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Abstract

It is shown that simplified models of the axisymmetric vertical

instability in elongated plasmas based on uniform shifts of current or of

ideal flux surfaces are not equivalent. In comparison with the ideal MHD

eigenmode that minimizes the magnetic energy change, 6W, the simplified

models are shown to satisfy the inequalities SW. > 6Wc > 8 Wm, where

subscripts i, c and m refer to the uniform ideal flux-shift, uniform

current-shift and minimizing eigenmode respectively. Thus, of the simplified

models, the current-shift is always a better estimate than the flux-shift.
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1. Introduction

Recent Tokamak designs almost all take advantage of the substantial

enhancements of plasma current and beta that are made possible by vertical

elongation. The consequent axisymmetric instability, and its stabilization

by a combination of conducting walls and feedback, is then a very important

problem in the MHD design and operation.

There is a range of techniques for the analysis of the axisymmetric

instability. Extensive numerical codes exist that can investigate the full

stability problem on the ideal timescale (e.g. ERATO, GATO [1]) and, more

importantly perhaps, on the resistive timescale (e.g. TSC [2]). However, the

full simulation of the plasma evolution that a code like TSC can provide is

extremely expensive of computer time, and cumbersome to use in investigating

a variety of possible practical configurations. Thus, there remains a need

for simpler plasma models, particularly for design and analysis of the

feedback control system. Simplified models, assuming that the perturbation

consists of a rigid vertical shift of the plasma (3-7], can, under some

circumstances, provide an accurate assessment of the stability properties.

However, its is known that there are experimentally significant situations

(e.g.[ 8 ]) in which the stability to arbitrary axisymmetric perturbations is

appreciably different from the rigid-shift stability.

The purpose of the present work is to prove a theorem about the

relative stability properties of simplified models so as to establish

general expectations about the applicability of their results.

It is important to realize that models consisting of a uniform vertical

shift are actually of two types (1) rigid ideal MHD shifts and (2) rigid
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constant current shifts. In type (1), which we shall refer to as "ideal

shifts", the plasma is assumed to move rigidly, conserving poloidal flux.

This is what would happen if the plasma were a perfectly conducting solid.

Many of the early theoretical studies of the axisymmetric instability used

this model [3-5]. This was justified for the simplest (constant-current high

aspect ratio ellipse) analytical equilibria studied because it turns out

that the most unstable perturbation for these equilibria is indeed the ideal

shift [9,10]. However it was found that for finite aspect ratio, and

especially when the equilibrium has triangularity or rectangularity,

considerable discrepancies exist between the ideal shift and the full

eigenmode analysis (11-13].

In type (2), which will be referred to as "current shifts", the plasma

is assumed to move conserving toroidal current density. This is often

modelled by regarding the plasma as a set of filaments whose currents, as

well as relative positions, are fixed during the motion. This model lends

itself readily to simple circuit analysis, and often the plasma has been

reduced to a single filament [14,15]. More complex plasmas, modelled as

multiple filaments can also be accomodated [7,16,17].

The difference between the two models, though not always recognised,

has been known since some of the earliest studies. In their numerical

investigations, Lackner and McMahon [3], like Okabayashi and Sheffield [18],

used a filament model of the plasma in which the flux was fixed (ideal

shift). They showed, however, that the energy perturbation could be divided

into two terms, one of which was due to shifting fixed currents and the

other due to the current changes induced in the filaments by the motion. The

second term was found to have a substantial stabilizing influence in some

cases.
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In a continuum plasma the difference between the two shift models

consists of a perturbed sheet current, flowing on the surface of the plasma

for the ideal shift but (obviously) not for the current shift. This is made

immediately apparent by consideration of the fact that the poloidal flux

function, #, satisfies:

-' . (1)-
82 az2 R aR8R 8z

The ideal shift rigidly shifts 4 and hence A # inside the plasma; therefore,

jo is also rigidly shifted, as in the current shift. Also, outside the

plasma the (vacuum) current is zero in both cases. Thus the only difference

can be a surface current. The Lackner and McMahon study can be regarded as a

demonstration that this surface current is not in general zero. Note again

that the constant-current straight ellipse in a confocal shell is peculiar

in having zero surface current.

