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External MHD modes stabilized by the presence of a close-fitting perfectly

conducting wall become destabilized when the wall is assumed to possess finite

resistivity. A simple variational principle giving an estimate for the resulting

growth rate and the threshold for stability is derived in terms of quantities

relating to the ideal system with and without a perfectly conducting wall. This

variational principle is valid for an arbitrary three-dimensional external mode in

an arbitrarily shaped plasma possessing an arbitrarily shaped, but thin, resistive

wall. As an example of the utility of the method, the variational principle is

used to investigate the axisymmetric (n = 0) stability of straight, zero pressure

elliptical tokamaks with arbitrary current density profiles in the presence of a

resistive wall.
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I. Introduction

It is a well known from ideal MHD theory that external kink modes can be

completely stabilized if a perfectly conducting wall is located sufficiently close to

the plasma.1- 5 Furthermore, several authors have shown that when the perfectly

conducting wall is replaced by one possessing finite resistivity, modes that were

initially stable begin to grow on a timescale comparable to the resistive diffusion

time associated with the wall r.6-9

The vacuum chambers of many modern fusion devices are constructed of

materials, such as stainless steel, which possess large resistivities (and corre-

spondingly small resistive diffusion times) in order to allow quick penetration

of the fields produced by external shaping and ohmic heating coils. Hence,

improvements in confinement have led to situations where experimental life-

times are potentially much greater than rD. This means that the estimation

of growth rates for unstable modes in the presence of a resistive wall takes on

great practical importance.

In this paper, we will describe a procedure, based on variational techniques,

for estimating the growth rate and predicting the exact threshold condition of

an arbitrary three-dimensional external mode for an arbitrarily shaped plasma

in the presence 'of an arbitrarily shaped, but thin, resistive wall. The main

contributions of the work are (1) that it yields an explicit and accurate form

for the growth rate for quite general systems and (2) that this form can be

evaluated solely from a knowledge of the behavior of the ideal system with

perfectly conducting walls. The work thus represents a significant extension of

earlier analyses.

The new procedure is derived in five parts. First, the ideal case where no

wall is present is examined with the aid of the Extended Energy Principle. 10

In general, we consider systems with 6W < 0 indicating instability on the ideal

MHD timescale. Second, the case where a perfectly conducting wall is present is

considered. Here, we assume the wall is sufficiently close to the plasma so that

2



6W can be made positive indicating ideal wall stabilization. Third, the effect

of placing a resistive wall in place of the perfectly conducting wall is derived.

This is seen to take the form of jump conditions for the tangential electric and

magnetic fields across the wall. Fourth, the information gained in the previous

three steps is compiled to yield a variational principle describing the dynamics of

the plasma in the presence of a resistive wall. Finally, trial functions for the fields

in the vacuum regions inside and outside the resistive wall are substituted into

the variational principle to yield an estimate for the growth rate. The paper

concludes with a discussion of non-ideal effects on resistive wall instabilities

and an application of the theory to the important special case of axisymmetric

(n = 0) tokamak stability.

II. The Ideal Case

As a point of reference, consider the stability of an arbitrary three dimen-

sional plasma configuration with and without a perfectly conducting wall. The

stability of such a system can be tested by means of the Extended Energy Prin-

ciple.

A. The Wall at Infinity

When the conducting wall is moved infinitely far away the Energy Principle

has the form

6W 0 = 6 WF + 6W0 - (1)

where

6WF - *(J x 6B)+rp|v-_f 2 + (2)
2 V, PO

( - VP)V -d dV
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and

W* = * dV. (3)

Here, &WF is the fluid energy integrated over the plasma volume and 6WV,** is

the vacuum energy integrated over the vacuum region surrounding the plasma.

Also, it has been assumed that no surface currents flow on the plasma boundary

so the surface energy 6Ws = 0.
6WF can be calculated in a straightforward manner given a trial function

for the plasma displacement . The vacuum energy is found by writing

6b$C = V x 6Aoo (4)

with 6A,, satisfying

V X V x 6Ac = 0. (5)

The boundary conditions are given by

6Ao IK = 0 (6)

en x 6Aoo |S, = -(en .- )B Is, (7)

where en is the outward facing unit normal vector to S,.
Equation (7) is the linearized form of the jump condition [en x E]s, = 0.

