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ABSTRACT

A macroscopic cold-fluid model is used to determine the influence

of cylindrical effects on the operating range and properties of the

electron flow in relativistic smooth-bore magnetrons. Assuming

operation at Brillouin flow, it is found that cylindrical effects

(such as the centrifugal force on an electron fluid element) can

significantly modify several features of the equilibrium flow and

diode operating range relative to the case of planar flow.

1. INTRODUCTION

In relativistic magnetrons,1-6 pulsed, high-voltage diodes

(operating in the MV range, say) are used to generate microwaves at

gigawatt power levels. While magnetically insulated electron flow 7 ,8

and related features of the magnetron instability9 ~1 3 have been

extensively analyzed in planar geometry, there are relatively few

theoretical treatments that attempt to retain the full influence of

self-field and cylindrical effects (centrifugal force effects, finite

diode aspect ratio, etc.) on the diode operating range and equilib-

rium profiles as well as stability behavior. 15,16 In this paper, a

macroscopic cold-fluid model is used to determine the detailed in-

fluence of cylindrical effects on the operating range and properties

of the equilibrium electron flow in relativistic smooth-bore magne-

trons. Assuming operation at Brillouin flow, the normalized layer

thickness and Hull cut-off voltage are calculated over a wide range

of diode aspect ratio a/(b - a), and normalized fill field
2

eBf(b - a)/mc
2. THEORETICAL MODEL

In the present analysis, we make use of a macroscopic cold-fluid

model to investigate equilibrium properties of relativistic, non-
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neutral electron flow in the cylindrical smooth-bore magnetron con-

figuration illustrated in Fig. 1. All equilibrium properties are

assumed to be azimuthally symmetric (a/80 - 0) and independent of
axial coordinate (a/8z - 0). The cathode is located at r - a, the

anode is located at r = b, and space-charge-limited flow is assumed

with

f (r = a) = 0 and *0 (r = b) = V,

(1)
Er(r = a) =0.

Here, V is the applied voltage, *0 (r) is the electrostatic potential,

and Er (r) - -8+ 0/8r is the radial electric field. The combined

radial electric field Er (r)&r and axial magnetic field B z(r) z pro-

duce an equilibrium rotation of the nonneutral electron fluid with

normalized azimuthal flow velocity

Ob(r) = VOb(r)/c - wb(r)r/c (2)

where c is the speed of light in vacuo. It is assumed that the equi-

librium density profile nb(r) extends from the cathode at r - a to

radius r - rb (the outer edge of the electron layer), and that the

region rb < r < b corresponds to a vacuum region. The electric and

magnetic fields are determined self-consistently from

1 a
- - rE r(r) = - 4 nenb(r) , (3)
r ar r

a
- B z(r) = 4 nenb(r)0b(r) , (4)
ar

where -e is the electron charge. In the subsequent analysis, the

applied magnetic field in the vacuum region is denoted by

Bz(r) = B0 = const., rb < r < b . (5)

To complete the macroscopic cold-fluid equilibrium description,

Eqs.(3) and (4) are supplemented by the radial force balance equation

2 e

-Yb(r)O b (r) = 
2 [rEr(r) + 0 b(r)rBz (r) , (6)

where m is the electron rest mass, and
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Fig. 1. Cylindrical smooth-bore magnetron.

Yb(r) = [1 - 02(r)]-1/2 (7)

is the relativistic mass factor. Consistent with Er(r - a) = 0 in
Eq.(l), we consider the class of solutions to Eq.(6) in which there
is zero flow velocity at the cathode, i.e.,

0b(r - a) - 0. (8)

Equations (3), (4) and (6), supplemented by the boundary condi-
tions in Eqs.(1), (5) and (8), can be used to calculate the equilib-
rium profiles Er(r), Bz (r), nb(r) and Ob(r). Generally speaking,
there is considerable latitude in the choice of equilibrium profiles
in a macroscopic cold-fluid model.14 For example, the radial de-
pendence of any one of the profiles Er(r), Bz(r), nb(r) and 0b(r) can
be prescribed arbitrarily, and the three remaining profiles calcu-
lated self-consistently from Eqs.(3), (4) and (6).
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3. CYLINDRICAL BRILLOUIN FLOW EQUILIBRIUM

