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In the quasi-optical gyrotron with a Fabry-Perot cavity one can inject
the electron beam at an oblique angle with respect to the optical axis of
the cavity. This angle has a great inflence on the gain mechanism, Doppler

frequency shift and saturation length of interaction. Numerical simulations
show that there exist two regimes of operation when the angle changes from
zero to 90 degrees. When the angle is small (including zero degrees), one

identifies the Doppler-shifted regime with small negative optimized detuning

and small optimized E-field amplitude. When the angle is large (including 90
degrees), one identifies the gyrotron-like regime with large negative optimized

detuning and large optimized E-field amplitude. The quasi- optical gyrotron
is quite efficient for harmonic operation.
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1. Introduction

One of the major efforts in gyrotron research is to reach high frequencies,
at present, the submillimeter waveband. Compared with other free-electron
devices, the gyrotron bears the merits of simplicity in structure for both
the cavity and the magnetic field, low voltage and high efficiency. When
operating at high frequencies, the mode density in the gyrotron becomes so
large that a waveguide cavity will be difficult to use due to the problem
of mode competition. It is natural to adopt the open cavity widely used
in lasers as an alternative. Due to the small Fresnel number in millimeter
and submillimeter wavelengths the cavity used in gyrotrons bears the name
"quasi-optical".

There have been quite a few linear and nonlinear theories (1-10) published
so far on the quasi-optical gyrotron. In these papers, geometries with the
radiation beam parallel and perpendicular to the electron beam have been
explored in great detail. The influence of an arbitrary angle between the ra-
diation and electron beams was included in some theories(1--4,, 9 ) but hasn't
been explored in full detail so far. Analysis shows that the injection angle
has great inflence on gain mechanism, Doppler frequency shift and satura-
tion length of interaction. In this paper the formulation in Ref.6 which was
developed for a perpendicular injection geometry is extended to include ge-
ometries with arbitary injection angles. The influence of different angles on
the efficiency for the second harmonic is also analyzed.

Two regimes of operation are identified when the angle changes from
zero to 90 degrees. When the angle is small, the klvg, term is significant
in contributing to the Doppler shift of the frequency. This is the Doppler-
shifted regime where the absolute value of the optimized detuning is smaller
compared with that for the gyrotron-like regime. When the angle is large,
the frequency is mainly decided by the cyclotron frequency of the electron.
This is the gyrotron-like regime where the absolute value of the optimized
detuning is relatively larger. The optimized efficiency for the gyrotron-like
regime is usually higher than that for the Doppler-shifted regime.

The scheme with a tilted injection angle introduces a new degree of free-
dom to adjust the interaction length so that the efficiency can be optimized.
This is a new feature of gyrotron operation. It may be easier to make the
angle adjustable than to change the mirror spacing. Also it provides the
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means to switch operation between Doppler-shifted and gyrotron emission
within one device. If the angle is adjustable, one can tune the frequency
mechanically without changing voltage or magnetic field.

This paper is organized as follows. Section 2 develops a linear theory
for the field profile of the step function, different from Ref.1 in that it is a
two-dimensional theory including the effect of harmonics. Section 3 derives
the working nonlinear equations for the Gaussian field profile. Section 4
presents results from the nonlinear simulation and analysis. Section 5 gives
the conclusions.

2. Linear Harmonic Theory

Choose coordinate frames as in Fig.1, where the primed frame is relative
to the rf beam and the unprimed one to the electron beam. For simplicity the
direction of the electric field is set to be perpendicular to the magnetic field
which is in the z-axis. The y-axis lies in the plane decided by the magnetic
field and the wave vector. Denoting the angle between the two beams as a,
one obtains the following relations for transforming the two coordinates:

X x (1)

y= ycosa + zsina (2)

z' -ysina + zcosa (3)

The fields in our linear model are chosen as plane standing waves so the
mirrors in Fig.1 should be plane mirrors. The E and B fields can be expressed
as