The linear stability properties are most easily discussed in terms of

the second order energy perturbation SW caused by a small displacement f. We

refer to quantities pertaining to the three types of perturbation: ideal

shift, current shift and full energy-minimizing eigenmode using subscripts

i, c, and m, respectively. Then the theorem is that

6Wi ?: SWc SWm. (2)

The stability properties of the current shift are intermediate between the

ideal shift and the full eigenmode. This result means that, of the two

simplified models for calculating stability, the constant current model is

better than the ideal shift, in the sense that it is more conservative and

closer to the exact MHD result.
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The conditions under which the two inequalities hold are somewhat

different. The first inequality, 6Wc < 6Wi is shown in section 2 to hold

under extremely general circumstances, requiring only that the external

currents, flowing in any conductors around the plasma, be conservative (in

the thermodynamic sense). The second inequality, 6WM < SWc, requires more

stringent conditions for its proof. A sufficient condition is that the

system of plasma and conductors be mirror symmetric about a midplane and

that kinetic pressure effects should be negligible. These pressure effects

are shown to be first order small in the quantity ep pR/, where e is the

inverse aspect ratio, Pp is the poloidal beta and C is the flux surface

displacement during the perturbation; for a purely vertical flux shift the

component R in the major radial direction is zero. Section 3 discusses this

condition and provides the proof.

2. Relative Stability of Current Shifts and Ideal Shifts

Statement:

The mechanical work done (and hence the free energy change) in

translating a constant current distribution is not greater than that for

translating an ideal conducting rigid body with the same initial current

distribution, in a system of external conductors whose current response to

flux changes is conservative (in the thermodynamic sense).

Remarks:

The mechanical work done is just 6W, which when negative denotes

instability. The conservativeness criterion means that the total electrical

work done on any part of the external currents when traversing any closed
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loop in configuration space is zero. Any combination of fixed-flux or fixed-

current conductors satisfies this requirement. So do conductors connected to

arbitrary purely reactive external circuits (perfect inductors, or

capacitors). However, resistive circuits do not, because they are

dissipative.

Proof:

Consider the following thought experiment. Start with an ideal shift,

which can be thought of as a shift of a constant current distribution plus a

perfectly conducting shell at the plasma surface. A certain amount of

mechanical work, SWi, is done in moving it, and in addition there is an

electrical energy change in the system due to the flux and current changes

in the external circuits. Now allow the plasma's surface shell to become

resistive while the plasma is held in the perturbed position and its

internal currents are kept fixed. The shell currents induced by the original

motion will decay to zero and further changes will occur in the external

fluxes and currents. The currents of the entire system will then be

identical to what would have been obtained by a current shift (without the

plasma's surface shell). Now return the plasma to its original equilibrium

with constant currents and no shell. (Or so slowly that the shell currents

are zero.) This requires an amount of mechanical work -6Wc, where 6Wc is the

work required to move a current shift plasma by the original amount. Again

there will be some energy changes due to the external circuits.

Because of the conservative, reversible, nature of the external

electrical circuits, the total sum of the electrical work done in these

three stages is zero. Thus, if the energy dissipated in the shell resistance

during the second (decay) phase is 6Wd (which is always non negative and
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actually positive unless the shell currents are exactly zero) then

6Wi - 6Wc - SWd > 0 .

This completes the proof of the first inequality of our theorem.

