn) IA '

where I is the beam current and IA = mc3 /e = 17.045kA. General frame values of Y',

c', and # are obtained respectively from (9), (11), and the well known velocity addition

formula = (#ii - 0,)/(1 - 01 0").
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4.1 First Harmonic and Operation in the Lowest Frequency Waveguide Mode

For the first example, we consider parameters relevant to the 140GHz cyclotron au-

toresonance maser (CARM) experiment at M.I.T. Operation in the TE11 waveguide mode

is considered with a beam current of 20A and a beam kinetic energy of 450kV. The ratio

of the perpendicular to parallel electron velocity a is selected to be 0.4. We choose a

waveguide radius r, of 0.236cm, and for simplicity assume a beam radius of zero and a

detuning A of zero. Corresponding laboratory-frame values of the parameters appearing

in (7) are 01, = 0.7864, b = 0.9102, and e = 0.9700 x 10-4. We will consider the first beam

harmonic (i.e., s = 1).

Pulse shapes for this example are presented in figure 1. Exact pulse shapes [obtained

by solving (15) and (16) numerically and applying (12)] are shown by-solid lines. There are

two pulses, the more rapidly moving upshifted pulse and the slower moving downshifted

pulse. The upshifted pulse represents the growth in amplitude of the radiation usually

desired from the CARM. The upshifted pulse is convective because it moves to the right

away from the origin at 3, = 0. On the other hand, the downshifted pulse represents an

absolute instability because it encompasses the origin. In this example, it represents the

growth of unwanted oscillations in the system. The growth rate of the absolute instability

is given by the height of the downshifted pulse at the origin. This growth rate is seen

to be small in comparison with the growth rate at the maximum of the upshifted pulse.

The upshifted and downshifted pulses are not separated but join at a value of #, which is

approximately equal to the laboratory-frame beam velocity 611. Although it is not evident

from figure 1, finer scale computations show that the slope of the pulse-shape curve is

continuous at this joining.

Approximate pulse shapes obtained from (25), (26), and (12) are shown by the solid

squares in figure 1. These are seen to provide a good approximation of the exact pulse

shapes over much of the #,-interval of the pulses. As was discussed in §3, (25) and (26)

are not applicable if sb' < 1. Using (9) we find that b' = b' < 1 if #,, < 0.1230 or if

0, > 0.9640. It is evident from figure 1 that (25) and (26) do not give valid approximations

of the pulse shapes for these ranges of 0,. In particular, we note that (26) does not provide

an approximation for the growth rate of the absolute instability (i.e., the pulse height at
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3V = 0). The approximate expressions in (25) and (26) are also invalid for /,, sufficiently

close to the laboratory-frame beam velocity #I,. It is evident that (25) and (26) both give a

zero pulse height at 0, = 311, instead of the nonzero value given by the exact computations.

[It is also evident from (22) that the expression for 6b' at the pinch point diverges as

approaches 311.]

In earlier work (Davies et al. 1988), it was shown that to each extremum in the

pulse-shape curve there is a corresponding extremum of equal height in the laboratory-

frame temporal growth-rate curve [Im(c) vs. real k]. In figure 2 the growth-rate curve is

presented for this example, obtained from the CRM dispersion relation in (7). The growth-

rate curves have two maxima (downshifted and upshifted) with a minimum in between.

Comparing figures 1 and 2, it is evident that the upshifted [downshifted] pulse height

maximum equals the upshifted [downshifted] growth-rate-curve maximum. The minimum

in the pulse-shape curve, where the upshifted and downshifted pulses join, is equal to the

minimum in the growth-rate curves. It is interesting that the joining of the pulses can be

regarded to be a consequence of the joining of the growth-rate-curve maxima. Another

interesting property of figures 1 and 2 is that absolute instability is evident in figure 1 even

though figure 2 shows no instability for negative values of real k (i.e., there is no backward

traveling unstable wave).

The downshifted pulse in figure 1 shows the presence of absolute instability because

it encompasses the origin. By reducing the ratio a = #.L/011 while leaving fixed the other

physical properties given in the first paragraph of this section, we can bring the left edge

of the pulse to the right of the origin. This change causes the the downshifted pulse to

become convective. In figure 3 we show pulses for a =0.4, 0.33, and 0.3. We see that a

reduction of a from 0.4 to 0.33 causes the downshifted pulse to become convective but at

the same time reduces the maximum of the upshifted pulse (and therefore the temporal

growth rate of the amplitude of the desired radiation).