The linearized pressure balance jump condition gp + B 2/2po]]s = 0 has the

form

B - V x 6Ao Is,= B -V x ( x B) Is, . (8)

As is well known, Eq. (8) appears as a natural boundary condition in the mini-

mization of 6W. Thus, for the true minimizing solution, Eq. (8) is automatically

satisfied. Conversely, for any other trial function, Eq. (8) will not be exactly

satisfied. However, since the Extended Energy Principle is a variational princi-

ple, the minimization of 6W (with respect to the variational parameters in the

trial function) will "do as good a job as possible" in satisfying Eq. (8).

Using Eqs. (5) and (6), it is possible to cast Eq. (3) in the convenient form
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sw - J(en x 6 ) -en x (en x V x 6A!.) dS. (9)

Wall stabilization plays an important role in systems which are unstable with

the wall at infinity. Consequently, we shall hereafter consider situations where

W, < 0. (10)

B. The Wall a Finite Distance from the Plasma

Consider now the situation where a closed, perfectly conducting wall of ar-

bitrary shape is located a finite distance from the plasma. The surface of the

wall is denoted by S5 . In addition, assume that the plasma displacement trial

function is identical to that used in the evaluation of 6W.
Under these circumstances, the potential energy can be expressed as

6W, = 6WF + 6Wbn (11)

where bWF has the same value as in Eq. (1) and

6W( (en x 6As) -e, x (e, x V x 6A) dS. (12)

The vector potential 6A5 satisfies

V x V x 6&6 = 0 (13)

subject to the boundary conditions

e, x 6 Sj = 0; (14)

e, x 6Asj5 , = -(e, -)B is, (15)

As might be expected, the only difference in the calculation of 6A5 compared

to 6A0 0 is that the boundary condition given by Eq. (6) is replaced by Eq. (14),

indicating the presence of a perfectly conducting wall.

The situations of interest for resistive wall problems are characterized by

values of 6Wb which are wall stabilized by a perfectly conducting wall. Hence,

hereafter we shall assume that
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6Wb > 0.

C. Summary of Ideal Stability

In summary, a resistive wall is expected to play a major role in the stability

of external MHD modes when the system is unstable with the wall at infinity

but stable with a perfectly conducting wall a finite distance from the plasma:

6Wo = 6 WF + W <0, (17)

6W, = 6WF + 6Wb) > 0. (18)

It is important to note that the values of bWF in Eqs. (17) and (18) are identical

since the same has been assumed for each case.

The evaluation of the vacuum energies 6W(**) and 6W(,) is nearly identical.

Both corresponding vector potentials 6,O, 6Ab satisfy the same equation and

the same boundary condition on the surface S,. They differ only in the outer

boundary condition:

kc' 1. =0, (19)

ef x 6AbIS = 0. (20)

Ultimately, the growth rate of unstable modes in the presence of a resistive

wall will be expressed explicitly in terms of 6W. and &Wb.

III. The Resistive Wall Case

In this section, we replace the perfectly conducting wall at Sb with a thin

resistive wall characterized by a conductivity o and thickness d (see Fig. 1). By

exploiting the thin wall assumption, we then derive a relatively simple varia-

tional principle describing the stability of external modes in the presence of a

resistive wall.

6

(16)



A. Time and Length Scale Orderings

The critical insight in the analysis of resistive wall MHD problems is that

instabilities, if they exist, will be slowly growing modes with growth rates I

comparable to the resistive diffusion time of the wall rD:

1
S~ -- (21)

TD

Here, rD = poubd and b is a measure of the average radius of the vacuum

chamber. Due to the scaling in Eq. (21)

7 < 7MHD (22)

where 7YMHD = -6W,/K is the characteristic ideal MHD growth rate with

the wall at infinity. For the Alcator C-Mod tokamak b - 0.4m, d - 0.025m,

and 1/ ~ 69.5 x 10- 8 0 -m so 7 - 55 Hz. Typically 7MHD - 2 x 106 Hz so

Eq. (22) is usually well satisfied.

The thin wall model assumes

d < 1. (23)

However, it is necessary to ensure that d is not so small that Eq. (22) is violated.

The orderings given by Eqs. (21)-(23) imply that plasma inertial effects are

negligible on the time scale of interest. This leads to a substantial simplification

in the analysis. In particular, the equation describing the linearized plasma

behavior is just

F( ) = 0 (24)

where F is the well-known force operator of ideal MHD.
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B. Magnetic Field Solutions

As Fig. 1 shows, the volume surrounding the plasma is divided into three

parts: an inner vacuum region, the resistive wall, and an outer vacuum region.

The governing equations and boundary conditions for the fields in those three

regions are given as follows.