In the present analysis, we assume that the total electron energy

is equal to zero across the layer profile, i.e.,

[yb(r) - 1]mc 2 ef 0 (r) 0 - (9)

which corresponds to Brillouin flow. Taking the derivative of Eq.(9)
with respect to r gives

e3

-- 2 E r(r) a ' - ybib 1b 0)
mc 8r 8r

where use has been made of Eq.(7). Combining Eqs. (3), (4), (6), (9)
and (10), we obtain the closed equation

b r ab a b0 + rayb/ 1

r ar ar J r r0 Jb
where yb - (1 1/2. The second-order differential equation (11)

is to be solved for 0b(r) over the radial extent of the electron

layer (a < r < rb). Because 0b(r - a) = 0 and Yb(r - a) - 1, we find

from Eqs.(10) and (11) that

a0b 2 4 nnb(r - a)e2 W 2(a)
--- J 2 - 2 .(12)
ar r=a mc c

Similarly, it can be shown that

e2B2(r - a) 2
W pb (a) = m22 c (a) , (13)

which corresponds to the familiar Brillouin-flow condition at the

cathode.

It is convenient to express Eq.(11) in an alternate form by

introducing the flow parameter Xb(r) defined by

0b(r) = tanhXb(r) . (14)

Making use of Eq.(14) and yb(r) = (1 - 0 ) = coshXb(r), we find

that Eq.(11) can be expressed in the equivalent form



5

1 a ( Xb sinhXbcoshXb
-r -- r --- -r 2  .(15)
r ar ar r2

Consistent with Eq.(12) and gb(r - a) - 0, Eq.(15) is to be solved
subject to the boundary conditions

Xb(r = a) - 0

[ aXb 12 2Kb(a) 2 K (16)Lr r-a c

Integrating Eq.(15) with respect to r, we obtain

r - K2a2 + sinh 2X ' (17)
ar

where the boundary conditions in Eq.(16) have been enforced.

Equation (17) is the final equation describing equilibrium

Brillouin flow in cylindrical diode geometry. In this regard,

Eq.(17) is applicable within the electron layer (a < r < rb) and must

be solved subject to the boundary condition Xb(r - a) = 0, which

corresponds to ab(r - a) - 0. Numerical solutions to Eq.(17) are

presented in Fig. 2, where Xb(r) is plotted versus K(r - a) for

several choices of the dimensionless parameter Ka. As a general

remark, for large aspect ratio and a thin layer satisfying

K2a2 >> sinh 2Xb
(18)

(rb - a)2 << a2

it is readily shown that the solution to Eq.(17) reduces to the

familiar planar result1

Xb(r) = K(r - a) , (19)

which corresponds to normalized flow velocity 0b(r) - tanh[K(r - a)]

within the electron layer (a < r < rb). When Eq.(18) is not satis-

fied, it is clear from Fig. 2 that the cylindrical effects in Eq.(17)

can significantly modify the solution for Xb(r) relative to the
planar result in Eq.(19).
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Fig. 2. Plots of Xb versus K(r - a) obtained from

Eq.(17) for several values of Ka.

4. VOLTAGE AND FILL-FIELD CONDITIONS

The equilibrium electric and magnetic field profiles, E r(r) and

B Z (r), are readily expressed in terms of Xb(r) by making use of

Eqs.(3) and (4). Without presenting algebraic details, we integrate

Poisson's equation (3) from r = a to r = b and enforce +0 (r - b) - V,
where V is the applied voltage at the anode. This gives

eV !Xb b
+ rsinhXb l n (20)

mc r=rb 8r r=rb r b

which relates Xb(r = rb) and [Xb/8rl r-r at the surface of the

electron layer to the normalized voltagebeV/mc2 . Furthermore, we
b

make use of magnetic flux conservation, 2nfdrrBz = const., to relate
a

the initial fill field Bf (assumed to be uniform prior to formation

of the electron layer) to the magnetic field depression after the
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layer is formed. Making use of eBz/mc2 - r~ (/ar)(rsinhXb) within
the electron layer (a _ r < rb), we obtain

eB(b - a) (b2 + r2) (b2 - )Xb]
2 r [sinhXb r - r + rcoshXbmc rb(b + a) b rb(b + a) Lr r - r

(21)

Equations (20) and (21) relate eV/mc2 and eBf(b - a)/mc2 to rb'
Xb(r - rb), [8Xb/ 8 r-r , and the geometric factors a and b.

b
Generally speaking, the equilibrium flow equation (17) for Xb(r) must
be integrated with respect to r to determine Xb(r - rb) and

[aXb r - r b in Eqs.(20) and (21).

