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Abstract

Strongly peaked impurity density profiles have been observed in Alcator C after frozen

hydrogen pellet injection. More recent experiments in ASDEX, PBX, TEXT, JET, and

TFTR have exhibited similar impurity accumulation during regimes of improved confine-

ment. In this context, we present calculations of the neoclassically predicted equilibrium

profiles of the intrinsic impurities in Alcator C. These theoretical calculations were per-

formed for comparison with the experimentally determined peaked profiles observed after

pellet fueling. Profiles of the main impurities in Alcator, carbon (C) and molybdenum

(Mo), were measured using soft x-ray diagnostics. C exists in the plateau collisionality

regime, and its transport is dominated by collisions with the hydrogen background ions

and temperature gradient effects. Mo is in the Pfirsch-Schliiter regime, and it is driven

mostly by collisions with C inside r/a ~ 0.25 and temperature gradients outside this ra-

dius. The rigorous multi-ion, mixed regime calculation necessary for the Mo transport is

shown here. The predicted C profile is in excellent agreement with observation, and the

profile predicted for Mo (which is not as close to equilibrium as C) is in fair agreement

with observation.
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1. Introduction

It is well known that transport processes in tokamaks have generally been measured to

be anomalous. However, those discharges in the Alcator C tokamak with frozen fuel pellets

injected into the plasma showed enhanced energy confinement [1] and strongly peaked,

nearly neo-classical impurity density profiles [2]. More recent experiments on ASDEX

[3-5], TEXT [6,7], JET [8] and TFTR [9] have also demonstrated impurity peaking on

axis following the injection of frozen hydrogen pellets or the transition to other improved

confinement regimes. Similarly, Z-dependent impurity accumulation, in general agreement

with estimates of neoclassical transport, has been measured during neutral-beam-heated

H mode discharges in PBX [10,11]. Furthermore, heavy impurity peaking in improved

confinement modes in ASDEX has been accurately modelled using a neoclassical model [4],

and light impurity peaking in high density discharges can also be explained by neoclassical

models [5]. In this light, we outline the calculations of the predicted equilibrium impurity

profiles for Alcator C using the neoclassical theory given by Hirshman and Sigmar [12],

which has also been used by TFR [13] and ASDEX [4].

The transport of ions in the source-free central region of a tokamak plasma can be

described theoretically by the simple expression of particle conservation

-±+v -r= 0, (1)Ot

where r is the flux of ions across the magnetic flux surfaces and n is the particle density.

For the case of one impurity, the neoclassical impurity fluxes from Ref. [12] in various colli-

sionality regimes have been rewritten in the simpler form [13] (with the correct temperature

gradient terms added)

CL VDIPOD _D nD OP O T]
L I =D -1.5nD - (2)

2Z1T [Or Z1nj Or Or

1.25 q T3 2c2n1  [nD nD On1 1.5nD OT
l'1 = 1.25 q-- T n, + -(3)R B ,Ze2nD Or Zinj Or T Or
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rPS VDIPD 2q2 (OPD n D  2I -T

SI = D 29 -p 3q2nD _4
2ZIT ar Zjnj & r I r

In these expressions, f CL is the classical contribution to the particle flux, rP is the plateau

flux, dominant for E/2 < E3/2v. < 1, and rPs is the Pfirsch-Schliiter contribution, domi-

nant for E3/2 v. > 1. The "collisionality" v. is defined as vRq/vTE3 / 2 , where for deuterium,

16 e'ln A 2nD (5)

VD 3m2 3 D .-- 2 c nC -+- nm, lMO, (5)

for carbon

16fre4 Z2 In A nD nc Z2 nM0 Z (uC=C + C'+ MO(6)
3mC MDV vD 2mCVTC mCvTC

and for molybdenum,

_ 16Ine 4 Z lnA nD ncZC noZ 1
VM[ + + . (7)

3mm, mDVTD mCVTC v'2mMovTMo

Here we used Vab = -. b from Eq. (A.30), if m, < mb. For ma = me, Va = (2-1/2)Vab.

For ma > mb, following Trubnikov [14], Vab = Vba nl. The thermal velocity VT

2T/m. Note that Eqs. (2)-(4) have the "standard form" F = -DINI/1r - Vrnr used

in experimental analysis, and we have introduced the subscripts D for deuterium and I

for the impurity.