1. Vacuum Region Analysis

The vector potentials for the inner and outer vacuum regions 6A, and SA,

satisfy

V x V x 6A4, = 0, (25)

V x V x 6A, = 0. (26)

Furthermore, at the plasma surface, the boundary condition on 6A, is given by

e, x 6Ai s,= -(en -. )B (27)

while, far from the wall, the corresponding condition on bSA, has the form

6A L,= 0. (28)

For a real wall, no surface currents exist on either the interior or exterior

surfaces. Consequently the tangential components of both 6E and 6B must be

continuous across both interfaces. In terms of 6A these boundary conditions

are given by

[en x 6A]s, = 0 [en x 6AJs. = 0,
[e, x V x 6A]S, = 0 [en x V x 6A]s. = 0.

Here, Si and S, represent the interior and exterior faces of the conducting wall

respectively.
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2. Resistive Wall Analysis

The fields within the resistive wall are calculated as follows. First, the electric

and magnetic fields are expressed as

6E, = - A (30)Ot

6B = V x 6A. (31)

indicating that 4 = 0 has been chosen as the gauge condition. The wall itself

is considered to be a thin metallic shell of uniform thickness d and uniform

conductivity a. Hence, in the wall 6J. = 6E.. Using the assumption that all

perturbed quantities vary as 6Q(r, t) = 6Q(r) exp(yt), it follows from Ampere's

law that 6A, satisfies

V x V x 6A. = -pouy6A.- (32)

The solution for 6A, can be found analytically for an arbitrarily shaped

wall by exploiting the thin wall assumption. Two steps are required, one which

separates normal from tangential derivatives, and the other which results in the

expansion of 6A. with respect to the perpendicular distance into the wall.

Consider the separation of normal and tangential derivatives. To do this in

a convenient manner we will represent points within the wall using the param-

eterization

r = ri + uden (33)

where r, is a vector representing the inner surface of the conducting wall and,
in this context, e, is the unit vector normal to the inner surface of the wall.

The normalized length u represents perpendicular distance measured outward

from the inner surface of the wall. Thus, u = 0 and u = 1 correspond to Si and

S. respectively.

Using the coordinate transformation in Eq. (33) and invoking the thin wall

assumption [Eq. (23)] allow the gradient operator to be written
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e = + Vs (34)

where Vs only involves derivatives tangent to the surface of the wall.

In the limit of a thin wall, it is assumed that 6A. varies much more rapidly

normal to the wall than tangent to it. Therefore, we formally introduce a small

paxameter 6 ~ d/ and assume the following ordering for the derivatives

~ ,(35)

!Vs ~1 (36)

The above ordering can now be used to define an expansion for bA. in a

manner entirely analogous to the "constant-O" approximation of tearing mode

theory." The appropriate expansion is given by

6A(u, S) = bAmo(S) + 6A.1(u, S) + - (37)

where 6A.1/6Ao - 6 and F(S) denotes a functional dependence only on tan-

gential surface coordinates. The corresponding maximal ordering for y requires

poorybd - 1 (38)

which is seen to be compatible with Eq. (21).

After a short calculation, it can be shown that the leading order contribution

to Eq. (32) reduces to

02 2

(e. x 6A.1) = pooyd2(e, x 6A.0). (39)

The solution of Eq. (39) is easily found to be

e, x 6A,1 = al(S) + cl(S)u + pooud 2(e, x 6A o)(u 2 /2) (40)

where a, and c, are integration constants, each of order 6.

A set of jump conditions involving 6A1 and 6A0 can be found by applying

the boundary conditions given by Eq. (29). The results can be written, correct

to leading order, as follows

10



e, x 6A, jsi= en x bAwo,

en x 6A 0 I,= en 6A o, (42)

en x V x AiIs= e. x ci, (43)

en x V x6A =s. S. x ci +poo-yden x (en x 6Ao). (44)

By subtracting Eq. (41) from Eq. (42) and Eq. (43) from Eq. (44) we see that

the effect of the resistive wall explicitly appears only as a contribution to the

jump conditions on 6i and bi, across the wall. Specifically, we obtain

en x Ai |s,= be, x b, IS, (45)

en x (en x V x 6A,) IS = e x (en x V x bk.) Is. + (46)

pooyd(en x 6A) IS, -

C. Resistive Wall Variational Principle

In analogy to the derivation of the Energy Principle, Eq. (24) can be used

to define a Lagrangian representing the dynamics of a plasma in the presence

of a resistive wall:

, .-F( )dv = 0. (47)
SV,

This Lagrangian can be rewritten in the more familiar form

C = 6WF + (e' (. bb dS. (48)
2S, 110
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For the purposes of this analysis, it is convenient to write C in still another way.

