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Abstract

A study of the radial gradients driven neoclassical transport for fast ions, produced by

isotropic source, in an axisymmetric toroidal system is present. The governing equation,

the bounce averaged Fokker-Planck equation which contains both effects of the pitch angle

scattering and the drag, is solved by utilizing the eigenfunction technique in cooperation

with a rigorous numerical treatment. The results, which contain the complete physics of

both collisional effects for finite inverse-aspect-ratio (e = i), are found to be, for most of

the relevant parameter regimes, in between of the previous limiting calculations1 '4.
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I. Introduction

The radial losses of the energetic ions produced from an isotropic source are of special

interest regarding their role to maintain ignition in an fusing plasma system. Originally1 ,
these losses were evaluated by keeping only drag in the collision operator. The resulting

fluxes were therefore found to be only due to the decrease in the radial excursions of

the trapped energetic ions as they slowed down by drag, an effect sometime refered to

as 'banana collapse'. Since the neglection of the pitch angle scattering is not obvious,

several efforts 2 4 have been made recently to retain the effects of pitch angle scattering

for evaluating these radial transport fluxes. However, all these recent treatments, which,

in contrast to Ref. [1], emphasized only the pitch angle scattering terms in the collision

operator when solving for the fast ions distribution function, are also incomplete. In

particular, in Ref. [4], an attempt to include both contributions from the drag and the

pitch angle scattering was made, but, inconsistently, the distribution function associated

with the pitch angle scattering only was used.

In the presence of both the drag and the pitch angle scattering, a fast ion will suffer

both collisional effects during the slowing down process. Usually, it suffers more drag at

birth, then, more and more pitch angle scattering than drag as it is slowed down due to

the drag. One can therefore roughly categorize the fast particles into three classes in the

velocity space - (i) which suffer mostly the pitch angle scattering, (ii) which suffers mostly

the drag forces, (iii) which suffer both collisional effects in the same order of magnitude.

It is found in this work that there are three distinct contributions to the radial transport

losses corresponding to each class of particles. As for which contribution is more important,

one needs to specify several physical parameters such as the birth velocity of fast ions, the

critical velocity above which the electron drag is dominating, and the inverse aspect ratio.

Combined, they can determine the fraction of each class of particles in velocity space, and

the possibility for pitch angle scattering to detrap the trapped fast ions. In particular, the

finite aspect ratio effects are especially important since each class of particles has transport

fluxes with different scaling in e. The detailed analysis of this argument will be given in

the rest of this work.
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Mathematically, as will be pointed out in Sec. II, both limits adopted in the previous

works" 4 are singular limits to the real system; therefore, it is important for the present work

to carefully retain the complete physics of pitch angle scattering and drag, for arbitrary E.

Since the governing equation for the solution of distribution function, the bounce-averaged

Fokker-Planck equation, is a 2-D inhomogeneous partial differential equation, we adopt the

eigenfunction technique' in order to reduce it to an eigenfunction equation for the pitch

angle operator and an inhomogeneous ordinary differential equation for the slowing down

operator. Consequently, the radial fluxes with complete physics can be determined upon

rigorously solving for the eigensolutions. Quantitatively, for most typical parameters in

fusing tokomak plasmas, our results are found to be much larger than those in Ref. [1] but

smaller than in Ref. [4].

As in most of the neoclassical transport theory of the magnetized plasma we assume

, = L (where p, is the poloidal gyroradius and L the radial scale length) to be a small

quantity, and then utilize it as an expansion parameter. That is, the present work is not

adequate for evaluating the transport fluxes of fast ions with banana width comparable to

the length scale. In addition, we restrict ourselve to the axisymmetric system and with

isotropic source. For instance, our calculations are inadequate for radial transport of fast

ions produced from NBI if the source is anisotropic in velocity space.

In section II, a theoretical formulation which leads to the bounce-averaged Fokker-

Planck equation and the general form of radial transport fluxes are given, in cooporation

with the eigenfunction expansion. In section III, the solutions will be determined, both

numerically for finite e and analytically with perturbation theory for small E. Discussions

and comparisons of the results with that of the previous calculations will also be given.

Section IV contains a summary of the results, a detailed discussion of the physical mech-

anisms causing the transport in various regions of velocity space and final remarks about

extensions of this work to transport of energetic ions with finite banana width.
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II. Theoretical Formulation

To describe the collisional behavior of the fast ions in an axisymmetric toroidal system,

the procedure, which first derives the bounce-averaged Fokker-Planck equation and then

solves it with an eigenfunction technique by utilizing the self-adjoint property of the pitch

angle scattering operator, has been previously developed. In this section, we review this

procedure to yield the distribution function and hence the neoclassical transport for fast

ions with isotropic source. For further details, we refer readers to Refs. [4,5].