In Alcator C (R=0.64 m, a=0.165 m) the main intrinsic impurities were carbon (C)

and molybdenum (Mo). In the particular deuterium gas discharge considered here the

experimental conditions were (see Fig. 3 of Ref. [2]) TM0 ~ Tc ~- TD ~ T, ~ 1.6 keV at

r = 0, and nm,(O) ~ 2.3 x 10 9 CM-3, nc(0) ~ 1.4 x 1013 CM-3, nD(0) ~ n,(0) ~ 5.6 x 1014

cm~'. Thus, defining the impurity strength parameter a3 = njZ?/nD (aMo = 3 x 10-3,

C = 0.9), we recall that if a1 >> me/mD the main ion collision friction RD = RD, -

RD, is dominated by RDj, the ion impurity friction, rather than RD,, the ion-electron

friction (cf. Appendix B). Thus C is a strong impurity and Mo is a trace impurity. All

nine permutations of the central collision frequencies Vab where a, b = D, C, Mo are given
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in Table 1 along with the total collision frequencies and the ion thermal velocities. The

relevant central values of the quantity e 3 /2V. are c3/ 2 vF = 0.46 and 63/2V o = 40. Hence

we conclude that in the central region of interest C is clearly in the plateau regime and Mo

is clearly in the Pfirsch-Schliiter regime. Radial profiles of the quantity f3 / 2 V. are shown

in Fig. 1. Carbon lies in the plateau regime (between the dashed regime boundaries) from

r = 0 to about r = 10 cm. Molybdenum, on the other hand, is in the Pfirsch-Schliiter

regime across the entire plasma. In principle, this multi-ion situation does not present

any calculational difficulties for C, since it is driven predominantly by the main deuterium

ions. However, since the Mo flux is driven largely by the C, it is necessary to properly take

into account the C and the existence of mixed regimes when calculating the Mo transport.

This letter is organized as follows. In Section 2 we briefly describe the calculation of the

equilibrium profile for C. In Section 3, we describe the multi-ion, mixed regime calculation

for the equilibrium profile of Mo. Conclusions are given in Section 4. In the Appendices,

the required details of the neoclassical calculation are summarized for completeness.

2. Carbon

The equilibrium carbon density profile can be found simply by setting the radial flux

equal to zero, using Equation (3) for the flux since C is in the plateau regime. Then

__n_ nD On 1  1. 5 nD OT
+ -0()

Or Z 1 n 1 Or T & *(

This has the solution

n;(r) n(0) T(r) 1.SZI

ni(O) \n() \T(r))

which is similar to the original result of Braginskii [15a] and Taylor [15b]. However Taylor

assumed a flat temperature profile, in which case the C profile would not derive any

additional peaking from temperature gradients. Note that if C were in the Pfirsch-Schliiter

regime, the result for the C profile would be, from Equation (4), and recalling p = nT,

nj(r) fnD(r)T)( Z(1 -

ni(O) \ nD(O)) \ T(r)) -. (0
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In contrast to the result of Eq. (9), this would give temperature screening (i.e., a negative

temperature gradient causes a flatter C profile) instead of the temperature peaking implied

by Eq. (9).

3. Molybdenum

The Mo impurity in Alcator C cannot be simply treated with the expressions (2)-(4)

valid for one impurity frictioning on the main ion, because the Mo transport is dominated

by effects from C [2], another impurity. In their review of neoclassical impurity transport,

Hirshman and Sigmar include a rigorous expression including multi-ion effects (see Eq.

6.129 of Ref [12]). When this expression is applied to Mo, we obtain the flux

Zu - 2c2Tq 2(O e2 B2

L L1 0 n p1  + L 2 Oln p' L3 91n T + LT1 D Oln pD + LfT an PT + LT 2D 91n T (
Z1  Z Or Z 1 Or ZD Or ZT Or ZD Or 

The L coefficients are given in terms of the plasma parameters in Appendix A. The sub-

script I represents the dominant impurity (C), and the subscript T represents the trace

impurity (Mo). All ion temperatures have been assumed to be the same.