Cylindrical effects are included in Eqs.(20) and (21) in a fully
self-consistent manner. As shown in Sec. 7, Eqs.(20) and (21),

together with Eq.(17), can be used to determine numerically the

normalized layer thickness A - (rb - a)/(b - a) in terms of the

normalized voltage eV/mc2 and fill field eBf(b - a)/mc , and the

geometric factors a and b. For completeness, we first consider

Eqs.(17), (20) and (21) in the limit of a planar diode.

5. RELATIVISTIC PLANAR FLOW

In the limit of a planar diode with (b - a)2 << a 2, (rb - a)2

<< a2 and K2 a2 >> sinh2 Xb(r - rb)J, it is readily shown that the

solution to Eq.(17) reduces to the familiar result Xb(r) = K(r - a)

over the radial extent of the electron layer (a < r < rb), and that

Eqs.(20) and (21) can be approximated by

eV
1 + -2 = cosh K(rb - a) + K(b - rb) sinh K(rb - a), (22)

mc

eB f(b - a)

e c 2 - sinh K(rb - a)] + K(b - rb) cosh K(rb - a) . (23)

For specified value of the normalized fill field eBf(b - a)/mc2
the voltage eV/mc must be sufficiently small to assure magnetically

insulated flow with rb < b, i.e., the outer edge of the electron

layer is not in contact with the anode. Examination of Eqs.(22) and
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(23) shows that the condition rb < b requires that the voltage V must

be smaller than the Hull cut-off voltage VH defined by 2 ,4

eVH e [1 B 2 (b - a) 2  1/2

-c 2 + fm2 c4 - 1 . (24)

Whenever V < VH, the electron flow is magnetically insulated with rb
< b. A plot of eVH/mc2 versus normalized fill field eBf(b - a)/mc2

is presented in Fig. 3 for the case of a planar diode.

For effective interaction between the layer electrons and the RF

field in a magnetron, the layer thickness rb - a should be at least

large enough that the (fastest) electrons at r - r b resonate with the

excited waves with phase velocity v - w/k . This requires that the

voltage V exceed a value2 ,4 ,17 known as the Buneman-Hartree threshold

voltage VBH. Equations (22) and (23) can be combined to give

eV e 2f(b - a) tanh K(rb - )- - . (25)
mc mc 2 coshK(rb - a)

Setting Ob (r b) - tanh[K(rb- a)] - w/ck * 0 , and Yb (r r b)2 1/2y p
- coshKl(r - a)) - (1 - ) it is readily shown from Eq.(25)

that the Buneman-Hartree threshold voltage VBH is given by

eVBH eB f(b - a)

H 2 2 p .1 ) (26 )
mc mc

For purposes of illustration, Fig. 3 also shows a plot of eVBH/mc

versus normalized fill field eB f(b - a)/mc2 obtained from Eq.(26) for

the choice of phase velocity Op = v p/c = 0.8. The allowed region of

magnetron operation (VBH <V < VH) for 0 - 0.8 then corresponds to

the shaded region in Fig. 3.

Equations (22) and (23) can be used to determine closed analyt-

ical expressions for (rb - a)/b - a) and K(b - a) = wpb (a)(b - a)/c

in terms of eV/mc2 and eBf(b - a)/mc2 for the case of a planar diode.