A. Bounce Averaged Fokker-Planck Equation

Considering the fast-ion species with isotropic source S (e.g., for D-T fusion, S =

nDnT (fv)) and birth speed v,, the kinetic equation is

f= C(f) + 2 (V - v") . (1)

Here, f is the Vlasov operator and C(f) the Fokker-Planck collision operator. For

vi < v < v., where v is fast ion particle speed and vi, y, are the thermal speeds of

the Maxwellian background ions and electrons, C(f) has the approximated form6

C(f) = 0- [1 3f+ v27- . -f (2)

with

[371/2T3/2 (ZNn/ ] /(m)1/2 N.l~
3C/T /2 (Z? Nj In A. /mj) (2m.)/ NIn A.

3= 3x1/2T/2 (Z N.nA5) (2m,)1/2NemnA,]

and

3mT/ 2  4(2m,)1/2Z24NlnA,]

In the preceding, mj, Zj, N, and lnAj are the mass, density, charge and Coulomb

logarithm for species j, and the quantities without the subscript correspond to the fast ion
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species. Here, the self collisions of the fast ion species are neglected due to the smallness

of its density, so the sums in v 3 and v axe over all the thermalized background ion

species only. The parameters r, and v, are the slowing down time associated with electron

drag and the speed above which electron drag dominates over ion drag. The speed Vb

characterizes pitch angle scattering of the fast ions by the thermalized background ions so

that the deflection time is For the energetic alpha particles immersed in background

ions with equal amounts of deuterium and tritium, 3 =-

Following Ref.[4], we expand Eq. (1) in S,, i.e., f = f. + fi + - -. Then, we solve for

the lowest order solution f,, i.e.,

= Sr. H(v 0-v) (3)
4r(v3 + v)

which is a consequence of the balance between the isotropic source and the drag portion

of collision operator. We then gyrophase-average over the first order equation and obtain

S-' 1+ f I o E) = C(fm). (4)

Here H(v0 -v) is the unit step function which vanishes for v > v,, E is the energetic particle

total energy, 0 = _ is the gyrofrequency and the overbar denotes gyrophase-average.

The usual axisymmetric flux coordinate system ( 0,,8), (the toroidal angle, the poloidal

flux function, the poloidal angle), is adopted so that B= IMp + tW x tO, B. - -,

J =_ p x V'. V- , and for low beta plasma, I = I(0). The gyrophase-averaged

collision operator has the form

1 1 8 2v 3 a
-- [(v~±~g + v,,(5C(g) v 2 v)g] + A

where, A , 2 = ±(1 - )2, h -, B, the magnetic field at the magnetic axis,

and n,, ZeB-,

It is important to emphasize here that the validity for the well-known slowing-down dis-

tribution f0 of Eq. (3), depends strongly on two assumptions we have made: (1) isotropic

source, and (2) smallness of 6,. When anisotropic source, (for instance, NBI), is consid-

ered, the pitch angle scattering effects become very important in zeroth order 5 , and as a
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consequence, f, = f0 (0, v, A). For the case that b, - 0(1), the banana width Arb - VcbL

becomes so large that the trapped particles suffer 0(1) difference in collisional forces on

the banana trajectory7 , whence f. = f,(,(, 0, v, A) results. However, both of these effects

are not included in this work.

By defining P, the localized part of the distribution function, such that

Y1= (iv-fo ) [2h ]+P (6)

and exploiting that the bounce period rB is much shorter than the slowing-down time r,,

one can further expand P in B and finds that the lowest order of P in g is independent of

0, i.e., satisfies P = P(b, v, A). In addition, as is well-known8 , due to rotational symmetry

of the. collision operator and particle conservation at the banana tips, one also concludes

that P = 0 in the trapped region. The solubility condition of Eq. (4),

B----Cfi)) = 0V11

thus yields the bounce-averaged equation for P

v(--fo -)A(1-(()-P) =- '(v(+v7))v(-f ) - P } 7)
C0 _0 0A aA BO 8 ,

where the right-hand side describes the drag and the left-hand side describes the pitch

angle scattering. Here,

(. ...) -J -J(. ..) -O J

denotes the flux surface average.

In the next subsection, the inhomogeneous partial differential equation, Eq. (7), will

be further separated into an inhomogeneous ordinary differential equation with respect to

v and an eigenfunction equation with respect to A. However, it is instructive to remark

here that two limiting solutions of Eq. (7), (i) the "drag only" solution1 , Pd, and (ii) the

"pitch angle scattering only" solution2 , Pp., have been previously adopted to approximate

the radial transport. Here,

< 
(8a)
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is deduced from Eq. (7) by taking Vb to be zero and

8 1
P = (8b)

is deduced from Eq. (7) by taking v' to be oo. Nonetheless, neither of them are relevant

for describing the real solution. This is because (i) the Vb = 0 limit, which leads to the

"drag only" solution Pd, is a singular limit with respect to the differential operator for A;

and (ii) the Vb = oo limit, which leads to the "pitch angle scattering only" solution Pp., is

a singular limit with respect to the differential operator for v.