Setting the radial trace impurity flux, Fpsj, to zero gives

Lf1 TTln nT + (L1+L 2 a Oln n+
ZT Or Z r

L1 +L2 + L LTD +L LTD Li T1T 1n T +(Li T11D)an nD
( i++ L 2 L LlID±D 1)+ +)nT Olr =0. (12)

Now the Mo density equilibrium profile is easily obtained in terms of the equilibrium

carbon density, the deuterium density and the temperature profiles

(_Z_ __L1 +OLl8nn1rnT(r) = nT(O) x exp r ZT ( + ZL 2 ) Or +

L 1 + L 2 +L 3  LTD +LT LT1D T OlnT LTD OlnnD
+ 1 12 T Or+ Zr . (3Zi ZD ZT Or ZD &r d (3
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Therefore, once the profile of the C density is known (from Eq. (9)) this can be easily

integrated numerically to obtain the Mo density profile.

To put this in a simpler form similar to Eq. (9), we invoke the conditions predicted

by Eq. (8) (and observed experimentally): lnT/ar << alnnc/ar and alnnD/ar <<

lnnc/Or. Then Eq. (12) becomes

Din n _ ZT (L 1 + L 2  91n n1
ar Z 1 \L-T' ) r

which, using Eq. (9), has as an approximate solution

nT(r) = (nj(r) ) A(r) zr/lZ' nDD (r (r) T T(r) 1.sAk(r)ZT

nT(O) - \ni()) n(0) ( T(0) .15

Note from Eq. (15) that the Mo peaking is driven by the C profile, which is itself peaked.

In this expression A(r) = -(Li + L 2 )/L T, and is a slowly varying positive quantity of

order one. The accurate value of A(r), calculated from the coefficients in Appendix A and

the plasma parameters from Ref. [2], is shown in Fig. 2. It is important to note here that

for Ref. [2] the more rigorous form of Eq. (13) including the deuterium density gradient

and temperature gradient terms was used to predict the Mo profile for comparison to the

experimental value.

4. Conclusions

The neoclassical theory for impurity transport predicts equilibrium density profiles

more peaked than the electron density profile. In the case of mildly collisional carbon, in the

plateau regime, the prediction is given by Eq. (9). For carbon this relation gives excellent

agreement with the experimental observations [2]. For highly collisional molybdenum, in

the trace impurity limit and in the Pfirsch-Schhiter regime, an exact form for the profiles

is given by Eq. (13) and a simplified prediction is given by Eq. (15) with A(r) shown in

Fig. 2. Note that the exponent in Eq. (15), A(r)ZT/ZI is smaller than one would estimate

from the simpler cases considered in Ref. [15]. The predicted profile for Mo is not as close
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to observation as is the carbon. However, the Mo is further from equilibrium than the

carbon. If the time dependence were taken into account, the predicted profile would be

broader, because the Mo would still be peaking. Moreover, since Mo is a trace impurity

(aMo = 3 - 10- < Vme/mD) ambipolar friction between the Mo and the electrons can

further broaden the predicted profiles (see Appendix B).

The present treatment does not constitute a full proof of neoclassical impurity trans-

port since that would also require demonstrating that the experimental time scale to reach

accumulation equilibrium agrees with time dependent neoclassical modelling. (This has

not been shown here.) Furthermore it would require correct scaling with global plasma

parameters. (Neoclassical scaling of the particle confinement time has been observed in

the TJ-1 tokamak [16] but was not systematically tested in Ref. [2].) However, the ob-

served agreement of the experimental carbon equilibrium profile and to a lesser degree,

of molybdenum, with the detailed facets of equilibrium neoclassical theory appears to be

highly suggestive of classical particle transport after pellet injection. At this time, a fully

detailed calculation of a two-impurity-species, radially varying mixed collisionality regime

plasma does not readily exist in the literature for use in time dependent modelling. (The

full treatment is outlined in Appendix C.)
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Appendix A. Neoclassical Coefficients

Coefficients for Equation (11) are summarized, from Ref. [12]. They are

L=- min (do + 0.236d 3 ) - DnD [1 - C1(ZDI, 0)], (A.1)
7IT mDT

L 2 = Mini(0.236d 3 ), (A.2)
TIT

L 3 = Minid 3 , (A.3)
7IT

L min do + DnD (A.4)
nITD

L11 mDnD C1l(DI, 0 ), (A.5)
TDT

L1D _ mDnD C2(D,0), (A.6)
TDT

where the collision times Tab are defined below. The variables labeled d are

do = MT 1 0 - lkl (A.7)
mr M_ __

di 0.88 MT1/2 01 [&o~ll 4 ± (o2 - , (A.8)
(MI 1 15 k11

d 2 = Mu' (A.9)
Mil

d - 85 [(Z- ) d 2 - d1] (A.10)

Here, the coefficients C 1 , C2 as functions of two arbitrary variables a and 3 are