We next consider the pulse shape for the case where the axial magnetic field is reduced

to its grazing value. Grazing refers to the situation in which the uncoupled waveguide and

beam dispersion relations [(18) and (19)] intersect at a single tangent point on a graph of

L' vs. k. For illustrative purposes, we choose the same waveguide operating mode, beam
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current, energy, and waveguide and beam radii as in the previous examples. In addition,

a = O_ /01 = 0.34 is selected. Then 01 = 0.8109 and the grazing value of the dimensionless

magnetic field b is given by b = bo = (1 - = 0.5852. The laboratory-frame coupling

constant [obtained from (38)] is given by E = 3.055 x 10-. The pulse-shape curve for this

case is shown in figure 4. Evidently, the upshifted and downshifted pulses merge into a

single pulse as b is reduced to its grazing value. The instability is seen to be convective

because both edges of the pulse move to the right away from the origin. Note that the left

edge of the pulse is much further to the right than the left edges of the pulses in figures 1

or 3. The corresponding temporal growth-rate curve is shown in figure 5. The reduction

in b to its grazing value causes the separate upshifted and downshifted growth-rate curve

maxima to merge into a single maximum. In accordance with the theorem quoted earlier

in this section, the single maximum in the pulse-shape curve in figure 4 equals the single

maximum in the growth-rate curve in figure 5.

4.2 Pulses for Higher Beam Harmonics

CRM modes with sb > 1 will be absolutely unstable for all values of E > 0 (Davies

1989). If b > 0.5 (which is usually the case), then all instabilities associated with beam

harmonics above the fundamental (s > 1) will be absolute. Consequently, it is interesting to

compare pulses for the fundamental mode with those for higher harmonics. As an example,

we use the same physical properties as those used for the example in figure 1, except that we

consider an annular beam of radius rb = 0.18cm and we choose a = #_/'1 = 0.33. With a

detuning of zero and operation in the first harmonic of the TE1 1 mode, the corresponding

laboratory-frame values of the parameters appearing in the dispersion relation in (7) are

b = 0.8452, 011 = 0.8043 and E = 1.997 x 10-', 4.743 x 10-, and 4.364 x 10-10 for the

first three harmonics (s = 1-3), respectively. In figure 6, pulse-shape curves are presented

for these parameters for the first three beam harmonics. The exact curves are shown by

the solid lines. As expected, the pulses for the higher harmonics encompass the origin.

The growth rate of the absolute instability in the second harmonic (the pulse height at

OV = 0) is seen to be a little more than a third of the growth rate of the convective

instability in the first harmonic. Note that the absolute instability growth rates for both

the second and third harmonics are only slightly less than the maxima of the corresponding
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downshifted pulses (or equivalently, the corresponding downshifted temporal growth-rate

curve maxima). The solid squares in figure 6 show the approximate pulse shape for the

second harmonic obtained from (25), (26), and (12). Note that they provide an excellent

approximation to the exact curve over most of the interval of the pulse. In particular, (26)

provides an excellent approximation of the growth rate of the absolute instability in the

second harmonic.

4.3 Operation in Higher Frequency Waveguide Modes

We next investigate pulse shapes which result from operating in a higher frequency

waveguide mode than the lowest frequency mode. Operation in such a mode usually

causes absolute instabilities to be present in lower frequency modes. This situtation is

understood by referring to figure 7, which is a schematic plot of the uncoupled beam

dispersion relation (19) and the uncoupled TE13 and TE11 waveguide dispersion relations

(18) for the case of operation in the TE13 mode. The downshifted intersection of the

beam-mode dispersion relation is shown to occur at positive k, indicating that absolute

instability is not necessarily present in the TE13 mode. On the other hand, the downshifted

intersection of the beam dispersion dispersion relation with the TE11 waveguide dispersion

relation occurs at negative k, indicating that absolute instability is present in the TE11

mode.

As the first numerical example of operation in a higher frequency waveguide mode, we

consider operation in the TE13 waveguide mode. In this case, a diagram similar to figure 7,

but including all lower frequency waveguide modes, indicates that absolute instabilities

may be present in the first harmonic of several lower frequency modes. For simplicity, it

is assumed that the beam radius rb is zero. Then, the coupling constant in (38) vanishes

for all but TE1 , modes, so that the only lower frequency TE modes to be considered are

the TE12 and TE11 modes. We consider the case of a frequency of 17.136 GHz, a beam

energy of 1.2 MeV, a beam current of 500A, and a waveguide radius r, of 6cm. The

ratio a = #j/#l is selected to be 0.6. The applied magnetic field is selected to provide a

detuning A of 0.4. From the value of the beam energy and a, we find that #1 = 0.8184.

Using (36) and (37), it is found that b =0.5507 for the TE13 mode. From the definition

b = Qc/wc = Qcrw/cl/mn, the corresponding values of b for the TE12 and TE11 modes
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are 0.8818 and 2.553, respectively. From (38), the respective values of E are 2.479 x 10-4,

6.170 x 10' and 3.102 x 10- for the TE1 3 , TE12 , and TE11 modes. Exact pulse shapes

for these modes [obtained numerically from (15), (16), and (12)) are presented in figure 8.