E = e' Eocoswtsin(kjy - k11z) (4)

B = e'Eosinwtcos(kjy - k11z) (5)

where e' = ex, e' = eycoa + e.sina, kj = ksina, ki = kcosa. Eo is the
amplitude of the electric field, w is the circular frequency and k = w/c is the
wave number of the plane wave.
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Using standard plasma kinetic approach("), the perturbed distribution
function can be obtained:

fi(p, r, t) = lel dr(E + v x B/c) - (6)
(1/2+z)/vli) ap

where 1 is the interaction length and c is the light velocity, the origin of the
frame is at the middle of 1. vil is the velocity component of the electron
parallel to the d-c magnetic field. r is the time variable on the unperturbed
orbit. e is the electrical charge of the electron. The equilibrium distribution
function fo is chosen in the calculation as monoenergetic:

1
fo = -6(p - pio)6 (plI - Plo) (7)27rpI

The interaction power per unit x-length is obtained from

P = J -Edydz (8)

where the perturbed current J± = -27tiejnof d2pvfi. no is the number
density of electrons.

Assuming the electron beam is symmetrical in y direction, which is often
the case, and averaging P in a time interval containing an integer number of
27r/w, one obtains

7rrbnole2Eo2 22 9 , dz kj [(ainiz/vii
P=- --- apQ -Ldp1  dzJ,,2 Lv-L

2m 'J-o o y o \ c Q

sinQ2z/vII 6 fo cos( sinQiz/vlI sin / -f P afo)] (9)
+ 02 )p 01P--M Q (P2 apilPi -api-

where Il = w + kllvll - nwc, f22 = w - - nwc, w, = /y, Q = eBo/mc is

the nonrelativistic cyclotron frequency, Bo is the d-c magnetic field, m is the
electron rest mass, -y is the relativistic energy factor of the electron, rb is the
radius of the beam.

Substuting equation (7) into equation (9) and performing the manipula-
tions with the artificial intelligence package MACSYMA on a VAX computer,
one obtains
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P rono eI2Eo c2 EG. (10)
4myv 1  n

The gain function Gn is

Gn = GE + GBCOSQ (11)

where the contribution from the electric field is

GE =n - - { (-kJv;L) f2Lk

+201 J" ( kiv) Ivv +,kv 1 -coS(Rl/vg)

kiVj_ 2 1 -cos(I O )-2J' ( ) (12)
C

and the contribution from B field is

GB J kiv\ O/kjv\ 2 1 -- cos(fI/v1 1 )
WC We

ki+? v 2) nw - w2 (-1)sin(fi1/v1)

i~ ~ ~ ~ ~~~~1 i=~1 2 ~ 1ki12 1 _ o( /y

- [J' (k-v (202 - 1 2) + 2J" (kvj) kjVj] 2 (-1)i[_ CO3(f2it/V1I)] (13)
WC WC WC I =

In the case of zero degrees and zero detuning (The detuning is defined in
Eq.(38) and equal to -f1 21/v 1 here), after dropping two small terms propro-

tional to Q, and f2j1 2 respectively, the criterion for gain is reduced to

io > 2 03Io(l - 011o) (14)

which agrees with Ref.6 where a traveling wave is assumed. At 90 degrees
the backward component contributes considerably to the gain. The behavior
of the gain function G, with different injection angle a for the harmonics is
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similar to that for the fundamental described in Ref.9. Note that there is no
gain for the harmonics at zero degrees because k1 = 0 and the electron sees
constant E field on the wave front.