Typical results are illustrated in Fig. 4, which shows plots of the

normalized layer thickness (rb - a)/(b - a) versus eV/mc2 obtained

from Eqs.(22) and (23) for values of magnetic fill field ranging from

Bf = eBf(b - a)/mc = 0.25 to 8. As the electron flow becomes in-

creasingly relativistic, we note from Fig. 4 that the curves asymptote
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Fig. 3. Plot of the normalized Hull cut-off voltage eVH/mc2

versus the normalized fill field eBf(b - a)/mc2 for a planar

diode [Eq.(24)J. The dashed curve corresponds to the normal-

ized Buneman-Hartree voltage eVBH/mc2 for Op - 0.8 [Eq.(26)].
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Fig. 4. Plots of the normalized layer thickness

(rb - a)/(b - a) versus Log 1 0 (eV/mc 2) obtained from Eqs.(22)

and (23) for a planar diode and several values of the

normalized fill field 9 = eBf(b - a)/mc2



10

abruptly as the voltage V approaches the relativistic Hull cut-off
voltage defined in Eq.(24). The intercepts for rb - b and
(rb - a)/(b - a) - 1 in Fig. 4 of course correspond to eV/mc2

- eVH/mc

6. NONRELATIVISTIC CYLINDRICAL FLOW

For nonrelativistic Brillouin flow with 0 (r) << 1 in cylindricalb
geometry, it is readily shown that Bz (r) Bf for a < r < b, and the
azimuthal flow velocity is given by

1 Wc r2  a2

1b(r) - - -- (27)
2 c- ( r

for a < r < rb. Moreover, the equilibrium radial electric field
Er(r) and density nb (r) can be expressed as

B (i A- a4]
rE r(r) - - 2 (28)

c 4r

and

and 2[ r 4 a 4 1prb(r) - wC[1 - - 4  ], (29)
2 r

within the electron layer (a < r < rb). Here wc - eBf/mc and w2b(r)
2 rbpb

- 4 nnb(r)e /m. For an electron layer with moderate aspect ratio

a/(rb - a), it is clear from Eq.(29) that the radial variation of

W 2b(r) can be significant. For example, if rb/a - 3/2, then wpb(r)pb~r ca besgiiat 2 (9/b2w
decreases monotonically from wc at r - a to (97/162)wc at r - rb'
Poisson's equation (3) can be integrated from r - a to r - b for the

equilibrium density profile in Eq.(29). Enforcing +0 (r - b) = V

gives

eV 1 r2 - a 2 c r - a4  b-- 1c b + _ rP jn -- (30)
mc2 2 c2 2rb 4 c2 rb ) b'

where the nonrelativistic treatment requires eV/mc 2 1.

For specified values of the normalized voltage eV/mc2 and mag-
netic field eBf(b - a)/mc 2, Eq.(30) can be used to determine the

normalized layer thickness

=rb - a

b - r-b(31)
b - a
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For a diode with moderate aspect ratio, the cylindrical effects in-

corporated in Eq.(30) can be significant. For example, in the limit

where the electron layer extends to the anode (rb - b), the Hull cut-

off voltage determined from Eq.(30) is given by

eV 1 W 2(b - a) 2 b+a2
-V _ 2 c 2 (32)
inc2 2 c2

Typical numerical solutions to Eq.(30) are presented in

Fig. 5, where Ab - (rb - a)/(b - a) is plotted versus

(eV/mc 2)/wc (b - a)2 /2c 2 for b/a - 2, b/a - 3/2, and a/(b - a)
= Ad + m. The curve labelled Ad = O in Fig. 5 corresponds to the

nonrelativistic limit of a planar diode. As b/a is increased, we

note from Fig. 5 that the normalized layer thickness Ab increases

more rapidly with increasing values of the normalized voltage.

7. RELATIVISTIC CYLINDRICAL FLOW

We now extend the planar analysis in Sec. 5 to include the full

influence of cylindrical effects that are incorporated in the

relativistic equilibrium flow equation (17) and the expressions for

eV/mc2 and eBf(b - a)/mc in Eqs.(20) and (21). Because Eq.(17) must

be solved concurrent with Eqs.(20) and (21) in cylindrical geometry,

closed analytical expressions for the normalized layer thickness

(rb - a)/(b - a) are not tractable as in the limit of a planar diode.

Therefore, the majority of results obtained for relativistic cylin-

drical flow are necessarily numerical.