All of the pulse amplitudes are normalized to the cutoff frequency of the TE13 mode. Note

that there is only a single pulse for the TE13 mode and that this pulse is convective. The

TE12 downshifted pulse shows absolute instability and is of greater amplitude than the

TE13 pulse. However, because all but a small portion of the TE12 pulse travels to the

right, the growth rate of the TE12 absolute instability is only about one-fourth the growth

rate of the TE13 convective instability. The TE11 pulse has a growth rate of only about

one-half that of the TE13 pulse. But the growth rate of the associated TE11 absolute

instability is also approximately one-half that of the TE13 convective instability, because

the maximum of the TE11 downshifted pulse is close to fl = 0. The solid squares in

figure 8 show approximate pulse shapes for the TE11 mode obtained from (25) and (26).

The approximation is excellent over most of the O,-interval of the TE11 pulses including

0= 0.

As a second example of operation in a higher frequency waveguide mode, we consider

operation in the TEO, mode and the resulting absolute instability in the lower frequency

TE1 1 mode. The physical properties of the system are -y = 2.5, a = 0.5, beam current=100

A, rb = 0.48r,, and b = 1.15bo for the TEO, mode. Corresponding parameters in the

CRM dispersion relation in (7) are Oi = 0.8198, b = 0.6586 [1.371], and E = 5.039 x 10-5

[3.680 x 10-4] for the TEO, [TEi1 ] mode. The above values conform with parameters

used by Lin, Lin, & Chu (1988) in simulations of a CARM, both with and without an

upshifted TEO, drive signal. Pulse shapes for these parameters are shown in figure 9.

The downshifted TE0 1 pulse is seen to be convective, whereas the downshifted TE11 pulse

shows absolute instability. Moreover, the growth rate of the TE11 absolute instability is

seen to be approximately equal to the maximum growth rate of the upshifted TEO, pulse

(or equivalently, to the maximum of the TEo, upshifted temporal growth rate curve).

4.4 Discussion of Examples

In earlier work (Davies, Davidson & Johnston 1988), pulse shapes were analized for

the free electron laser (FEL). A qualitative difference between FEL and CRM pulses is that
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(for typical FEL parameters) downshifted and upshifted FEL pulses are separated. On the

other hand, if two pulse maxima are present for the CRM (typical of the CARM), then

they are joined. If the CRM is operated close to grazing (typical for the gyrotron), then

the pulses are merged into a single pulse. This difference is a reflection of a corresponding

difference between the FEL and CARM temporal growth-rate curves. A more impor-

tant difference between FEL and CRM pulses is that for the FEL the downshifted pulse

maximum is ordinarily much smaller than the upshifted pulse maximum. If two maxima

are present in the CRM, the downshifted maximum is always greater than the upshifted

maximum. (This fact follows from the corresponding relation between CRM temporal

growth-rate curve maxima.) Consequently, absolute instability is of much greater concern

in the CARM than in the FEL.

The linear theory used in this paper can be used to make predictions concerning

CRM stability properties if it shows that no absolute instability exists, or if it shows that

an insufficient number of e-folding times exist for an absolutely unstable mode to be of

concern. Otherwise, a comparison with nonlinear analyses and experimental results is

needed in order to gain a further understanding of the significance of the linear results.

The example in figure 9 has been analyzed by Lin, Lin & Chu (1988) using a PIC simulation

code. They find that when a signal builds up from noise, the presence of the TE11 absolute

instability prevents any significant development of the TEO, mode radiation. If a TEo1 -

mode drive signal is present initially, then they find that the signal is amplified initially,

but that eventually it is suppressed by the growth of the TE1 1 absolute instability. Note

that the growth rate of the absolute instability in figure 9 is a larger fraction of the growth

rate of the desired convective pulse than in any of the other figures. In particular, the

relative growth rates of the higher-harmonic absolute instabilities in figure 6 are much

smaller.
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5. EFFECTS OF WAVE-GUIDE RESISTANCE

If the resistance of the waveguide wall is nonzero, then the laboratory frame CRM

dispersion relation is

02-$2-1-(i+1) 1+ 2 22 -9b s + =0 (

where 6 is the skin depth of the wall material for radiation of frequency w (Chu & Lin

1988). Equation (39) together with (13) and (14) will be used later in this section to

analyze growth rates of absolute instabilities (equal to pulse heights at 0, = 0).

5.1 Effects of Waveguide-Wall Resistance on Pulse Shapes

In order to study the qualitative effects of a nonzero waveguide-wall resistance on

pulse shapes, we require the CRM dispersion relation in the general reference frame. For

simplicity, we consider only the case of coupling to waveguide modes having azimuthal

symmetry (i.e., TEO, modes). Moreover, the simplifying assumption is made that in the

laboratory frame the permittivity and permeability of the wall material are exactly one.