This is accomplished by noting the following identities

6W IV x 6AI12 dV

=- (en. -) ( ) dS -

(e, x 6i) -e, x (e, x V x 6Ai) dS, (49)

6W(*) = IV x 6k,12 dV
V 2po Jy.d

(en x 6A.) - en x (e, x V x 6A,) dS (50)

where Vi and V refer to the vacuum regions inside and outside the resistive

wall respectively (see Fig. 1). In addition, the relevant governing equations and

boundary conditions [Eqs. (25)-(28)] for 6A, and 6A. have been applied in the

derivation of Eqs. (49) and (50).

Using the resistive wall jump conditions in Eqs. (45) and (46), the desired

form of C can be obtained:

£ = 6WF +6W + + |dj X 6|2ds (51)

Note that in the limit of marginal stability (y -+ 0), Eq. (51) reduces to the

ideal MHD potential energy with a wall at infinity 6W.. Thus, in this limit, the

true eigenfunction of the resistive system approaches the vacuum solution for

the ideal system 6m.. The conclusion is that the marginal stability threshold

of the resistive system 6W. = 0 is indeed the exact threshold.
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To verify the validity of the variational principle, we evaluate 6C and set it

to zero. A relatively lengthy calculation yields

6L = 6C-F(C)dV+

I 6(6Ai)-V x V x 6Aj dV+
40 J.

6(6A) V x V x 6 0, dV +

/ e (b -b$ - B . bB) d(en -64)dS +
P0

PO Lb x 6(6)) -e, x (e, x V x 6A.)+

Mpoayd(en x 6k) - e, x (e, x V x 6A,)] dS. (52)

From Eq. (52), it can be seen that for the volume contributions to vanish,

Eqs. (24), (25), and (26) must be satisfied. In addition, the surface contributions

give rise to the two natural boundary conditions

b -6b Is = B -6B Is,, (53)

e, x (e, x V x 6bA) s, = x (e " x x6ko) Is +

poa-fd(e6A Isb . (54)

Finally, Eq. (52) was derived assuming the boundary conditions

e, x 6A s,= -(en -. )B Is,, (55)

e, x 6k is,= e, x 6A 0 Is, (56)

6A 1.= 0 (57)

are exactly satisfied. Since the set of relations that causes C to be stationary

corresponds to the previously described governing equations and boundary con-

ditions, we conclude that Eq. (51) represents the desired variational principle.
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IV. Resistive Wall Growth Rates

In situations where 6W. < 0 ard 6W > 0 we can obtain an accurate

estimate of the growth rate by the use of trial functions. A convenient choice

for 5A1 and 6A that takes into account the nature of the boundary conditions

can be written as

6A, = c16Ak,, + c2Abi, (58)

6bA = c3 &Ai- (59)

The coefficients cl, c2 and c3 are initially arbitrary. However, two constraints

are imposed on 6A1 and bA by the conditions described by Eqs. (55)-(57).

First, since 6bA. and bA 6 satisfy the same boundary condition on S, as given

by Eqs. (7) and (15), Eq. (55) implies that

C1 + C2 = 1. (60)

Next, since e, x 6A 1sb= 0 from Eq. (14), it follows that Eq. (56) requires

Cj = C3- (61)

The last condition, corresponding to Eq. (57), is automatically satisfied since

6A 0 C L= 0 as required by Eq. (6). Thus, of the three coefficients-cl, c2 , and

ca-only one is independent.

Using the properties of the vacuum solutions, one can easily evaluate C as

given by Eq. (51). A short calculation yields

L = bWF + ci(ci + c2 )6W(* ) + c2 (ci + c2 )6W 6 ) -

(C2 2)C J(en x 6,) -en x (en x V x 6&,) dS -

C C (e x 6Ao) -en x (en x V x 6A ) dS+

cl-yad jen x bA, 1o2 dS. (62)
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This expression can be simplified by eliminating ci and c3 in terms of c2 by

means of Eqs. (60) and (61) and by making use of the identity

V - (6A. x V x 6Ab + 6Ab x V x 6A.) = 0. (63)

This procedure leads to

£ = 6W. + c(bW, b- 6W.) + C-d(1 c 2) e. x 6A |2 dS. (64)

Observe that C is a simple quadratic equation in terms of the variational

parameter c2. It is now straightforward to determine c2 by setting 8£/Lc 2 = 0.
The resulting value of c 2 is substituted back into C which is then set to zero.