3. Nonlinear Equations for Particles

A Gaussian field profile is assumed for the nonlinear simulation. The E-
field amplitude in Eqs.(4) and (5) now takes the form

E(y', z') Eoexp{-(x' 2 + y' 2 )/[r2(1 + z'2 /Z2)2]}/(1 + z'2 /zi) (15)

where x', y' and z' are given in Eqs.(1) to (3), ro A L/Ir is the spot size and

Z= r=o/2c is the Rayleigh length. Normally ZR > z. Noting that for an
electron beam the tranverse dimension is much smaller than the longitudinal
dimension, one has x, y < z and y' :: zsina. The approximation

E(z) = Eoexp(-z 2sin2 a/ro) (16)

is used throughout the rest of this paper. The independent variables are

p1,, (transverse momentum and angle) xa and y, (guiding center coordi-
nates), which are related to the transverse momenta and coordinates PC, py, x
and y by

PC = picos4' (17)
py = pjsino (18)

yg = y + pC/mQ (19)

Xg = x - py /m (20)

The equations of motion then reduce to

dp±/dz = (-em y/p.)cosOE + (ecosa/c)cosOB (21)

do/dz = mQ/p + eBsinct/cp, + myesinOE/pjp, - eBcosasinO/cp± (22)
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dy9/dz = (-e-y/p,2)[E + B(pisin4sina - p~cosa)/ymc]

dp,/dz = -(ep± /cp.)Bcoskcosa (24)

dxg/dz = -(p1 sina/p Bo)BcosO (25)

Because the x-dependence which causes only high order effects in Eq.(15)
is neglected in this paper, x, is treated as constant and Eq.(25) is not used.

In the following derivations we have used the identities

sinky sink_ yg[Jo(Q) + 2 Z(-1)J 2j(Q)cos2O] -

2coskyg E(-1)J 21+1(Q)cos(2l + 1),0 (26)
1=0

coskjy coskyg[Jo(Q) + 2 Z(-1)'J2j(Q)cos24' +

2sinkyg E(-1)'J21+1(Q)cos(21 + 1)7P (27)
1=0

where Q = kjp±/mQ. Since +o the lowest order dV;/dt ~ f2/-y and w ~ nf/-,
only terms with cosn4' are retained in Eqs.(21) to (24). Neglecting the rapidly
varying terms yields

dp1 - E(z)J (Q)cos(wt - n-O)cos(kiy, - kilz - nir/2) -
dz Pz

-c-- E(z)J,(Q)sin(wt - nO)sin(kryg - kliz - nir/2) (28)
C

dp= epcosa E(z)J,(Q)sin(wt - n4')sin(kiy, - kilz - n7r/2) (29)
dz CPz

7

(23)



do mw eE(z)m-y nJ,(Q) pisin Q0 .-(Im - R-- 9) sin(wt - no)cos(kiy, - kliz - nr/2) +
dz p,7 pzpJ Q m-yc n

eE(z)cosa nJn co3(wt - nO)sin(ksyg - k1z - nir/2)(30)
cp1  Q

dy9  e7E(z) ~ Fnpssina-
dz - z(Q) c 1 cos(wt - nO)sin(ksy, - kj1z - nir/2)+
dz PG Q YMCQ

pzcosat
sin(wt - nO)cos(kjyg - k11z - n7r/2)] (31)

where Jn is the Bessel function of order n. When a = 900, these equations
reduce exactly to Eqs.(10) to (12) in Ref.6.

4. Calculation And Analysis

A confocal cavity is assumed for the calculation model shown in Fig.1.
With this practical model one should note that for fixed mirror radius the
interaction length increases when the injection angle decreases. This model
causes the optimized efficiency to be reached at a smaller E-field amplitude
for small angles because of the longer interaction length. The angle where
the electron beam just hits the edge of the mirror is defined as

ao = arctan 2r.. (32)

where L is the mirror spacing and r. = ro(1 + (L/zR) 2/4) is the spot size on
the mirror. The normalization length is defined as