B. The Eigenfunction Technique

Since the operators in Eq. (7) are separable in A and v, and the pitch angle scattering

operator is self-adjoint, following Ref. [5], one can express the solution P as a series of

orthogonal eigenfunctions in the form

P(0, V, A) = A.(V, A)V.(p, v) (9a)
n=1

where An is the eigenfunction of the equation

a < > -- An = 0< An (10a)

with eigenvalue Kn, satisfying the following boundary conditions:

fat the passing boundary, A = 0, An = 1, 10b)
at the trapped-passing boundary, A= A = 1 - E, An = 0,

Before proceeding, it is useful to discuss the asymptotic behavior of the eigenfunctions

An near both boundaries. Near the passing boundary, A -+ 0, since < >-- 1, L < >-

<~ > (i.e., a regular singular boundary), Eq. (10a) reduces to the eigenequation which

generates the zeroth order Bessel functions, J, and Y. Near the trapped-passing boundary,

A -4 Ac, since () - ( 2E for small e) but < e > is logarithmically singular (i.e.,

an irregular singular boundary). Thus Eq. (10a) has two possible approximate solutions:
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An oc Arn and 8Aoc . Only one solution for each boundary satisfies Eq. (10b), that

is, {near the passing boundary, A. -+ J.( 2A(}) 1 - ()f, (l0c)

near the trapped-passing boundary, An/ - - < > f, dA' .

It is now clear that the "drag only" solution Pd is an irrelevant solution as long as Vb

is nonzero, no matter how small it is; because Pd is not able to satisfy the asymptotic

behavior near the trapped-passing boundary.

The orthogonality property of A, is

d\A An =-0, for m#n.

Also, it is worth mentioning that, due to the Sturm-Liouville form of Eq. (10a), the eigen-

value Kn has a variational form

f dX X < > ( aAn )2
Kn [An] = A (11)

- fLj* dA a > At

and thus can be calculated variationally using a suitably constructed trial function. The

absolute minimum of the variational functional is the lowest eigenvalue r,1.

Utilizing the orthogonality of An, multiplying Eq. (7) by Am and integrating over A,

one finds that V is the solution of the equation

-( - =On - nVn (12a)

The boundary condition for Vn at v = v, becomes, considering Eq. (3),

f A* d,\ An
Vf(, V)d=Aon[A]= A (12b)

fdA <> A2

Again, one notices that, except for the special case that Mn = 1, the vC _. o limit leads

to solution Vn = which violates the boundary condition Eq. (12b), obviously a singular

limit for Eqs. (12).
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By solving the inhomogeneous ordinary equation Eqs. (12), V is obtained rigorously

as

Anu 3

Vi d* (V3(V3 +u U3) U g()
V( = [din 1 - (n - (13)

(ve"+ v)v- 1 -~ (V (ve± +_ W+V-I-v 3)f.(V B (U)

E

Therefore P, the solution of Eq. (7), is completely determined upon solving for A,, n.

from the eigenequation Eq. (10a). For finite inverse-aspect ratio e, Eq. (10a) should be

solved numerically; while for e < 1, it can be approximately solved using perturbation

analysis, carefully taking into account the trapped-passing boundary effects. These are

given in Sec. III.

C. Neoclassical Transport Fluxes

By flux surface averaging over the R2 VWo projection of the moment equations of mo-

mentum and heat flow, one obtains the well-known form for the neoclassical radial fluxes

d - ~I (fJdU(M2)dV _ 7))rneo = de l hC(fi

which, by using Eqs. (3), (5) and (6), yields

rneo = - SE(-1)+1A Cdl (14)

where superscript d denotes particle flux for d = 0 and heat flux for d = 1. Here, the

normalized diffusion coefficients Cd,1[P] are defined by

Cd,I[P] 1 (- -2d+ 2-d}
3 vo V, (15() 2d+1 (A)3 + (2d1 + 3 Ac

-VC (1 )3) VC < h2 > +- Pd]

with A1  87P ln(Sr,), and A2  4 ln(v3). Hence the radial transport fluxes are deter-

mined upon correctly solving for P. Note that A1 and A2 are the radial gradient driving

forces, and for fast ions produced in a fusing plasma, A1 and A2 are mainly corresponding
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to the electron density and temperature profile. Also note that the radial electric force due

to 8 is neglected because, for fast ions, m < 1 can be assumed a priori. (In principle,
can be determined from ambipolarity.)