Certain analytical results, however, can be obtained from

Eqs.(17), (20) and (21). For example, the Hull cut-off voltage VH
including cylindrical effects2, 4 is readily obtained by setting rb
= b in Eqs.(20) and (21). This gives

eVH 2e 2B2 (b - a)2 11 / 2

- = 1+ g2 24 -1, (33)
mc M c

where g, is the geometric factor defined by

b + a

91 = - (34)
2b
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Fig. 5. Plots of the normalized layer thickness A b
(rb - a)/(b - a) versus normalized voltage obtained from

Eq.(30) for nonrelativistic electron flow in a cylindrical

diode and several values of b/a.

For V < VH defined in Eq.(33), the electron flow in a cylindrical

diode is magnetically insulated from contact with the anode. In the

limit of a planar diode with (b - a)2 << a 2, the geometric factor g
-+ 1 in Eq.(34), and Eq.(33) reduces to the planar result in Eq.(24).

As b/a is increased, however, g, decreases from unity and cylindrical

effects become increasingly important. This is illustrated in Fig. 6

where eVH/mc2 calculated from Eq.(33) is plotted versus the nor-

malized fill field eBf(b - a)/mc2 for several values of b/a and the

geometric factor g, = (b + a)/2b. The curve labeled g, - 1 in Fig. 6

corresponds to the planar limit of a diode with infinite aspect

ratio, i.e., Ad - a/(b - a) -+ - [see Eq.(24) and Fig. 3]. As b/a is

increased and therefore g, is reduced, it is clear from Eq.(33) and

Fig. 6 that cylindrical effects reduce the Hull cut-off voltage

relative to the planar estimate in Eq.(24) and Fig. 3. From Eq.(34),
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Fig. 6. Plots of the normalized Hull cut-off voltage eVH/mc2

versus the normalized fill field eBf(b - a)/mc2 for relativ-
istic electron flow in a cylindrical diode and several values
of the geometric factor g - (b + a)/2b [Eq.(33)].
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Fig. 7. Plots of the normalized layer thickness Ab
(rb - a)/(b - a) versus the normalized voltage V/VH obtained

from Eqs.(17), (20) and (21) for relativistic electron flow
in a cylindrical diode. Here, VH is planar Hull cut-off
voltage defined in Eq.(24).
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this reduction factor is equal to 1 - g2 in the nonrelativistic

regime and equal to 1 - g, in the highly relativistic regime where
eVH/mc2 >> 1. The associated reduction in eVH/mc2 can be substantial
for moderate values of b/a. For example, if b/a - 3, then g - 2/3,

2and 1 - g - 5/9 and 1 - g, - 1/3.

Equations (17), (20) and (21) have been solved numerically to
determine the scaling of the normalized layer thickness ab -

(rb - a)/(b - 2a) with voltage eV/mc2 and fill field f -
eBf(b - a)/mc . Typical numerical results are illustrated in Fig. 7,
where Ab is plotted versus V/VH for Of - 1 (dashed curves) and §f - 8
(solid curves) and b/a - 2, 3/2 and Ad = a/(b - a) 4 -. In Fig. 7,
the voltage V is normalized to the relativistic planar Hull cut-off
voltage VH defined in Eq.(24). As in the case of nonrelativistic,
cylindrical flow (Fig. 5), the normalized layer thickness ab exhibits
a strong dependence on cylindrical effects as measured by b/a. More-
over, for each case presented in Fig. 7, ab approaches unity whenever
V approaches the relativistic cylindrical Hull cut-off voltage VH
defined in Eq.(33). Evidently, when relativistic effects are strong

(the 9 = 8 case in Fig. 7), Ab approaches unity more abruptly than
when the flow is nonrelativistic (compare with Fig. 5).

8. CONCLUSIONS

A macroscopic cold-fluid model has been used to determine the

influence of cylindrical effects on the operating range and prop-

erties of the electron flow in relativistic smooth-bore magnetrons.

Assuming operation at Brillouin flow [Eq.(9)], it is found that

cylindrical effects can significantly modify several features of the

equilibrium flow and diode operating range relative to the case of

planar flow. For example, centrifugal effects reduce the radial

electric field (and therefore the Hull cut-off voltage VH) required
to fill the cathode-anode gap with rb - b (see Fig. 6]. The normal-
ized layer thickness Ab - (rb - a)/(b - a) has been calculated over a

wide range of system parameters b/a, eV/mc2 and eBf(b - a)/mc 2

(Fig. 7].
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