It is assumed that in the laboratory frame the wall material is an Ohmic conductor, with

the current density J and the electric field E related by

J = aE, (40)

where a is the conductivity. The charge density is assumed to be zero in the laboratory

frame. Using the Lorentz transformations for the current density and the electromagnetic

field (Jackson 1975), we rewrite (40) in terms of the currents and fields observed in the

general reference frame, which moves with normalized velocity $l in the axial direction.

The resulting equation is

J' = 0,u(E' - V x B'). (41)

It is evident from (41) that the general-frame conductivity a' is related to the laboratory-

frame conductivity by

U' = 7vU. (42)

A derivation of the CRM laboratory-frame dispersion relation that includes nonzero skin-

depth effects for TEo, waveguide modes is given by Lau, et al. (1981 b). Using (41) together

22



with the simplifying assumptions made at the beginning of this section, it is straightforward

to extend the above derivation to the general reference frame. The general-frame dispersion

relation for TEO, modes is

C '2 _ k,2 -1- (i + 1) 01' k ' - 41 ' +'E' = o. (43)

In the derivation of (43) it is assumed that the waveguide-wall material is a good conductor

obeying the laboratory-frame condition that

_ k 41raw (44)

From (2) and (44), the corresponding general-frame condition is

/- ki'i2 < 4r ' w' + k' v) (45)

The skin depth 6 in (43) is an invariant given by

6 = c[27ra'(w' + k' v)]~i = c[27raw]-. (46)

From (13), (14), and the dispersion relation in (43), we obtain the independent saddle-

point conditions

k'(u' - fl[Xk'- sb') + f' { '2 _ - [1 - (+ 1) = 0,

(47)

=i kp(, - -Yj sb')3.

Effects of a nonzero skin depth on pulse shapes are obtained from (47). As an example,

consider the first harmonic for a TEO, mode. The beam current is 300A, y = 2.5, a = 0.5,

r= 0.48r, and b = 1.5bo = 0.8591. The corresponding value of 011 is 0.8198, and the

value of c, obtained from (38) is 1.512 x 10-. Pulses for this example for various values

of 6/r, are shown in figure 10. Notice that for 6/r, = 0 a very slowly growing absolute

instability is present, because the left edge of the pulse is slightly to the left of 0, = 0. An

increase in the value of 6/r, to 0.005 causes the left edge of the pulse to move to the right

of 0, = 0. Consequently, the downshifted pulse becomes convective.

23



5.2 Effects of Waveguide-Wall Resistance on Absolute Instability Growth Rates

In this section, the effects of wall resistance on the growth rates of absolute instabilities

in TEmn modes are studied for arbitrary values of m. The analysis in this section is limited

to the case of 0.5 < 'i < 1. This is the region of interest for the CARM. (In the Appendix,

a short discussion is presented of the effects of wall resistance in the small Oi regime.) Since

the growth rate of an absolute instability is the pulse height at i,, = 0, we require only

the laboratory-frame dispersion relation in (39). Practical values of 6/r. range from zero

to 0.01. In the example in figure 10, the absolute instability was suppressed by a realistic

value of 6 /r,. However, such suppression is not always possible. Considerable insight into

the possibility of eliminating absolute instabilities by introducing a nonzero skin depth

can be gained by referring to figure 11. This figure contains plots of the critical coupling

constant c, required for absolute instability as a function of #1 for various values of the

quantity sb. A CRM mode will be absolutely unstable if its parameter point (#6i,E) lies

above the f,-contour corresponding to its value of sb. Contours are shown for two cases:

/r, = 0 and the extreme practical value 6/r, = 0.01. The contours for 6/r, = 0

are obtained analytically (Davies 1989). For these contours, E, approaches zero as ob

approaches one for any value of 011. The contours for 6/r, = 0.01 apply to the case of

m = 0 in (39) (i.e., to TEo0 waveguide modes). These contours are obtained numerically

by selecting a value of c above that required for absolute instability and then reducing

the value. of E until Im(LZ) at the pinch point obtained from (38), (13) and (14) reaches

zero. Practically, the suppression of an absolutely unstable mode by wall resistance may be

possible if its parameter point (Oll,E) lies below the cE-contour corresponding to its value of

sb for 5/r, = 0.01. For instance, the parameter point (gil = 0.8198 and e = 1.512 x 104)

of the example in figure 10 is located at P in figure 11. The value of sb = b for this

example is 0.8591. It is evident that for 6/r, = 0 the point P lies above the Ec-contour for

sb = 0.8591, indicating that the mode is absolutely unstable. For the case of 6/r, = 0.01,

the position of the contour for sb = 0.8591 can be estimated by extrapolating between the

contours for sb = 0.85 and 0.90. It is evident that P lies below this extrapolated contour,

indicating that the mode is absolutely stable when 6/r, = 0.01.