Now, by using the eigenfunction expansion form of P, i.e., from Eqs. (9), (12), and (13),

one is able to express the normalized diffusion coefficients, Cd,I[P] in Eq. (15), in terms

of eigenfunctions. On the other hand, from the fact that Vn in Eq. (13), and therefore

Cd,[P] in Eq. (15), involves the radial gradients Al, one notices that some rearrangements

are needed to extract Al out of Cd,l. After lengthy manipulations, one finds

C2 >Q0, <n2 Ld,, + (2d + 1) <h2 > _ 0 T( 2 - ) L,
L n=1 KJ n=1 - (16)

- (2d + 1) T(1 - )2d1]
ni=1 I K

Here Tn, Ld,1, and IdL are defined by

3 (f dAA)2
Tn(O) 4 - * (17)

4f'c dX(-5< (>)A2

1 *Xo 1 2d+1

d3x+2 j 0 (1 + t3 )1- (18)

and

Id1(on) 1 fX0 di ftdf ry3(1+,S)]wa d[ 2 d+1(1l+ YS)]' ,(9

IdI(X., W) 3x2d+2 (1± i3) y 2t(1 + y3 ) dY 9)

where, X0 ,,- , Q, , It is noticed that the series for Cd,, in Eq. (16)

converges rapidly with respect to n; therefore the first few eigenfunctions and eigenvalues

will suffice to provide quite accurate results for the radial fluxes I'd .. This can be under-

stood from (i) the fact that ,. > 2n 2 - n as will be shown in the next section (also c.f.

Ref. [5]), and (ii) from the limiting form of Eq. (19)

1 (2d+4-
Id, ~ - 4 Ld,I_.1(Xo) - L+,I(Xo) +

a3 Widn ad s ( n)

deduced from partial integration and assuming Wn -- 00.
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It is important to note that Xo characterizes the electron drag effect (i.e. for, larger

Xo, electron drag dominates for a longer period during the slowing-down process), and

Q, marks the pitch angle scattering effect. However, whether the dominating effects are

due to pitch angle scattering or drag is not at all a trivial question, since Cd,j involves

three independent parameters, Xo, Q, and e. Detailed discussions of the results will be

given in Secs. (III) and (IV). Here, in particular, we point out that while Q, = 0 is a

singular limit, for smaller but finite Q,, it requires larger K,' to make IdL oc , i.e., the

convergence needed to provide an accurate approximation to Cd, is delayed. This also

implies that for smaller Q,, more eigensolutions with respect to n are required to retain

the correct dynamics near the trapped-passing boundary and to accurately approximate

the exact solution. On the other hand, in practice, Q,, which corresponds to some sort of

mass ratio of the fast ions to the background ions, is usually of order unity.
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III. Solutions and Results

In this section, we will numerically solve for the first few eigensolutions for various

values of e. For instructive purposes, we also derive analytically the eigensolutions using

the Legendre expansion and the perturbation theory, assuming very small c. The results

from the perturbation analysis are then used for discussing several interesting limiting

cases and limiting results from previous calculations. Moreover, the comparisons between

the numerical results and the analytic approximations will be given.

A. Numerical Solutions

By assuming a concentric circular flux geometry (where the Jacobian J = h = 1 +

Ecos6), the eigenequation Eqs. (10) will be solved rigorously for finite e. That is, the

functionals < C > and 0 = -1 < - > are numerically calculated to retain the

complete finite c effects. Then, by utilizing the asymptotic behaviors near the boundaries,

Eqs. (10c), and adopting the IMSL routine BVPMS, we obtain the exact eigenfunctions A.,

eigenvalues n,, and T, for n = 1 to 5 and e = 0.01,0.04,0.09,1 , and 1 (see Figs. (1)).

The orthogonality of A, and the variational form of eigenvalues K, given in Eq. (11) has

been checked to ensure an accuracy such that the error is found < 10'.

It is interesting to note that the lowest eigenfunction is found to satisfy A1 = Apa+O(Vf)

(see Fig. (2)), where

Apa C dA (20a)
. X <C>/ f <C>

is deduced from Eqs. (10b) and oc . Hence, the lowest eigenvalue ri, for small C,

can be approximated by inserting A, into the variational form Eq. (11). This yields,

NJ = 1 + 1.47V/- + 0(e). (20b)

On the other hand, since the form for T, in Eq. (17) is not variational, one can only

approximate Ti from Apa to 0(1), i.e., Ti ~ 1.
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From the exact eigensolutions obtained here, the radial fluxes, or the normalized trans-

port coefficients Cd,1 defined in Eq. (16), can be readily determined for given Xo, Q, and