3. Relative Stability of Current shifts and the Minimizing Ideal MHD

Eigenmode

Statement:

The energy change, 6Wc, in a current shift is greater than or equal to

the energy change, 6WM, in the (similarly normed) minimizing ideal MHD

perturbation, provided that

(i) one of the integral conditions around any flux surface

j (B560/RBp) dI - 0 or f (64/R2B ) de -'0 (3)

is satisfied, where 6 is the flux change due to the current shift and B

and B are the toroidal and poloidal fields, and

(ii) work done by plasma pressure is negligible.

A sufficient condition for (i) is that the system be mirror symmetric

about a plane perpendicular to the direction of shift. The order of

magnitude of the pressure terms relative to the remaining terms is ep PR/I

where e is the inverse aspect ratio, Pp is the usual ratio of kinetic

pressure to poloidal magnetic field pressure and R is the radial component

of the flux surface shift.

Remarks:

The idea behind this proof is that the result is trivial provided that
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the current shift can be shown to be equivalent to some ideal MHD

perturbation. Since the work done by the plasma pressure is not (normally)

included in the current shift energy balance, the equivalence requires that

this work be negligible. Similarly, the current shift model includes no

changes in the toroidal field energy, while the MHD energy minimization

process does. Thus, the proof is successful only if the ideal MHD

perturbation to which the current shift corresponds is one in which the

toroidal field energy is not changed. Perturbations of this type have been

called "slip motions" by Rebhan and Salat[ll]. Jensen and Thompson [19] have

also used almost equivalent conditions. The integral condition guarantees

this toroidal field invariance. It acts as an additional constraint on the

energy minimization and is satisfied automatically only in certain special

situations, such as the mirror symmetric one.

Proof:

Consider a current shift. We wish to find an ideal MHD perturbation (

to which it corresponds. The current shift causes a change in the poloidal

flux 64(R,z) arising from the current shift itself and from the changes in

the external currents induced by the shift. Then since any ideal

perturbation convects poloidal flux, the ideal perturbation must satisfy

C . VO - 60 . (4)

Thus the component of the perturbation perpendicular to the flux surfaces is

defined by the current shift. Other components are free to be chosen as

desired in order to satisfy other constraints.

Now consider the second order energy change (the energy principle

[20]). Assuming there to be no surface current in the equilibrium state, it

may be written:
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6W -6W + 6W , with

6 W - 2J IV^(e^B)|2 + (j-e).VA(eAB) + (e.Vp)V.e + yp(V.e)2 d 3x

6W - (6B ) 2 d3x - J(B.6B)e.ds . (5)

where 6Wf is the contribution from the fluid (plasma) region, SWv is the

contribution from the vacuum region and Bv refers to the field in the vacuum

region. There may be additional contributions from external circuit energy

changes. However, if we can demonstrate the equivalence inside the plasma of

the current shift and the ideal pertubation, such changes will be identical

for either.

The simplified model effectively eliminates from consideration the

terms in the energy principle that arise from p and the toroidal field, Bg.

In an MHD equilibrium the total field may be written

B - B + BO - V4-VO + FV , (6)

where 0 is the toroidal angle and F is constant on flux surfaces. If we use

the symmetry properties of the equilibrium and perturbation, which, amongst

other things, imply that V-(eABo) and V-Bp have no poloidal component, then

after considerable algebra, we can write:

6Wf - d 3 x ( V-(eAFV) . FV^(AVO)

- [V(e.VO)-VO] . [ 2VA(e^FVO) + (VFAVO)^e + dF(.V)VO I

+ jV(e.VO)_V0j2 + IVI 2IV(2.Vp)I + VO.[V_(VOVO)]e.V(e.VO)

+ A0 [ (e.Vp)V.C + yp(v.)2 (7)

To reach this form, an integration by parts has been performed on the dF/dO

term.