Lo = L/cosa if a < ao (33)
r/sina if a > 3o

where r = ((zRtana)2 /ro - ZRtana (zRtancelro)2 - 4)/2 is the spot size at

the angle a. At angles less than ao, the electron beam passes through the
mirror. In practice, this can be achieved for a pencil beam by making a small
hole in the mirror which has an insignificant effect on the rf field.
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Set normalized interaction length C = zILo, normalized electric field
amplitude e = eEo/mc2 , normalized transverse and longitudinal momenta
U1 = pi/mc,u ul= p= C/me, =nV - wt,q = row/tanac, and Y = kiy.
Noting that -y = 1u , we obtain the following working equations:

d( Loeexp(-(Losina/ro)2) J(sinawu 1/Q) [cosasin6sin(Y - qC - n7r/2)-

ycos~cos(Y - q( - nr/2) (34)
1(34)

du 1  _
LC- oeexp( -(Losina4/ro) 2 )Ji(sinawu±/C2)u±/u1 cosasin~sin(Y--q(-nr/2)

dO L (nQ - yw) + Loneexp(-(Losina4C/ro)2 )Jn(sinawuj_/Q) 
2 -Q-2d( cull sinawu

sinOcos(1 - qC - nir/2) nncoscacos~sin(Y - q(- n2)/(2 6
.sina) + - 2Q~ J(36)

dY Lo sinaw n

d Lesinw exp(-.(LosinaC/ro)2 )J,(sinawu±/) -

d( UlinKW

cos~sin(Y - q( - n7r/2) - ullcosasin~cos(Y - q( - nir/2)] (37)

Eq. (37) is sometimes dropped since yg doesn't change much during the
traversal of the beam.

As a check of the validity of the nonlinear theory, the linear regime is
examined first. After dropping the exponential factors (since the linear the-
ory assumes a step-function field profile), Eqs.(34) to (37) were solved under
small E-field amplitude and an average of Y over 0 to 27r was taken since in
the linear theory there is no explicit relevance to the guiding center. Plotting
efficiency versus detuning at various angles one can get nearly the same

curves as those produced from Eq.(11). The detuning is defined in Ref.(9)
as
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= 1(Wc - W + k 1v.)/v, (
These curves are very close to those in Ref.9 so that they are not shown here.

In Fig.2 one plots efficiency versus detuning in the nonlinear regime
for a pencil beam with no velocity spread and with n = 1, U = 80kv, f =
140GHz, L = 5cm,P: /pI = 1.93. For comparison the curves for the corre-
sponding linear cases are also shown in the graphs. One can see the detuning
spectrum distorted from the linear case. Fig.2a is the case for the Doppler-
shifted regime with a = 00 and e = 0.08. By adjusting beam pitch angle or

Pi/pli, efficiency would peak at the center, i.e. the optimized detuning for
the Doppler-shifted regime is always small. If the beam pitch angle is too
small, the maximum linear efficiency would be reached at = 7.5. This is
not a good operating state becaused of the low nonlinear efficiency. Fig.2b
is the case for the gyrotron-like regime with a = 780 and e = 0.66. One
can see that the spectrum is nearly anti-symmetrical, which is characteristic
of the gyrotron. Both cases have been optimized with respect to the E-field

amplitude. The reason for smaller optimized E-field for the Doppler-shifted
regime is the longer interaction length.

In Fig.3 one plots efficiency versus different angles at fixed detuning and
E-field amplitude. Fig.3a is for the Doppler-shifted regime with = -0.5 and
e = 0.08. These two parameters are optimized for a = 00. Fig.3b is for the
gyrotron-like regime with = -11.0 and e = 0.66 which are optimized for
a = 810. One can see clearly that there exist two distinct regimes of operation
separated at a = 150 in this group of parameters. Fig.3c is for the gyrotron-
like regime for the second harmonic with = -12.5. One can see that for

higher harmonic the maximum efficiency is reached at higher optimized E-
field, in our case e = 1.85. There is no graph of the second harmonic for

the Doppler- shifted regime. That regime is not suitable for operation at
harmonics since when a is small, the electron sees little variations in field
amplitude in its cyclotron orbit.