Contours have also been computed for 6 /r. = 0.01 and m = 1. For a given value of
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sb, the contour for m = 1 lies above that for m = 0. However, the contours for m = 0

and m = 1 are qualitatively similar. Consequently, figure 11 will be used in qualitative

discussions of examples presented later in this section even though in some cases the

waveguide modes involved are TE1i.

For the case of sb > 1 and 6/r, > 0, it is not difficult to obtain a simple, approximate

analytical expression for contours such as those in figure 11. In this case, the treatment used

to obtain (26) is easily extended to determine approximate laboratory-frame pinch-point

coordinates for the case of a small nonzero skin depth. By regarding 6c_, 6b., and 6 /r,',

as small quantities, and employing (39) in (13) and (14), we find that the generalization

of the laboratory-frame version of (26) is c, = c- + bc._ where C_ is given by (20), and

Re(6.-) = (011j- k-) [ ( ) -(k( + 2

(48)

S-1 3 1+V2 2 WIm(6C_ ) = - (#|iI- - b (-i±~ -# 1+ m2w) ;-]'
2 2 Oi , . - M rw

The corresponding approximate k, is given by k, = L + 6bk, where k- is given by (20)

and

6k- = (3lIk) [(k- + 2 11 )+_) -+ (i+ 1) + ) 2 (49)

By setting Im(6&_) = 0 in (48), we obtain the following approximation for the critical

coupling constant c, for absolute instability:

8 #i 2  3 6 38e = + M --.250
Cc8 17327 V M2 - m 2 r50

Equation (50) is applicable only if sb > 1. Approximate contours obtained from (50) and

exact contours are shown in figure 12 for the case of m = 0. It is seen that (50) gives

excellent results for sb > 1.2. Similar results are found for m > 0.

As was discussed in §3, approximate formulas have not been derived for pinch-point

coordinates for the case of sb < 1. However, it is not difficult to calculate approximate

finite skin-depth corrections (for arbitrary values of sb) to numerically computed pinch-

point coordinates for the case of 6/rw = 0. Let '2, = cZo + 6b and k, = o + 6bk, where w,
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and k, are pinch-point coordinates for 6/r, > 0, and c'o and ko are previously computed

pinch-point coordinates for the case of 6/r, = 0. [See discussion in §3.] Using (39) in (13)

and (14) and retaining only first-order terms in 6/r,, 6&, and 6bk, the following approximate

pinch-point coordinates are obtained:

36 Thool (l1+ i) 13 _m2W

2re ( 9 - io) (Cio - 4#@11 o - sb)

(51)

6 /H (1+ i) (1+ _2)
= W O + Tr,- #,

By setting Im(c ,) = 0 in (51), we obtain the following approximate value for the skin

depth required to suppress an absolute instability:

6 _ 2 Im(Co)

1r M2 -L. (52)
Im [(1 + i) (1+ v0_QmQw) (io - '8iCOO)

In examples presented below, the results obtained from (51) are compared with numerically

computed exact results. In the Appendix, limitations on the use of (52) in the very small

01 regime are discussed.

A question related to that of stabilizing absolute instabilities is that of reducing their

growth rates by increasing 6/r.. We have not developed general rules relevant to this ques-

tion. However, we present two illuminating examples. In table 1 the growth rate is plotted

as a function of 6/r, for the absolute instability in the second harmonic of the TE11 mode

in figure 6. The exact growth rates shown in column 2 of the table are obtained by sub-

stituting (39) into (13) and (14) and solving numerically for the pinch-point coordinates.

Approximate growth rates, obtained from (51) and previously computed pinch-point coor-

dinates for 6 /r, = 0, are shown in column 3 of the table. The approximation is seen to be

excellent. Note from table 1 that, although the second-harmonic absolute instability is not

stabilized, increasing 6/r, from zero to 0.01 substantially reduces its growth rate. For this

mode sb = 1.690. The parameter point for this mode (811 = 0.8043 and E = 4.743 X 10-7)

is located at point A in figure 11. Point A is not very far above the contour for sb = 1.690
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for the case of 6/r,,, = 0.01. The dimensionless coupling constant E for the second har-

monic for the TE1 1 mode (4.74 x 10-7) is much smaller than that for the first harmonic

(2.00 x 10-5). As a result the former's parameter point is located near the bottom of

figure 11 in the region occupied by Ee-contours with sb > 1. The relatively small value of e

and resulting sensitivity of higher harmonic absolute instability growth rates to the value

of 6/r,, in this example is primarily due to the factor [J'(kmrL]2 = [J,(a#ll/b)]2 in the

laboratory-frame expression for c in (38). This factor decreases rapidly with increasing s.

The small x behavior of J'(x) is x'>'/2'(s - 1)!