E. In Figs. (3), we present Cd,1 vs. Ve for various realistic parameters. In particular, in

Fig. (3a), (3b), we present Cd,1 for Q, = and Xo = 0.5, 1,3,6. Also, Cd,1 for fast alphas

in D-T and D-He3 reactions and fast protons in D-He3 reaction are presented in Figs. (3c),

(3d). For the D-T reaction, we take the temperature to be 1OKeV, and in D-He3 reaction,

we take the temperature to be 100KeV. Note that in both figures, the previously evaluated

results given in Refs. [1] and [4] are also presented for comparison. It is shown that, except

for the cases of larger E(- 0.5) and small X, (for which pitch angle scattering is important

even for finite magnetic well depth), the exact results are in between of the previously

obtained limited results for most of the realistic parameter regimes. To understand these

numerical results with more physical insight, it is useful to have an analytical approxi-

mation to the eigensolutions. We will therefore solve Eqs. (10) by using the perturbation

theory in the next subsection.

B. Perturbation Theory For Vf < 1

By defining a new variable = 1- = , Eqs. (10) can be rewritten as

2 < >B < >
-(1 - 12) b-An = -2nn An (21a)

and
{An( = 0) = 0, (21b)

tAn(77 = 1) = 1.

For e = 0, one finds that = >= 1, and Eq. (21a) yields the eigensolutions
17 8,7

(A) = P2n-1(),
n = 2n2 -n,

where the superscript (0) denotes e = 0 limit and P2 n- 1 is the usual Legendre polynomial.

Hence, for nonzero E, it should be useful to expand the full solution An in series of Legendre

polynomial. A naive attempt fails to converge, however, because of the singularity of 8<4>

near the trapped passing boundary.
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In order to take into consideration the asymptotic behavior near the trapped-passing

boundary, as in Eq. (10c), we set

00

= E7 anmP2mi 1( 77),
Sm=1

(23)

Then, by using the properties of Legendre polynomial, [f. d77 P 21- 1().Eq. (21a)] yields

(0) 00

4 -1 at= -(I - 1/2)) E anm di
41-1m =1

P 2 1 - 2 P 2 -( 1 q7

77 <\ <I> 0977

+(n - l + 1/2) anm d P2-1P2M-1 1
M=1di 7 [ iiPmi(

(24)

Now by assuming V/c < 1 in concentric circular flux geometry, it is found that

< >= 2 (+E E 2(1 + 772)f 0(C)
< > - 7 7

2 2e 77 2 ±+2 E/

which leads to, (see also Fig. (4)),

__7_ (9<c> (1 for r 2K<C
1 - ~ 0(1) for 772 0(C)

2 )/ Cirj e/7 2  for 72 E

where E(x) _ fL dO(1 - x sin2 0)1/2 is the complete elliptic integral of the second kind.

Therefore

d77 1 0 o(v)

and for n > 1

d77

< 7 7 n = (f

The perturbation analysis is thus achieved by omitting O(e) from Eq. (24) to yield

(0) 4n - 1
= na-Kna - 3

S = an - S ~- 4m - 1
am am - am - 3

2S(2n - 1)!! ~

\(2n - 2)!!)

(2m - 1)!! (2n - 1)!! (_lgn+m R

(2m - 2)!! (2n - 2)!!J (0) - (0)

(25)

(26a)
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an1= Z anm , (26b)
m#n

where I = nj - 1 is according to Eq. (20b). Furthermore, from Eqs. (23), (25) and (26),

Eq. (17) yields

T 4n - 1 (a,1) 2 ~ O(C) (27a)
3

and

T= (1-e)2 1+6f dq7(1 -- T + O(/2)
I / > n=2

Here by using the facts that < > = 1 and < > =7, one finds

f d77 721 - ~ 2c; hence,

00

T1 =1 T + (3 /2 ) . (27b)
n=2

Now we are able to make comparisons of numerical results with the analytic predictions

based upon the perturbation analysis given above. First, we numerically fit the numer-

ical solution An obtained in subsection (III.A) with the modified Legendre polynomial

expansion in the form
8

Then, the coefficients anm(E) = anm(E) - bnm are fitted with the polynomial form

4
M= 4E k/2

k=1

The coefficients anm are given in Table I, and it is found that the coefficients ann are in

good agreement with the analytic prediction given by Eqs. (26), within 10%.