0.52a
Cu(a,,3) = 1 - O.9a+13f'(A.11)0.59 + a + 1.34021

C 2(a, 0) =1.5 - 0.29 + 1.20a (A.12)
0.59 + a + 1.3402

We also have defined

ZD- = , (A.13)
nD

0 = WTDTTD, (A.14)
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where UTD is the transit frequency of D,

U 2 = M _ ,I

TI M 2 2
TI

For arbitrary species indices a and b one has

0 =- + M ( +/2 -3/2 =N 0 ,
ab l M k±ab ab

ab = Mab + m> (1 + x2 )- 5 / 2 = -Na,
1mb b

15 \
+ 4x2b + 15x 4(1 + Xa)-/2,

ii 27Ta
N 1 = 27xT,, 2 + X2 -5/2

Nab 4 Tbxab(1 ab)

M202 _15
.b 8 ( 1

(69
M 2=-16

+M, (1 + X2 -7/2 =-sN02,+ Mb) 1xb) = - XbaNba ,

63 ) + Xb)/,6xab + -4 i (1+ ab)~/,

225 T0Na 2 = 225T" yx 4(1 + X )-7/2,b 16 Tb b a

M22 (443/64) + 17 b + (459/8)x b + 28x b + (175/8)x 2

b (1 + )/ , (A.24)

N 2 2  2625 Ta x a
ab - 64 Tb (1 + Xb)(9/2) (A.25)

Xb = VTb, (A.26)
VTa

where VTa = 2T/ma. It is important to note that

a"

Mab ab)

N2 'ab

Ta.

(A.27)

(A.28)

(A.29)
N b

= V6b

and the collision time is taken from Braginskii to be

= -- 4 i)
2 37 2VT2

47rnbe~e~ln A ma < mb . (A.30)
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Appendix B. Ambipolar Diffusion for a Two-Ion Species Plasma

Taking the toroidal momentum balance, the radial particle flux F, follows from

0 = eZFaBp + Ra; Ra= Rba, (B.1)
b#a

where the collisional friction is

Rab = -manavab(va - Vb) , (B.2)

and [see Appendix A, Eq. (A.30)]

b Znb 3/),(B.3)

and va ~ vrappa/rn. Here r, is the radial scale length defined as n/(On/ar)j-', and p.

is the poloidal gyroradius of species a, which can be e, D, C, or Mo in the case at hand.

From Eqs. (B.1) and (B.2), and Rab = -Rba, follows the collisional transport ambipolarity

condition

Zm 0 Fm. = re - (1% + Zcrc). (B.4)

Defining the impurity strength parameter,

a, = njZ?/nD; j=C, Mo , (B.5)

and using the scaling expression (B.3) in (B.2), one finds in general R, D/RDI ~ me/mD/a .

Then ReD/RDC ~ Vm /mD/aC < 1, but ReD/RDMo ~ Vme/mD/aM0 >> 1, RDMO/RDC =

atMo/ac < 1, and RcmO/RDC is entirely negligible (recallingac - 1 and amo ~ 3x10- 3 ).

From (B.1), (B.2), (B.3), the deuterium flux scales as

a Roc 1i me /mD aft (.60FD - RDC 1+ + (B.6a)
ac ac

and the carbon flux as

-ZcFc ~ RDC 1+ - . (B.6b)
\; yDe
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Therefore, to zeroth order in Vme/mD

17 + Z cJ =0 (B.7a)

and for our case of aAI/ac < 1me/mD

(0 = 0 .(B. 7b)Al 0

This result is indeed borne out from Eq. (11) (or (4)) for molybdenum if one notices that

VIM 0 cx aM, and is therefore of first order.

To obtain the first order flux rFl) the neoclassical electron flux must be retained which

scales as

S RDC m/MD (1 + ac + aMo) (B.8)

and is thus of first order in Vme /mD. Thus, from (B.4)

ZAI 0 M o = re* + ZMOFMo(from Eq. (11)) (B.9)

where the last term derives from the Mo-D and Mo-C friction, including the thermal

friction oc 1. For Ir-eo one can take the usual electron banana regime expression

e,*= -D.Pn, (, + Z) +, + + kB + re(Ware) (B.10)
ff~O= ~f n,(( na) Z an' BT

We note that this is radially outward even when the ions have satisfied Eq. (8.7a). This

outward flow will retard the Mo peaking. The Ware flux is inward. In Eq. (B.9), moM(from

Eq. (11)) is also inward. Thus, the overall rate of inward molybdenum transport will be

affected by the detailed balance of the terms in P 0"*. The exact equilibirum condition

follows from setting the right hand side of Eq. (B.9) equal to zero, with r"-* from (B.10).