As a second example of the sensitivity of absolute instability growth rates to the value

of 6/rw, we consider the modes in figure 8. The figure shows absolute instability in the

TE12 and TE11 modes due to operation in the TE13 mode. Both exact and approximate

growth rates for the TE11 absolute instability as a function of 6/r, are shown in table 2.

Again the approximation given by (51) is seen to be excellent. An examination of table 2

shows that the decrease in growth rate of the of the TEI1 mode absolute instability with

increasing 6/r, over the range zero to 0.01 is insignificant. A qualitative explaination for

this weak 6/ru-dependence based on figure 11 is the following. The dimensionless magnetic

field strength b in (7) is given by Q,/we, where w, is the cutoff frequency for the waveguide

mode under consideration. The value of b for the TE13 mode is 0.5507. However, because of

the much lower TE11 cutoff frequency, b for the lower frequency TE11 is has the very large

value of 2.553. The dimensionless coupling constant E for the TE11 mode (3.102 x 10-3)

is significantly larger than that for the TE13 operating mode (E = 2.479 x 10-4). This

fact is primarily due to the increase in the denominator (v, - 1)J2(via) in (38) with

increasing n. [The maxima of the oscillatory function J((via) decrease with increasing n,

but the function (v, - 1) increases more rapidly.]. As a consequence, the parameter point

B for the TE11 mode is situated near the top of figure 11, far above the Ce-contours of

large sb > 1 for 6/r, = 0.01. Approximate and exact growth rates for the TE12 absolute

instability are presented in table 3. The growth rate of the TE12 absolute instability falls

off slowly with increasing 6/r., but nevertheless much more rapidly than that of the TE1 1

absolute instability. The parameter point for the TE12 mode is located at point C in

figure 11. This point is above the Ec-contour for this mode (sb = 0.8818). However, an
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increase of 6/r, from zero to 0.01 moves this contour significantly closer to point C. If

the waveguide radius in this example is reduced from r, = 6cm to r, = 5cm while the

remaining physical properties of the system remain fixed (see §4.3), then the normalized

TE12 absolute instability growth rate falls off rapidly from 0.005390 for 6/r" = 0 to

0.0006843 for 6/r, = 0.01. However, the decrease in the normalized growth rate of the

TE 1 absolute instability is still insignificant (from 0.08049 when 6/r. = 0 to 0.07706

when 6/r, = 0.01).
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6. CONCLUSIONS

In this paper, we have analyzed pulse shapes, which give the linear responces of

cyclotron-resonance-maser (CRM) modes to a delta-function disturbance in time and

space. For applied magnetic fields of strengths sufficiently above the grazing value, there

are two pulses: an upshifted pulse, which is convective, and a downshifted pulse, which

may be convective or which may encompass the point #, = 0, indicating absolute insta-

bility. The pulses are joined together at a nonzero minimum at a value of 0, close to the

longitudinal beam velocity 011. For magnetic fields close to or below the grazing value, the

pulses are merged into a single pulse. There is a precise relationship between extrema of

the pulse-shape curves and extrema of the temporal-growth-rate curves [Im(c.) vs. real

hk]. To each maximum in the pulse shape curve there is a corresponding maximum of

equal height in the growth-rate curve. If a minimum exists in the pulse shape curve be-

tween the two maxima, then its value equals that of a corresponding minimum between

the peaks of the growth-rate curves.

Pulse shapes for the CRM differ from those for the free-electron laser (FEL) in two

respects. In normal operating regimes, the downshifted and upshifted pulses for the FEL

are separated not joined or merged as they are for the CRM. Moreover, for most choices

of FEL parameters, the FEL upshifted pulse has a much greater amplitude than the

downshifted pulse. In the case of the CRM, if two pulses are present (typical for the

CARM), then the downshifted pulse is of greater amplitude than the upshifted pulse.

Consequently, absolute instability is of much greater concern in the CARM than in the

FEL.

Several examples of pulse-shape curves have been presented. The examples illustrate

absolute instability in the waveguide operating mode, absolute instability in higher har-

monics of the operating mode, and absolute instability in lower-frequency waveguide modes

when the operating mode is a higher-order waveguide mode. In these examples, methods

of suppressing absolute instabilities cause the left edge of the pulse to move from negative

to positive values of & (i.e., cause the pulse to become a convective pulse propagating in

the beam direction).
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Techniques for determining pinch-point coordinates in the general reference frame (in-

cluding of course the laboratory frame) have been presented for the case of zero waveguide-

wall resistance. For the case of sb' > 1, approximate pinch-point coordinates are given

by (25)-(27). Approximate expressions for pinch-point coordinates have not been devel-

oped for the case of sb' < 1. However, we have presented a straighforward method of

determining such coordinates numerically. Equations (28)-(34) give exact values for the

saddle-point coordinates and the critical coupling constant at the onset of the saddle point

becoming a pinch point. By starting with such an initial pinch point it is straightforward

to compute pinch-point coordinates for E > ec, using methods discussed in §3.