For transport fluxes, the normalized transport coefficients Cd, for Q, = 1 and xo =

0.5,3.0, numerically obtained in Sec III.A, are fitted in powers of V such that

4

Ca,1~ =A:e/2Cd,U EfIlE 1

k=1

15



The coefficients ) are given in Table II; and again, good agreement is found between (fd,L f3 d,1

and the analytic prediction given in Eq. (29a) in the next subsection, with error bounds

of 10%. On the other hand, for the case of X, = 3.0, the large value of the coefficients

# implies that small e approximation is no longer valid for the parameters X, = 3.0 and

Q, = !. Prom the discussions following Eq. (30b) in the next subsection, it will become

clear that this e3 / 2 scaling is due to the domination of the drag effects.

Moreover, with the perturbation analysis given in this subsection, one is able to further

study the limiting forms of Cd, from Eq. (16) to obtain better physics insight. This is

given in the next subsection.
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Table I. Polynomial Fit for Eigenfunctions

anm = anm -

4

Snm = a

k=1

(nm) k 1 2 3 4

(1, 1) -0.62 1.33 -2.30 3.08
(2,1) -0.45 -0.13 1.03 -2.04
(1,2) 1.00 -3.26 7.32 -11.14
(2,2) -0.59 1.93 -4.95 8.32
(2,3) 1.62 -4.74 11.55 -18.87
(3,2) -1.10 0.34 1.70 -4.60
(3,3) -0.56 0.85 -3.46 7.34
(3,4) 2.22 -5.32 11.83 -1.92
(4,3) 0.54 0.49 -2.22 4.21
(4,3) -1.76 1.93 -0.23 -2.85
(4,4) -5.36 -1.55 2.08 -0.19
(4,5) 2.85 -5.61 9.70 -15.00
(5,3) 0.89 0.31 -2.61 4.74
(5,4) -2.41 4.35 -3.66 0.68
(5,5) -0.56 -4.62 9.51 -9.06
(5,6) 3.43 -4.92 1.50 1.78
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Table II. Polynomial Fit for The Normalized Transport Coefficients

4

Cd,1 = Z k)Mk/2

k=1

M x 102

V, = 0.5
VC

(d, 1) k 1 2 3 4

(0,1) 14 23 12 18
(0,2) 13 22 11 17
(1, 1) 7 20 30 20
(1,2) 6.5 19 28 19

vo =O 3.0VC

(d,l) \k 1 2 3 4

(0,1) 2.85 8.85 18.5 17.3
(0,2) 1.3 2.74 3.24 3.28
(1, 1) 0.61 7.64 29 27
(1,2) 0.12 0.86 2.68 2.37
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C. Limiting Results And Comparisons With Previous Calculations

Let us first study the pitch angle scattering dominant case, i.e., assuming large Q, but

finite e and y. By using the fact, for Q, > 1, that Id, oc ' , Eq. (16) yields

Cd, ~ Q, < 2 > - Ld,1+1(x.) (29a)
L n=1 Jn

We should nevertheless note that Q, is basically an ion mass ratio (see Eq. (2)); therefore,

it will be unrealistic to assume Q, to be very large. However, there is another parameter

which can also obviously make pitch angle scattering dominant, i.e., the aspect ratio. We

therefore assume very small e but finite Q, and Xo from Eq. (16) which yields

Cd, ~ 1.47QpVe"Ld,1+1(xo) (29b)

with the validity condition

Ld,+1(x.) (29c)
Ld,i(x0 )

The drag dominant limit can be achieved by assuming very large X, but finite E and

Q,. From Eqs. (18) and (19), we have, for X, > 1,

Id,1 ~ Ld,1 > Id,2, Ld,2, Ld,S; (30a)

Eq. (16) thus yields

Cd,1 ~ (2d + 1) < h2 > E T) Ld,L(XO) (30b)

Cd,2 < C,1 (30c)

We note here that it should be very careful when one further takes the small e limit of

Eq. (30b), since no matter how large Xo is, there always exists a small enough quantity

of c that can make the pitch angle scattering effects important, as implied by Eq. (29b).

This occurs when the magnetic well becomes so shallow that a weak pitch angle scattering

can detrap the trapped particles easily. On the other hand, it is still very interesting to
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note that, from Eq. (27b), the leading order term of Eq. (30b), in inverse aspect ratio, is

O(e2). That is, for the parameter regime in which Xo is large enough that the inequality

in Eq. (30a) is satisfied, and e is small enough that

< h2 > - _T oc f/2
n=1

is a good approximation, but is large enough that the inequality

or> Q Ld,+1(x.)

Ld,I(XO)

still holds, one can expect that Cd,j oc f 3 / 2 which might explain the observation from a

Fokker-Planck Monte-Carlo simulation. Since Eqs. (29b) and (30b) appear to have similar

leading order f dependence as those of the previous limiting calculations by Nocentinil

and Catto4 , it is therefore interesting to make further comparisons.