The equation C = 0 can be solved for the growth rate - yielding

6 Wb

where

TD = poodb (66)

and b is explicitly written

- e. s X en bxk6Ao 2 dS

b - (6 Wb - 6W.) (67)

fs5 le" x 6A 42 dS
(68)

fs,(en X 6Ao, 'en x (e. x V x bAb) dS(

Equations (65)-(68) represent a generalization of the result derived by Freidberg

for the circular RFP.12

Due to the variational nature of the equations, the substitution of a trial

function into Eq. (65) and the variation of that trial function so as to maximize

7 (or equivalently, minimize C) provides an accurate estimate of the resistive

wall growth rate in terms of quantities relating to the ideal system with and

without a perfectly conducting wall. An important conclusion from Eq. (65) is
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that a system which is unstable with a wall at infinity 6W. < 0 but stable with

a perfectly conducting wall near the plasma 6W6 > 0 will always be unstable

to a slowly growing real mode if the wall is resistive. The characteristic growth

time is comparable to the resistive diffusion time through the wall. Note as well

that, as one would expect, - -+ 0 as 6W, -+ 0. In other words, the resistive

growth rate vanishes when the plasma is ideally stable with a wall at infinity.

V. Non-Ideal Effects on Resistive Wall Instabilities

The analysis just presented shows that a resistive wall leads to slowly growing

modes with zero real frequency. It can be argued that the addition of non-ideal

effects into the plasma model may cause the natural modes of the system to

develop a real part in the frequency. In this situation, the resistive wall must

respond to an AC signal. If the frequency is high enough so that the skin depth

is smaller than the wall thickness, the resistive wall would behave as a perfect

conductor; wall stabilization would persist even in the presence of a resistive

wall. Finite Larmor radius (FLR) and plasma rotation are two such effects

which produce a real frequency for unstable ideal MHD modes.

This appealing argument does not apply to resistive wall instabilities. To

show this consider the analysis of Pearlstein and Freidberg13 who derived the

following variational principle for MHD stability including FLR and plasma

rotation in arbitrary near 0 pinch geometry:

C = 6W - pl, -D . ± dV. (69)

Here, .j must satisfy V . 1 = 0 and D is given by

D = ( T i(T - w 2 )/m (70)
-i(T p o d)/M T

where m is the dominant poloidal harmonic mode number and
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T = (w - mO) - m(O + O.l) - mQ.. (71)

In Eq. (71), 1.j = - (1/enrB) (dp,/dr) is the ion diamagnetic drift velocity

representing FLR effects and f2 represents the rotation velocity of the plasma.

For ideal MHD f2 = f.i = 0 and T = W2 .

The critical point to recognize is that the new effects enter the calculation as

modifications to the inertia term. Thus, if one again considers slowly growing

modes, wi - 1/D < 7MHD then FLR and rotational effects are unimportant

if

O*i/rD <7MHD, (72)

/TD < 7-fHD- (73)

Specifically, when Eqs. (72) and (73) are satisfied, as they are in most practical

applications, FLR and rotational effects modify T from its ideal value

T = 2 ~ 1/rD _ 0 (74)

to

T ~ m2 S[Q + (1 + fl/2)Q.j]; (75)

that is, FLR and rotation produce small corrections to the potential energy 6W

but do not modify the frequency dependence of the eigenvalue problem.

The situation is summarized in Fig. 2 where we have illustrated typical spec-

tral plots for the systems under discussion. Figure 2a shows the situation with

the wall at infinity and predicts ideal instability (Re -y > 0). In Fig. 2b a per-

fectly conducting wall is brought close enough to the plasma to provide wall

stabilization (Rey = 0). Figure 2c shows the effect of substituting a resistive

wall in place of the perfectly conducting wall. The ideal wall stabilized modes

become slightly damped (Re y < 0). This is the "AC wall stabilization" previ-

ously discussed. However, a new, purely growing unstable mode develops out

of the origin (Re y > 0) corresponding to the resistive wall instability.
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The conclusion is that FLR effects and plasma rotation do not produce

any significant modification to resistive wall instabilities. A similar conclusion

applies to electron diamagnetic effects characterized by the parameter w., =

mQ.,, although for a different reason; that is, since unstable ideal MHD modes

satisfy Ell = 0, parallel electron dynamics do not play an important role. Hence,

w., does not affect ideal MH D instabilities. However, for resistive tearing modes,

which depend sensitively on El = rIJg 6 0, parallel electron dynamics play an

important role, causing a real part to the frequency of order Rew ~ w.,. For

these modes, AC wall stabilization should be an important stabilizing influence.