The effects of introducing a nonzero wall resistance have been considered. Effects of

wall resistance on pulse shapes have been analyzed for the special case of TEO,, waveguide

modes. Except for very small values of 011, increasing the wall resistance moves the left

edge of the pulse towards larger values of 0,. If the pulse edge is moved across the point

X = 0, then absolute instability is suppressed. We have also considered the effectiveness of

wall resistance in suppressing or reducing growth rates of absolute instabilities for TEmn

modes for general values of m. Approximate laboratory frame pinch-point coordinates

for small 6/r, and sb > 1 are given in (48) and (49). Finite skin-depth corrections to

pinch-point coordinates previously determined for 6/r, = 0 are given in (51). We have

presented examples which suggest that wall resistance will often be an effective method

of suppressing (or reducing growth rates of) absolute instabilities in higher harmonics of

the waveguide operating mode, because ordinarily the dimensionless coupling constant e is

very small for higher-harmonic modes. (See figure 11.) On the other hand, wall resistance

will often have an insignificant effect on growth rates of absolute instabilities in some of the

lower-frequency waveguide modes when the operating mode is a higher-order waveguide

mode. The reason is that the dimensionless applied magnetic field b = Qc/we may be very

large for lower-frequency (i.e., smaller-we) modes, and the dimensionless coupling constant

e for a lower-frequency mode will ordinarly be larger than that for the operating mode.

In the Appendix, we point out that, for very small values of the axial beam velocity, wall

resistance is destabilizing rather than stabilizing.

Finally, it has been pointed out that the significance of the linear results in this paper
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can be better understood only after a comparison with nonlinear and experimental results.

In the case of an oscillator, it is important to know whether or not the growth of a slowly-

growing absolutely-unstable mode will be suppressed by the growth of a rapidly-growing

convective mode having the desired frequency. In the case of an amplifier, it is important

to know whether or not an input signal will suppress the growths of unwanted absolutely-

unstable modes.
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APPENDIX. INSTABILITY FOR SMALL AXIAL VELOCITY

For very small values of 01 and sb < 1, the introduction of a waveguide-wall resistance

is destabilizing rather than stabilizing. (We remark that such axial velocities are smaller

than those usually employed even in the case of the gyrotron.) This behavior can be seen

by referring to figure 13. Figure 13 is similar to figure 11, but it shows contours of the

critical coupling constant over the entire range of 01 from 0 to 1 for 6/r. = 0 and 0.01.

For most of the range of p11, the contours for 6/r., = 0.01 lie above corresponding contours

for 6/r. = 0, showing the stabilizing effect of the wall resistance. However, for sufficiently

small values of 011, the contours for 6/r, = 0.01 drop below the corresponding contours

for 6/r,, = 0, indicating that the wall resistance is destabilizing. Also shown in the figure

is the curve AB upon which C, - k,/#1 = 0, where cD, and k, are given by the laboratory

frame limits of (31) and (32). In the laboratory frame, the condition in (28) is obeyed to

the right of AB and is disobeyed to the left of AB. From figure 13, the region in which

wall resistance is destabilizing is seen to coincide approximately with the region to the left

of AB.

It can be shown that c, approaches zero as 81 approaches zero if 6/r. > 0. Conse-

quently, for any value of sb, the contour of critical E for 6 /r,, = 0.01 approaches zero in

figure 13 as 011 approaches zero. [An outline of the proof of the above statement is the

following. From (33) and (34), it is seen that the critical coupling constant c, approaches

a positive value as 011 approaches zero, if 6/r, = 0. Consider the saddle points given by

(13) and (14) when 01 = 0 and E > 0 is less than c, for 6/r. = 0. A detailed analysis of

(13), (14), and (39) shows that a small increment of 6/r, above zero gives to one of these

saddle points a small positive value of Im(L,), converting it into a pinch point. It follows

that whenever 6/r, > 0, c, approaches zero as #11 approaches zero. This behavior is alse

seen in the approximate formula for Ec in (50) for the case of sb > 1.]

The behavior discussed above places a restriction on the use of the approximation in

(52). Numerical computations show that, for sb < 1 and at sufficiently small values of

#11, (52) gives negative values of 6/r,, reflecting the destabilizing effect of wall resistance

at small 31g. As this small 01 region is approached from above (at constant E), 6/rw
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approaches infinity at an asymptote separating the regions of positive and negative 6/r.