First we use the limiting solution for P given by Eqs. (8) to calculate the transport

coefficients Cd,I[P]. Eq. (15) thus yields

Cdrag [Pd] = .QLdL+1(xO) + (2d + 1)LdI(x.) < h2 > + f dX (a< >)

(31a)

and

Cda [Ppa] = QpLd,i+1(x.) + (2d + 1)Ld,I(XO) <h2 > - dA (31b)

Nocentini's and Catto's results are then recovered by taking both the x, >> 1 and f < 1

limits of Cda' and C,, respectively, to yield

N 6(d+1)

and

Ccatto 147. -2d +1 e.(32b)dI 6(d+1 )

Since both Pd and Ppa correspond to singular limits, as has been pointed out in preced-

ing sections, it is therefore expected that Eqs. (31) do not agree with Eq. (29b) and (30b).
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Moreover, it is also inconsistent either to take the small e limit from a drag dominant

solution or to take the large Xo limit from a pitch angle scattering dominant solution. This

is because (i) a very shallow magnetic well can allow for significant pitch angle randomiza-

tion near the trapped-passing boundary even though the drag is dominant for most of the

phase space; and because (ii) larger X,, on the other hand, can cause more banana orbits

to collapse before the trapped particles are pitch angle scattered out of the banana orbits.

In Figs. (3), we present C * and C t"* together with the exact Cd,1 for various realistic

parameters. It is found that C 4 *, is underestimating and Cc"'* is overestimating the

exact result for most of the practical parameter regimes.

Note further that by taking the small Xo, large Q, and small e limit, Ca"j reduces to

the limiting form given in Eq. (29b). This coincidence can be understood from the fact

that Pa can become a good approximation to the real solution when the above mentioned

limits are fulfilled. This is because (i) Pa = ApaOn[Ap,] (c.f. Eqs. (12b) and (20)); (ii)

the singular limit, Q, -- oo, of Eq. (12a) yields a solution which coincides with its regular

solution if n. = 1; (iii) for e < 1, we have found i ~ 1 and A, ~ Apa as pointed out

in Eqs. (20); (iv) smaller value of X, reduces the term in Eq. (13) involving the velocity

integral.
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IV. Summary And Discussion

The general form of neoclassical transport fluxes of the fast ions generated from an

isotropic source, in an axisymmetric plasma system, has been derived by a pitch angle

scattering eigenfunction expansion, and is given by Eqs. (14)-(19). The fluxes can thus

be readily determined upon solving the eigenequation Eqs. (10), with given Q,, X, and

c. Therefore, the complete physics of pitch angle scattering, drag and finite aspect-ratio

effects can be retained. Since the serial form of the transport coefficients Cdl in Eq. (16)

shows rapid convergence, one needs only to solve for the first few eigensolutions.

It is concluded that either the pitch angle scattering-only solution or the drag-only so-

lution is irrelevant, since they are associated with singular limits and violate the boundary

condition either at the birth energy or at the trapped-passing boundary, i.e., at v = v,

or at A = A,. We would like to remark here that, from the above discussions, an imme-

diate extension of the present work will be to evaluate the neoclassical transport of the

plasma system with additional drag or energy diffusion terms which is usually thought

to be negligible but in certain circumstances can play an important role'. Note that for

typical parameter regimes, the radial losses are found to be in between those of previous

evaluations" 4 associated with the two limits.

The physical reality is that an energetic particle suffers mostly drag at birth; then,

pitch angle scattering becomes more and more effective as the particle is slowed down

by the drag. However, how fast it will enter the pitch angle scattering dominant region

depends on its initial value of A. A line roughly showing the boundary between the pitch

angle scattering dominant region and the drag dominant region in the (v, A) phase space

is given in Fig. (5). In particular, in the trapped region, from Eqs. (5), (6), and the fact

that P vanishes, the ratio of pitch angle scattering to drag is

Cpa(ft) Vbs~t - (33a)
Cdra(ft) v3+v '

whereas, for barely passing particles,

Cp (f Vb - (33b)Cdra"(f) v +v< >
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Therefore, we are able to devide the phase space into three regions corresponding to the

three classes of energetic particles as described in Sec. I.

If during a period rff, a particle traverses a distance Ar due to some mechanism such

as pitch angle scattering or drag induced banana collapse, the transport flux of such class

of particles which suffers the same diffusion mechanism is roughly

A n(r - Ar) - n(r + Ar)].
7"!f fII

Therefore, the diffusion coefficient of such a class of particles can be roughly estimated to

be

D~F (Ar) 2

Tcff

where F is the fraction of such particles in phase space. Also, in the banana regime, where

the bounce time rB of the trapped particle orbit is assumed to be much shorter than the

slowing down time -r, one can qualitatively estimate the radial losses by only considering

the contribution from the trapped particles for simplicity10 .