This will lead to a dependence of the Mo equilibrium profile on the ratio of the electron

diffusion coefficient D P in (B.10) and the diffusion coefficients contained in Eq. (11).
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In all of the above, the turbulent driven fluxes 17j (which for the typical low frequency

turbulence in tokamaks have also been shown to be intrinsically ambipolar by themselves,

i.e. E ,, ejfj = 0) have been assumed to be decoupled from the collisionally driven

fluxes of Eq. (B.1). This may be justified for the typically observed low saturation am-

plitudes e0/Te Z 10-2 in the plasma core. No turbulent theory exists giving the net

fluctuation driven contribution including impurities to the right hand side of Eq. (B.9).
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Appendix C. Outline of Calculation of Fluxes

in Transitional Collisionality Regimes

It is shown in [12] that in general all three regime contributions to the flux F1 E

(nj Ug - V4), driven by the friction Rj, must be kept. From toroidal momentum balance

ejF = (Reo Rji i + R 1 ))=

F(R11 B I B 2 \ F(R1IB) ±R k )
B 2  (B 2 ) + (B 2 )

ejTs + ejrFf + ejrFL (C.1)

where F = RB4. (Note that each piece is individually ambipolar which can be useful to

know in mixed collisionality regimes.) From parallel momentum balance, to lowest order

in ppol/rn,

0 V.-7r) + (BRI)

which can be used to write

B(B 2 )

It was shown (cf. [12]) that (B- V. ) rises in the banana regime, peaks in the plateau

and evanesces in the P.S. regime (where 9 j is collisionally isotropized, but we note [17]

that 7rj can have contributions from unlike species collisions.)

In an impure plasma the P.S. flux (first term on right in (C.1)) is evidently driven by

the poloidal variation of R which can be shown [17] to scale with the parameter

A (pilr.)Z2
uwti

which is large in the P.S. regime and evanesces into the BP regime (where the long mean

free path suppresses poloidal variations). The classical flux fCL will also contribute near
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the plasma center where 2q 2 -- 1 (particularly if q < 1.) Thus, near the PS-BP transition,

for each species j the flux becomes (cf. Eqs. (C.1), (C.2)).

'j -Z Dy,, -- nV-,,, s = PS, BP, CLar 3

i.e. s denotes the collisionality regime. V,, is of the form

I j + H,,, ,I with k 4 j.
ek nk T

Dy,, and Hj,, are functions of c, vyj and ay nj Z?/nD, describing the transitions. (Not

all transition details have been worked out yet in the literature.)

Clearly then, Eqs. (3), (4) or (11) are best valid in "clean" regimes away from transi-

tions and Fig. 1 gives only a first guideline for the appropriate regimes. More accuracy is

needed for time dependent impurity transport modelling than for the simple equilibrium

profile determination attempted in this paper.
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TABLE I lists the collision frequencies Vab (row a, column b) in the first three columns.

The fourth column shows the total collision frequency for species a: Viotal = Eb Vab. The

last column gives the thermal velocity for each species assuming all temperatures are equal

to the central electron temperature of 1.6 keV.

Table I. Collision Frequencies (s- 1 ) and Thermal Velocities

D C Mo Itotal VT (cm/s)
D 4.34 x 103 6.18 x 103  2.54 x 101 1.05 x 104 3.91 x 107

C 3.68 x 105  6.43 x 104 3.73 x 102 1.55 x 10 1.60 x 107

Mo 1.15 x 105 2.84 x 105 2.33 x 103 4.02 x 105 5.65 x 106
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Fig. 1. The quantity e3/ 2 v. is shown for the three ion species in Alcator: deuterium

(D), carbon (C), and molybdenum (Mo). The dashed lines represent transitions between

different collisionality regimes. Mo is completely in the Pfirsch-Schliiter, and carbon is in

the plateau inside about 10 cm.
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Fig. 2. The quantity A(r) = -(Li + L2)/L'T, which occurs in Eq. (15) is shown for the

parameters measured in a particular Alcator C discharge with deuterium gas, BT = 9.75T

and I, = 520 kA (see Ref. [2]).
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