Since negative values of 6/r, are unphysical and because of the assumption of small 6 /ru

made in the derivation of (52), a result obtained from (52) is to be considered as valid only

when it yields positive 6/r,, < 1.
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TABLES

6/r, Im(c) Exact Im(c) Approximate

0 0.004380 0.004380

0.002 0.003577 0.003577

0.004 0.002777 0.002773

0.006 0.001978 0.001970

0.008 0.001182 0.001167

0.010 0.0003872 0.0003633

Table 1: Growth rate of the absolute instability in the second beam harmonic for the

TE1 mode in figure 6 as a function of 6/r,. Exact growth rates appear in column 2, and

approximate growth rates obtained from (51) appear in column 3.

6/rw Im(C) Exact Im(D) Approximate

0 0.07972 0.07972

0.002 0.07904 0.07904

0.004 0.07837 0.07837

0.006 0.07769 0.07769

0.008 0.07702 0.07701

0.010 0.07635 0.07633

Table 2: Growth rate of the absolute instability in the TE11 mode in figure 8 as a function

of 6/r,. Exact growth rates appear in column 2, and approximate growth rates obtained

from (51) appear in column 3.
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Im(Q) Exact

0.01380

0.01294

0.01209.

0.01123

0.01038

0.009527

0.008674

Im(C) Approximate

0.01380

0.01294

0.01209

0.01123

0.01038

0.009523

0.008668

Table 3: Growth rate of the absolute instability in the TE12 mode in figure 8 as a function

of 6/r,. Exact growth rates appear in column 2, and approximate growth rates obtained

from (51) appear in column 3.
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FIGURE CAPTIONS

1. Pulse-shape curves [Im(2')/yv vs. 0,] for the first harmonic of the TE11 operating

mode. Laboratory-frame values of the parameters appearing in the dispersion relation

in (7) are 011 = 0.7864, b = 0.9102, c = 0.9700 x 104, and s = 1. Exact pulse

shapes obtained from (15) and (16) are shown by the solid lines. The squares show

approximate values obtained from (25) and (26).

2. Temporal growth-rate curve [Im(L ) vs. real i] for the first harmonic for the TE11

operating mode. Laboratory-frame values of parameters in the dispersion relation in

(7) are the same as those in figure 1.

3. Effect on the TE11 pulses in figure 1 of reducing the ratio a = 0-L/0 while keeping

the frequency, applied magnetic field, and the beam energy fixed. The values of a are

shown against the curves.

4. Pulse-shape curves [Im(')/7, vs. 0,] for the first harmonic for the TE11 operating

mode when the applied magnetic field is reduced to its grazing value. The frequency,

beam current, and kinetic energy are the same as for the case in figure 1.

5. Temporal growth-rate curves [Im(L) vs. real i] for the first harmonic for the TE1 1

operating mode when the applied magnetic field is reduced to its grazing value. The

parameters are the same as those in figure 4.

6. Pulse-shape curves for the first three beam harmonics for the TE11 operating mode.

The frequency, applied magnetic field, kinetic energy, and beam current are the same

as for the case in figure 1. The quantity a = O1 = 0.33. The solid squares show

approximate pulse shapes for the second harmonic given by (25) and (26).

7. Schematic plot showing the uncoupled beam and waveguide dispersion relations for

the TE13 and TE11 modes. The TE13 mode is the operating mode. The negative

value of k at the lower intersection of the beam and TE11 waveguide mode shows

absolute instability in the TE11 mode.

8. Pulse shapes for the TE13 , TE12 , and TE1 1 modes, all normalized to the cutoff fre-

quency of the TE 13 mode. The TE13 mode is the operating mode. Absolute instability

is present in the TE11 and TE12 modes. The solid squares show approximate pulse
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shapes for the TE11 mode given by (25) and (26).

9. Pulse shapes for the TEO, and TEI1 modes, both normalized to the cutoff frequency

of the TEO, mode. The TEO, mode is the operating mode. Absolute instability is

present in the TEI1 mode.

10. Pulse shapes for the TEO, mode for various values of 6/r, shown against the curves.

Laboratory frame values of the parameters appearing in (7) are 011 = 0.8198, b =

0.8591, E = 1.512 x 10- 4 , and s = 1. A very-slowly-growing absolute instability,

present when 6/r,, = 0, is suppressed by increasing 6/r, to a value of 0.005.

11. Plot showing parameter regions of absolute instability for the CRM. The coupling of

the beam mode and the waveguide mode produces absolute instability if the point

(#jE) lies above the curve of sb for the beam mode harmonic. Two sets of contours

of the critical coupling constant are shown; one for 6/r, = 0 (solid curves) and one

for 6/r, = 0.01 (dashed curves).

12. Plot, similar to that in figure 11, showing exact contours of the critical coupling

constant (dashed curves) and approximate contours (solid curves) obtained from (50)

for the case of sb > 1 and 6/r, = 0.01.

13. Plot, similar to that in figure 11, showing contours of the critical coupling constant

over the full range of 011. The curve AB is the locus of points for which C., =

where k, and c, are defined in (31) and (32).
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