VI. Axisymmetric Stability of the Straight Ellipse

As an application of the preceeding analysis, we will now consider the ax-

isymmetric (n = 0) stability of a straight elliptical tokamak possessing a peaked

current density profile but negligible plasma pressure. First, ideal stability

boundaries will derived by assuming the presence of a perfectly conducting wall

surrounding the plasma. Then, these results will be used in Eqs. (65)-(68) to

calculate the growth rate of modes driven unstable by the presence of a resistive

wall.

The study of the effect of resistive vacuum vessels on axisymmetric modes is

a particularly important problem since several current or proposed experimental

devices are characterized by relatively large plasma elongations and discharge

times. The size of the growth rate resulting from a given vessel configuration

gives an estimate of the requirements for an active feedback system or additional

passive stabilizers needed to keep the plasma position within acceptable bounds.

The ideal axisymmetric stability of the straight elliptical tokamak with a flat

current density profile has been studied by several authors. 1-3 The additional

effects of a specific peaked current density profile and finite beta were modeled

by Laval and Pellat14 and Haas3 respectively. Wesson" included the effect of

a resistive wall while retaining the assumption of a flat current density profile.
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Here, we first recover the flat current profile results and then extend them to

include the effects of arbitrary current density profiles.

A. Equilibrium

We consider a straight elliptical tokamak with minor radius a, vertical elon-

gation at the plasma surface x., and length 2ixRo. Due to the assumption

of this simple plasma geometry along with that of zero plasma pressure, the

internal plasma flux surface shapes Sp can be accurately parameterized by a

series of nested ellipses with elongations varying quadratically between KO at the

magnetic axis and K. at the plasma surface. This topological model has been

found to agree quite well with exact solutions to the Grad-Shafranov equation

obtained using the NEQ MHD equilibrium code.15 In addition, the model is

simple enough to preserve the desired analytic nature of the calculation.

In the nested elliptical flux surface model, Sp is parameterized by

SO = {R(p, p), Z(p, p)} (76)

where (R, <p, Z) form a right-handed cylindrical coordinate system and

R(p, p) = Ro + ap cos p, (77)

Z(p, p) = api(p)sinp, (78)

1(p) = KO + (K. - Ko)p 2 , (79)

0= 0(p). (80)

The parameter p is a flux surface label while the parameter p is an angular

variable. Without loss of generality, it can be assumed that p varies between 0

(representing the magnetic axis) and 1 (representing the plasma surface) while

p varies between 0 and 27 (this variation representing a complete poloidal cir-

cuit around a flux surface). Since p labels flux surfaces, the flux function 0 is
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explicitly considered to be only a function of that variable [see Eq. (80)]. The

straight limit is formally applied by letting a/Ro -- 0.

The central elongation KO depends on the details of the current density

profile and must, in general, be obtained through a numerical calculation. As

an example of typical results, consider Fig. 3 which was constructed using the

variational equilibrium code ePFC"6 for a series of plasmas characterized by

a = 0.5 m, Ro = 10.0 m, I = 1.0 MA, and K. = 1.5 and 2.0. Figure 3a shows

the variation of a parameter A related to the central elongation

A Ia - NO (81)
Ka

with another parameter a related to the width of the axial current density profile

(see Fig. 3b.) Specifically, the variation in the axial current density J. with 0

is given by

= exp[-a(1 - )] - exp(-a)
JV/IeOO= 1 - exp(-a) (82)

where 0 = tk/o, tPo is the flux at the magnetic axis, and JVo is the axial current

density at the magnetic axis. Notice that when the current density profile is

flat, Ko = Ka (A = 0). Otherwise, the steeper the profile, the smaller Ko becomes

in relation to P. (A > 0). Finally, notice that A increases more rapidly with a

as K0 increases.

B. Calculation of Energy Integrals

1. Calculation of Fluid Energy

It has been rigorously demonstrated" 2 that the rigid vertical shift

= z ez (83)
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is the most unstable axisymmetric trial function for the straight elliptical toka-

mak. Therefore, we will evaluate the energy integrals under this assumption.

Note, however, that the rigid vertical shift is a considerably less accurate trial

function for more realistic shapes like finite aspect ratio dees.4 ,1 6 For these

geometries, a trial function like that described in Refs. 4 and 16 is required in

order to obtain reliable results.