Now the second line of terms in this equation, which are all dependent

on BO, will be zero if
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V(e.VO) -V - 0. (8)

This is a requirement that any motion in the toroidal direction consist of a

rigid rotation of each flux surface about the major axis. It is plain from

the third line of terms that this requirement on O minimises the energy

perturbation. Once this criterion is satisfied O no longer enters into SWf

so we take O to be zero from now on. Then, providing the first term

vanishes, i.e. either

VA(C^FVO) - 0 or V^(eAV4) - 0, (9)

the terms involving BO will all vanish. These alternative conditions

generalize the "slip motion" condition of Rebhan and Salat, who used only

the second because they were concerned with the large aspect ratio tokamak

limit, in which the conditions become identical. The two conditions, while

not identical in general, are so similar that the following treatment

applies essentially unchanged to either. We will concentrate on the first,

which is the more general. The forms for the second can then be obtained by

putting F-1.

The vacuum contribution, SWv, may be evaluated as the surface integral

using the internal fields B and 6B - V-(fAB) (rather than the vacuum fields)

provided that the equilibrium has no surface currents (i.e. if p and Vp are

zero at the plasma surface). Substitution readily demonstrates that the

condition VA(CAFVO) - 0 is sufficient to make the Bo contribution to 6Wv

zero.

The equation VA(f^FVO)-0 requires C to be expressible as

f - (VAVW) (10)

where w is a scalar potential, a kind of stream function of the poloidal

flow.
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Now we demonstrate that a perturbation equivalent to the current shift

can indeed be found, satisfying the constraints, provided an integral

condition is satisfied. First note that any perturbation satisfying the slip

constraints will give

(VO^Vo).VO - (VO-VO).V(

FIV0I 2  FIVOI 2

Thus when f.V0 is given, the variation of w round any flux surface is

determined by simply integrating this equation. For if I denotes arc length

around the flux surface in the poloidal direction, we can write

w(MW M- J( vozvo dl - f10 WA0 di (12)

where integrals are along the flux surface, and we have incorporated the

current shift form f.Vo - 60. We must require w to be single valued,

however. This requires the complete integral once around the flux surface to

be zero. Noting that B - FIV0I and Bp - jVOAVOI, this readily reduces to

Eq(3) as was to be proved. The alternate form of the slip criterion,

VA(fAVO)-O, gives rise to the alternate condition in Eq(3), by setting

F-constant. Inspection of Eq(12) shows that if we are dealing with a mirror

symmetric case, where F, IVO^VOI, VO, and dl are even and 60 is odd, then

the integral is indeed zero by symmetry. Otherwise there is no guarantee

that the integral condition is satisfied.

Although there is still the integration constant w(0,0) free to be

chosen for each flux surface, Eq(12) essentially determines the f that we

are seeking. This f is not in general compressionless and choice of w(0,0)

cannot make V.f - 0 in general. Therefore the pressure terms in 6W cannot

necessarily be ignored. Their magnitude can readily be established by noting
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that

VA(fAFVO) - - F .VF - + V. V . (13)

Therefore the perturbation which satisfies the slip condition has

2. R - .V 
(14)

Using the zeroth order equilibrium pressure balance, the order of magnitude

of VF/F can be seen to be [(B /BO) 2 + ft]. Therefore the order of magnitude

of the term po( .Vp)V. relative to the driving term of the axisymmetric

mode, VO.[V-(VO^VO)]C.V(f.VO), is

Mo( [(2 R/R) + (B 2/B2 + t a]R
a R a p t a R

B2 2 /a O( R ) + O(pt) + O(pfpt), (15)

p

where a is the minor radius. For the alternate form of the slip condition,

VA(eAVo)-O, the last two terms are absent. They may therefore be safely

ignored because if the plasma pressure were high enough for them to be

significant we could always take the alternate slip condition as our choice

and thus eliminate them.

That completes our proof.