Fig.4 gives efficiency optimized with respect to detuning versus various
angles for the same parameters as in Fig.3a and 3b. Calculation shows that in
the Doppler-shifted regime the optimum detuning ranges from -0.5 to -2.5 in
our case. In the gyrotron-like regime the optimum detuning ranges from -7.5

to -14.5 in our case. One can see from Fig.4 that in the gyrotron regime, the

maximum is not reached at 900, but at a smaller angle. This arises because
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the interaction length at 900 is too short. By adjusting the mirror spacing L

which relates the minimum spot size through ro = V/AL/7r, one can shift the

peak towards 900. This can also be accomplished by changing the injection
angle. Fig.5a and 5b present efficiency versus normalized E-field amplitude
for the two regimes.

High efficiency can also be achieved with high beam voltage. Fig.6 shows
there is a wide range for tuning operation fre-quency or d-c magnetic field by
changing the beam injection angle. Fig.6a plots optimized efficiency versus
angle for U = 450kv,pj/pil = 1.0,f = 280GHz,n = 2,L = 20cm and
e = 2.4. Fig.6b presents d-c magnetic field versus various angles.

In the following table are listed the parameters for two possible experi-
ments for the second harmonic.

Possible Experiments

U(kV) 80 450
n 2 2

r7% 40.6 31.0
A(GHz) 280 280
B(T) 4.7 3.8
0(deg.) 45 16

1.93 1.0
L/A 23 93
E,.,(kV/cm) 533 692

5. Conclusion

The linear and nonlinear theory of the quasi-optical gyrotron with the
tilted beam-radiation geometry are presented in this paper. Analysis shows
there exist two distinct regimes of operation. One is the Doppler-shifted
regime with the angle ranging from zero to over 10 degrees depending on
the parameters. The optimized absolute detuning and E-field amplitude are
both small in this regime. The other is the gyrotron-like regime with the
angle ranging from tens of degrees to 90 degrees. The optimized absolute
detuning and E-field amplitude are both large compared with the Doppler-
shifted regime. The scheme with a tilted angle provides an additional means
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to adjust the interaction length to optimize the efficiency and to tune the
frequency mechanically.
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Figure Captions

* Fig.1 Schematic for linear theory. Note that in the nonlinear theory a
confocal cavity is assumed and the radiation bears a Gaussian profile.
The primed frame is relative to the rf beam and the unprimed to the
electron beam. Both x-axes point out of the paper.
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* Fig.2a Efficiency is plotted versus detuning at a = 0.00010 for a 80-
kV electron beam, p±/p, = 1.93,f = 140GHz,n = 1 and L = 5cm.
The upper graph is in the nonlinear regime with e = 0.08. The lower
one in the linear regime with e = 0.00025.

* Fig.2b Efficiency versus detuning at a = 780 for the same parameters
as Fig.2a. In the upper graph e = 0.66.

" Fig.3 Efficiency versus angles at fixed detuning and E-field amplitude
for the same parameters as Fig.2a. Fig.3a is for the Doppler-shifted
regime with ( -0.5 and e = 0.08. Fig.3b is for the gyrotron-like
regime with ( -11.0 and e 0.66. Fig.3c is for the gyrotron regime
for the second harmonic with ( = -12.5 and e = 1.85.

* Fig.4 Efficiency optimized over detuning versus angles for the same
parameters as Fig.3a and 3b. The solid line is for the Doppler-shifted
regime with e = 0.08 and the dash line for the gyrotron- like regime
with e = 0.66.

" Fig.5 Efficiency versus normalized E-field amplitude for the same pa-
rameters as Fig.2a. Fig.5a is for. the Doppler-shifted regime and Fig.5b
is for the gyrotron-like regime.

" Fig.6 Performance at high beam voltages. Fig.6a shows optimized effi-
ciency versus angles for a 450-kV electron beam with pjh/pli = 1.0, f =
280GHz, n = 2, L = 20cm and e = 2.4. Fig.6b presents d-c magnetic
field versus angles.
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