Under the assumption of a rigid vertical shift, 6 WF [Eq. (2)] takes on the

particularly compact form

6WJ (e -ez)(B - V(ez - B)) dS. (84)

This expression can, in turn, be simply evaluated using the equilibrium infor-

mation in Eqs. (77)-(80) to give

6WF = 7- 2  [ (1)] (85)
uoa2RO Ip (1 + 2A) 3/ 2 '

2. Calculation of Vacuum Energy: Perfectly Conducting Wall

Due to the rigid vertical shift assumption, the vacuum energy [Eq. (12)]

takes on a simple form as well

bWb) = (en - ez)(et -6B)(el - B) dS (86)

where et is a unit vector tangent to the plasma surface.

To evaluate 6Wb) it is necessary to solve for 6b in the vacuum region

between the plasma and the wall (here assumed to be perfectly conducting).

Even in the straight limit, this is generally a difficult task due to the complexity

of Eq. (13). However, if attention is focused on a special class of wall shapes,

Eq. (13) can be transformed into a very simple form and solved analytically.

This transformation is accomplished by introducing the following vacuum

coordinate system3 :
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R(u, p) = RD + a'(sinh u cos p), (87)

Z(u, p) = a'(cosh u sin p) (88)

where u = u. is assumed to parameterize the plasma surface and

Ua coth~1 na, (89)

a' = a/ sinh u.. (90)

For the sake of convenience, it will be assumed that the wall surface also lies on

a constant-u surface: specifically, u = ub where ub > u.. Examples of the wall

shapes produced by this parameterization are shown in Fig. 4. In the figure,

the plasma-wall separation is labeled using the quantity (originally suggested

by Haas')

t = e 2 (".) (91)

Note that t is related to the ratio of the cross-sectional area of the plasma to

the area enclosed by the wall. Hence, t = 1 corresponds to the wall lying on the

plasma surface while t -+ 0 corresponds to the wall being moved to infinity.

In the above coordinate system (and in the straight limit) Eq. (13) simplifies

to

826 A, 826A6, 
(90+U = 2(92)

Equation (92) is simply Laplace's equation in "rectangular" coordinates. Hence,

A6 , can be found analytically in terms of a Fourier series that, with little error,

can be truncated to one term due to fast convergence.

Once the vacuum field is known, we find from Eq. (86) that

6WLb) - 4w 2 2 ~2
F 41+2+ dp M] (93)poa2RO2(l + 2A + vi+ 2A)2dpJ-j
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3. Calculation of Vacuum Energy: No Wall

By a very similar set of calculations, it is straightforward to analyze the case

where no wall is present. We find

-V00 47r2 2 Fdt 1P 2
rWv I=poa2Rox,(1+2A +V1+2A)2 (94)

2gZtl/2 Sin p O
6Aoo 2| = 2 r r( 1)1 (95)"W aRo (1+2A+ V/1+2A) Idp (

C. Critical Position for a Perfectly Conducting Wall

We will now derive a condition giving the maximum distance a perfectly

conducting wall can be placed while still ensuring at least marginal stability.

This is found by setting 6 Wb = 0 and solving for t. The result is

K0G(A) - 1
t > iaG(A)+1 (96)PcaG(A) + I

where G(A) is a monotonically increasing function of A defined by

++ /2G(A) = 4(1+2A)3 /2 (1+ 2A + +2A) . (97)

Note that the critical wall position in Eq. (96) does not depend explicitly on the

shape of the flux function. -Instead, the axisymmetric stability of the straight

ellipse is only a function of the topology of the flux surfaces as specified by K,

and A.

Equations (96)-(97) extend the results of Laval and Pellat" to arbitrary

current density profile. In the limit A - 0 the flat profile result obtained by

Haas' is recovered. For non-zero values of A, corresponding to peaked current

density profiles, G(A) represents an effective enhancement of the plasma elonga-

tion. This, in turn, is known to represent a destabilizing factor for axisymmetric
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modes in the straight ellipse.- Hence, the peaking of the current profile repre-

sents a destabilizing effect as well. This result is reasonable on physical grounds

since the peaking of the current profile effectively moves the plasma current

farther away from the stabilizing effects of the wall.

Figure 5 shows the variation in the critical wall position with 1,C and A for the

plasmas used to construct Fig. 3. Note that the variation with PCa is relatively

strong but that the variation with A is relatively weak.