4.Discussion

Despite the generality of the inequality SWc < SWi, it might seem that

its relevance is sharply reduced by the requirement that the external

circuit currents be conservative. Perhaps the most important situation of

interest is when the plasma is surrounded by resistive walls. This appears

to be ruled out by the conservative restriction. It turns out, however that
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the inequality can be made relevant to the resistive wall case using

approximate results of Haney and Freidberg [6]. They showed that a

variational estimate of the growth rate, -y, of a mode within a resistive

stabilizing wall whose time constant is r is

SW
6r - - , (16)

where 6W. is the energy change for a perturbation in the absence of the wall

and 6Wb is that in the presence of a perfectly conducting wall. What this

equation shows is that the magnitude of the energy for a perfectly

conducting wall, 6Wb, (assumed positive, for otherwise the plasma is

unstable on the ideal timescale) and for no wall, 6W., determine the growth

rate of the resistive mode. Thus our relative ordering of SWc and 6Wi for

conservative external circuits determines also the relative ordering of the

resistive growth rates for their respective perturbations, at least to the

accuracy of the variational approximation.

One might wonder at the restrictiveness of the conservative condition.

and whether it ought to be necessary. That there must be some restriction

placed on the external current response may be understood by considering a

situation in which active current control is allowed. It seems clear that if

there is any difference between the field perturbations for the current

shift and ideal shift cases, then a linear feedback law can be devised that

reverses the ordering and makes the ideal shift more unstable than the

current shift. This could be done by applying a strong positive feedback to

the difference between the perturbations. Thus a restriction is necessary

that excludes such a situation. The conservative condition does this.

Whether, however, there is some direct demonstration that for a passive wall

(i.e. allowing only dissipation of energy) the growth rate estimate for the
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ideal shift is less than for the current shift, in a more rigorous sense

than the variational demonstration, is unknown to this author.

The relative stability of current shifts and the minimizing eigenmode

is less dependent on such additional arguments to demonstrate its relevance

to the resistive wall case. On the other hand, the restriction to mirror-

symmetric cases is a fairly serious one since there is considerable interest

currently in "single null" divertor configurations which are not mirror-

symmmetric. It is clear, again, that some form of restriction of the

configuration under consideration is inevitable. As an obvious example,

horizontal rather than vertical shifts are axisymmetric modes. But it is

known that they are not adequately modelled by constant current shifts.

Instead, for circular plasmas, adiabatic scaling expressions are known [21],

including changes in total current and minor radius with R. The mirror

symmetry requirement excludes horizontal shifts from consideration for the

current shift model. However it appears that the present formalism may be

valuable in developing more general shift models that are appropriate for

horizontal shifts.

Another limitation concerning the comparison between current shifts and

the minimizing eigenmode is that the inequality is itself only approximate

because of the compression term that is left over. This term, which has been

shown to be of relative order efppR/e, will in general be stabilizing. Thus

it tends to increase SWm relative to 6 Wc. In many cases, particularly for

moderate beta (<p < 1) and triangularity (R/c << 1), it will be negligible.

In extreme cases it may lead to a significant violation of the approximate

inequality. This weakens the impact of the present theorem but since it

leads to a relatively more conservative prediction by the use of the current

shift model this may not be regarded as a disqualifying fault. It may in
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fact mean that the current shift model is an even better estimate.

It should be noted that the eigenmode that we have shown to be more

unstable than the current shift is the full minimizing eigenmode, including

the possibility of radial (eR) motions. Bobbio et al [7] found numerically

that for INTOR shaped plasmas the current shift model gave more unstable

perturbations than a general incomoressible ideal MHD perturbation. This

result does not violate our theorem because of their restriction to

incompressible perturbations, of the form f - Z(R) 9 . What it does show is

that, for this plasma, the current shift model estimate is better than even

a generalized vertical flux shift model of this type. A similar result has

also been observed during numerical studies of other plasmas [22].

In summary, then, the main force of the present investigation is to

show that for essentially all practical purposes the model consisting of a

constant shift of the current profile gives a superior estimate of

axisymmetric stability than the constant shift of ideal MHD flux surfaces.
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