Then, by assuming v, ~ Vb <; v, and using Fig. (5), we estimate the diffusion coefficients

as follows:

(i) for the pitch angle scattering dominant region I,

F ~ , Ar A_ and Teff ~7-,(A )2  AX
Xo Xo

i.e.,

f Pp
D, ~ _; (34a)

X0 r

(ii) for the drag dominant region II, although there is negligible random pitch angle scatter-

ing, the particle will radially traverse a distance of Ar ~ Vp, according to the shrinking

of banana width during the slowing down process; in addition,

F ~ VE and r. ~ff r.,

therefore
2

D2 ~ -- E3/2; (34b)
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(iii) for the intermediate region III, therefore -~ A4, so,

FAVV~ E Ar~' and reff r,E,
V0  X0 Xo

i.e.,

D 3 ~ P . (34c)
'r- X'O

To identify the physics origin of the transport fluxes from Eq. (16), we rewrite it in the

following form

Cd,1 = Q, < h' > - Ljd+1 + (2d + 1) < h2 > - Tn Ld,1
n=1 In=1

0 )2 -)(35)

+(2d+1)ZT 1- (Ld,1 - I,)

Then, by following the discussions given in section III.B and C, we point out that, on the

right hand side of Eq. (35), the first term (oc 04, for small E) is due to the pitch angle

scattering dominant region, the second term (oc E 2, for small E) is due to the drag dominant

region, and the third term (oc e, for small E) is due to the region where both effects are of

the same order.

To understand the practical significance of the radial losses of the energetic ions, two

important time scales are introduced: (i) the time scale for the fast ions to slow down from

birth to becoming Maxwellian "ash"

f d (Imv2)df(-)d
rd = d = 0, 1

(ii) the time scale for the radial losses

f dV (jimV2)df(Vj
Td 2d a v)df d = 0,1

The ratio of the two time scales thus becomes

-d , Cd,l6b,
7d 

P
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which measures the efficiency of transferring energy from the energetic ions to the back-

ground plasma. Since it is found in this work that Cd, is usually smaller than unity,

the radial losses of the energetic ions will not become overly important as long as 6, is

sufficiently small.

However, we would like to note here that in modern devices, such as TFTR, JET and

CIT, the fast ions produced from fusion reactions can have 6, of order unity. In this

case, our calculations are not reliable, since, as pointed out in Sec. II, our ordering scheme

is based fundamentally upon the smallness of 6,. Note that the immediate consequence

of 6, 1 is that the radial width of the trapped particle orbit becomes comparable to

the radial scale length. This "fat banana" orbit effect to the energetic alphas transport

near the magnetic axis was studied in Ref. [7] using only the drag portion of the collision

operator, similar to Ref. [1] which assumed zero banana width. Since, for the thin banana

case, the present work shows significant pitch angle scatttering driven enhancement over

Ref. [1], it will be highly interesting to study the radial transport of fast ions by taking into

account the fat banana effects and still retaining the complete physics of the drag, the pitch

angle scattering, and the finite c effects. We remark that to retain the complete physics

in such a four dimensional system, the eigenfunction technique developed here should still

be applicable for making the governing equation tractable. However, the bounce average

would be performed along the exact large banana drift orbit extending across flux surface.
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Figure Captions

Figs. la-f Eigenfunctions An and eigenvalues i. of Eqs. (10), for n = 1 to 5 and

e=0.01,0.04, 0.09, 1, }, and 1. Also, Tn defined in Eq. (17) are given. The

Modified Legendre Polynomial Expansions are defined by Eq. (28).

Fig. 2 8' for e = 10-', where Ap. is defined by Eq. (20a). This shows that

A1 = Aa+ O(,/).

Figs. 3a,b

Figs. 3c,d

The normalized particle diffusion coefficients C0 ,1 and thermal diffusivity

C 1,1, driven by 4ln(Sr.), vs. Ve for Q, = 4 and Xo = 0.5,1,3,6. Cd,1

based on results from Nocentinil and Catto4 are also shown for comparison.

The coefficients Cd, are defined in Eq. (16).

The normalized particle diffusion coefficients C0,1 and thermal diffusivity

C1,1, driven by - ln(ST,), vs. VE for fast alphas in D-T and D-He 3 reactions

and fast protons in D-He3 reaction.

Fig. 4 The functional - < > given in Eq. (24) vs. variable 7= 1-

for e = 10-4. It behaves qualitatively like a Gaussian with width .f-.

Fig. 5 A line roughly showing where pitch angle scattering and drag forces are equal

in the velocity space (v, A) for barely passing particles and trapped particles,

cf. Eqs. (33). The three regions in the trapped region are devided according

to the discussions given in Secs. I and IV.
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