D. Growth Rate Estimate with a Resistive Wall

If a configuration with a perfectly conducting wall satisfies the stability con-

dition given in Eq. (96), the substitution of a resistive wall results in a mode

growing at a rate given by Eq. (65). Using Eq. (85) and Eqs. (93)-(95) in

Eqs. (65)-(67) leads to a simple analytic expression for the growth rate

2 K.G(A) - 1
poobd (1 - t)KaG(A) - (1 + t) (98)

where

= sin 2 p UKpco 2 p + sin2 u dp, (99)

b = a sinh ub/ sinh u. is the minor radius of the wall, and Ib = coth ub is the

elongation of the wall.

Note from Eq. (98) that as i approaches its critical position [obtained from

Eq. (96)] y approaches infinity. This is a consequence of the neglect of plasma

inertial effects in Eq. (24). Neglecting plasma inertia is formally accomplished

by letting the plasma mass density p approach zero. In this limit, the Alfv~n

velocity VA OC 1/p1 2 -+ 0- hence fMHD -+ 00.

Consider again the plasmas used to construct Fig. 3. Assuming a 0.025m

thick stainless-steel wall located at t = 0.45, it is possible to use Eq. (98) to

construct a plot of y as a function of A for various plasma elongations. This
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is shown in Fig. 6. Note that while the peaking of the current profile has a

relatively small effect on the critical perfectly conducting wall position, it can

substantially increase the resistive wall growth rates of axisymmetric modes,
especially at larger elongations.

VII. Summary and Conclusions

In this paper we have considered the problem of external MHD mode stability

in the presence of a resistive wall. Attention has been focused on the situation

where the plasma is unstable with a wall at infinity (6W. < 0), but stable

with a sufficiently close-fitting perfectly conducting wall (6W > 0). When the

perfectly conducting wall is replaced with one of finite conductivity, it was found

that modes that were previously stable would start to grow at a rate related to

the resistive diffusion time characterizing the wall. Since the growth rate of the

resistive wall instability is much slower than ideal MHD growth rates, it was

possible to neglect inertial effects in the equation of motion for the plasma. This

simplified the analysis and also allowed the additional neglect of such non-ideal

phenomena as FLR effects and plasma rotation.

On the basis of the above physics, a simple variational principle [Eq. (65))

giving the resistive wall growth rate in terms of quantities relating to the ideal

system with and without a perfectly conducting wall was derived.

This variational principle was then used to investigate the axisymrnmetric

(n = 0) stability of straight, zero pressure elliptical tokamaks with arbitrary

current density profiles. For the cases examined, it was found that peaking of

the current density profile had a small effect on the critical perfectly conducting

wall position for the system but that it could dramatically enhance the resistive

wall growth rate for the system.

The case of the straight elliptical tokamak demonstrated the utility of the

variational principle derived here for easily gaining qualitative insight concerning

resistive wall instabilities. More importantly, since the growth rate expression
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depends on quantities relating to ideal MHD, it is possible that existing numer-

ical ideal stability codes could be quickly and simply modified to give accurate

resistive wall growth rate information.

As a final point, the simple variational principle derived here could be used as

a theoretical starting point for more elaborate resistive wall problems. This has

already proven to be the case in the development of a computer code to model

axisymmetric stability in tokamaks in the presence of an arbitrary configuration

of resistive conductors and feedback. 16
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Figure Captions

Fig. 1: Plasma-resistive wall geometry.

Fig. 2: Spectral behavior of resistive wall instabilities: (a) wall at infinity,

(b) perfectly conducting wall brought from infinity to a position near

the plasma, (c) perfectly conducting wall replaced by resistive wall

at the same location.

Fig. 3: Equilibrium information for model plasma configurations: (a) vari-

ation of central elongation parameter A with current profile width

parameter a for two values of plasma elongation Ko, (b) variation

of axial current density JV/Jwo with normalized flux for several

values of a.

Fig. 4: Variation in wall geometry as a function of Haas position param-

eter t. The solid line (i = 1) represents plasma surface. The dashed

lines (t < 1) illustrate possible wall locations.

Fig. 5: Variation of the critical Hass wall position parameter t yielding

marginal stability (in the presence of a perfectly conducting wall)

with central elongation parameter A for two values of plasma elon-

gation xc.

Fig. 6: Variation of the resistive wall growth rate - with central elongation

parameter A for two values of plasma elongation Ko.
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Haney and Freidberg, Fig. 1.
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Haney and Freidberg, Fig. 2a.
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